64
Spatiotemporal Chaos in Rayleigh-Bénard Convection Michael Cross California Institute of Technology Beijing Normal University June 2006 Janet Scheel, Keng-Hwee Chiam, Mark Paul Henry Greenside, Anand Jayaraman Paul Fischer Yuhai Tu, Dan Meiron, Michael Louie Support: DOE Computer time: NSF, NERSC, NCSA, ANL Michael Cross (Caltech, BNU) Spatiotemporal Chaos June 2006 1 / 54

Spatiotemporal Chaos in Rayleigh-B©nard Convection

  • Upload
    others

  • View
    7

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Spatiotemporal Chaos in Rayleigh-B©nard Convection

Spatiotemporal Chaos in Rayleigh-Bénard Convection

Michael Cross

California Institute of TechnologyBeijing Normal University

June 2006

Janet Scheel, Keng-Hwee Chiam, Mark PaulHenry Greenside, Anand Jayaraman

Paul FischerYuhai Tu, Dan Meiron, Michael Louie

Support: DOEComputer time: NSF, NERSC, NCSA, ANL

Michael Cross (Caltech, BNU) Spatiotemporal Chaos June 2006 1 / 54

Page 2: Spatiotemporal Chaos in Rayleigh-B©nard Convection

Outline

1 Rayleigh-Bénard Convection

2 Spatiotemporal ChaosWhat is it?Spatiotemporal Chaos in Rayleigh-Bénard convection

3 Domain ChaosAmplitude equation theoryGeneralized Swift-Hohenberg simulationsExperimentSimulations of full fluid equations

4 Conclusions

Michael Cross (Caltech, BNU) Spatiotemporal Chaos June 2006 2 / 54

Page 3: Spatiotemporal Chaos in Rayleigh-B©nard Convection

Outline

1 Rayleigh-Bénard Convection

2 Spatiotemporal ChaosWhat is it?Spatiotemporal Chaos in Rayleigh-Bénard convection

3 Domain ChaosAmplitude equation theoryGeneralized Swift-Hohenberg simulationsExperimentSimulations of full fluid equations

4 Conclusions

Michael Cross (Caltech, BNU) Spatiotemporal Chaos June 2006 3 / 54

Page 4: Spatiotemporal Chaos in Rayleigh-B©nard Convection

Rayleigh-Bénard Convection

Rayleigh

Michael Cross (Caltech, BNU) Spatiotemporal Chaos June 2006 4 / 54

Page 5: Spatiotemporal Chaos in Rayleigh-B©nard Convection

Rayleigh-Bénard Convection

Ω

Rotate

Michael Cross (Caltech, BNU) Spatiotemporal Chaos June 2006 4 / 54

Page 6: Spatiotemporal Chaos in Rayleigh-B©nard Convection

Rayleigh-Bénard Instability

Fluid

Rigid plate

Rigid plate

Michael Cross (Caltech, BNU) Spatiotemporal Chaos June 2006 5 / 54

Page 7: Spatiotemporal Chaos in Rayleigh-B©nard Convection

Rayleigh-Bénard Instability

Fluid

Rigid plate

Rigid plate

Michael Cross (Caltech, BNU) Spatiotemporal Chaos June 2006 6 / 54

Page 8: Spatiotemporal Chaos in Rayleigh-B©nard Convection

Rayleigh-Bénard Instability

HOT

COLD

Michael Cross (Caltech, BNU) Spatiotemporal Chaos June 2006 7 / 54

Page 9: Spatiotemporal Chaos in Rayleigh-B©nard Convection

Rayleigh-Bénard Instability

HOT

COLD

Michael Cross (Caltech, BNU) Spatiotemporal Chaos June 2006 8 / 54

Page 10: Spatiotemporal Chaos in Rayleigh-B©nard Convection

Rayleigh-Bénard Instability

HOT

COLD

Michael Cross (Caltech, BNU) Spatiotemporal Chaos June 2006 9 / 54

Page 11: Spatiotemporal Chaos in Rayleigh-B©nard Convection

Rayleigh-Bénard Instability

HOT

COLD

2π/q

Michael Cross (Caltech, BNU) Spatiotemporal Chaos June 2006 10 / 54

Page 12: Spatiotemporal Chaos in Rayleigh-B©nard Convection

Rayleigh-Bénard Instability

HOT

COLD

Michael Cross (Caltech, BNU) Spatiotemporal Chaos June 2006 11 / 54

Page 13: Spatiotemporal Chaos in Rayleigh-B©nard Convection

Convection Patterns

From the website of Eberhard Bodenschatz

Michael Cross (Caltech, BNU) Spatiotemporal Chaos June 2006 12 / 54

Page 14: Spatiotemporal Chaos in Rayleigh-B©nard Convection

Equations for Convection

Momentum Conservation

1

σ

[∂ Eu∂t

+(Eu • E∇

)Eu]

= −E∇ p + R Tez + ∇2Eu + 2Äez × Eu

Energy Conservation

∂T

∂t+

(Eu • E∇

)T = ∇2T

Mass ConservationE∇ • Eu = 0

BC: no-slip boundaries atz = 0, 1 with T(z = 0) = 1, andT(z = 1) = 0

Aspect Ratio:0 = r/d

Michael Cross (Caltech, BNU) Spatiotemporal Chaos June 2006 13 / 54

Page 15: Spatiotemporal Chaos in Rayleigh-B©nard Convection

Modern Convection Apparatus

From de Bruyn et al., Rev. Sci. Instr. (1996)

Michael Cross (Caltech, BNU) Spatiotemporal Chaos June 2006 14 / 54

Page 16: Spatiotemporal Chaos in Rayleigh-B©nard Convection

Modern Convection Apparatus

From de Bruyn et al., Rev. Sci. Instr. (1996)

Allows aquantitativecomparison between theory and experiment.

Michael Cross (Caltech, BNU) Spatiotemporal Chaos June 2006 14 / 54

Page 17: Spatiotemporal Chaos in Rayleigh-B©nard Convection

Outline

1 Rayleigh-Bénard Convection

2 Spatiotemporal ChaosWhat is it?Spatiotemporal Chaos in Rayleigh-Bénard convection

3 Domain ChaosAmplitude equation theoryGeneralized Swift-Hohenberg simulationsExperimentSimulations of full fluid equations

4 Conclusions

Michael Cross (Caltech, BNU) Spatiotemporal Chaos June 2006 15 / 54

Page 18: Spatiotemporal Chaos in Rayleigh-B©nard Convection

Outline

1 Rayleigh-Bénard Convection

2 Spatiotemporal ChaosWhat is it?Spatiotemporal Chaos in Rayleigh-Bénard convection

3 Domain ChaosAmplitude equation theoryGeneralized Swift-Hohenberg simulationsExperimentSimulations of full fluid equations

4 Conclusions

Michael Cross (Caltech, BNU) Spatiotemporal Chaos June 2006 16 / 54

Page 19: Spatiotemporal Chaos in Rayleigh-B©nard Convection

What Is It?

Definitionsdynamics, disordered in time and space, of a large, uniform systemcollective motion of many chaotic elementsbreakdown of pattern to dynamics

Natural examples:atmosphere and ocean (weather, climate etc.)arrays of nanomechanical oscillatorsheart fibrillation

Cultured monolayers of cardiac tissue (from Gil Bub, McGill)

Michael Cross (Caltech, BNU) Spatiotemporal Chaos June 2006 17 / 54

Page 20: Spatiotemporal Chaos in Rayleigh-B©nard Convection

Spatiotemporal Chaos

A new paradigm of unpredictable dynamics

Simplifications over small-system chaos

Perhaps smooth dependence on parametersStatistical rather than geometrical descriptionN → ∞ limit

Not as difficult as fully developed turbulence!

Michael Cross (Caltech, BNU) Spatiotemporal Chaos June 2006 18 / 54

Page 21: Spatiotemporal Chaos in Rayleigh-B©nard Convection

Spatiotemporal Chaos

A new paradigm of unpredictable dynamics

Simplifications over small-system chaos

Perhaps smooth dependence on parametersStatistical rather than geometrical descriptionN → ∞ limit

Not as difficult as fully developed turbulence!

Issues

Role of space as well as time in sensitivity to initial conditions

Insightful diagnostics

Specificity and universality of behavior

Quantitative descriptions

Scaling behavior near transitionsReduced long wavelength description (cf. “hydrodynamics”)

Control …

Michael Cross (Caltech, BNU) Spatiotemporal Chaos June 2006 18 / 54

Page 22: Spatiotemporal Chaos in Rayleigh-B©nard Convection

Spatiotemporal Chaos

A new paradigm of unpredictable dynamics

Simplifications over small-system chaos

Perhaps smooth dependence on parametersStatistical rather than geometrical descriptionN → ∞ limit

Not as difficult as fully developed turbulence!

Issues

Role of space as well as time in sensitivity to initial conditions

Insightful diagnostics

Specificity and universality of behavior

Quantitative descriptions

Scaling behavior near transitionsReduced long wavelength description (cf. “hydrodynamics”)

Control …

Michael Cross (Caltech, BNU) Spatiotemporal Chaos June 2006 18 / 54

Page 23: Spatiotemporal Chaos in Rayleigh-B©nard Convection

Outline

1 Rayleigh-Bénard Convection

2 Spatiotemporal ChaosWhat is it?Spatiotemporal Chaos in Rayleigh-Bénard convection

3 Domain ChaosAmplitude equation theoryGeneralized Swift-Hohenberg simulationsExperimentSimulations of full fluid equations

4 Conclusions

Michael Cross (Caltech, BNU) Spatiotemporal Chaos June 2006 19 / 54

Page 24: Spatiotemporal Chaos in Rayleigh-B©nard Convection

Spiral Chaos in Rayleigh-Bénard Convection

…and from experiment

Michael Cross (Caltech, BNU) Spatiotemporal Chaos June 2006 20 / 54

Page 25: Spatiotemporal Chaos in Rayleigh-B©nard Convection

Domain Chaos in Rayleigh-Bénard Convection

Michael Cross (Caltech, BNU) Spatiotemporal Chaos June 2006 21 / 54

Page 26: Spatiotemporal Chaos in Rayleigh-B©nard Convection

Spiral and Domain Chaos in Rayleigh-Bénard Convection

Rotation Rate

Ray

leig

h N

umbe

r

no pattern(conduction)

stripes(convection)

KL Instability

ÿ

stripes unstable

Michael Cross (Caltech, BNU) Spatiotemporal Chaos June 2006 22 / 54

Page 27: Spatiotemporal Chaos in Rayleigh-B©nard Convection

Spiral and Domain Chaos in Rayleigh-Bénard Convection

Rotation Rate

Ray

leig

h N

umbe

r

no pattern(conduction)

stripes(convection)

KL

spiralchaos

domainchaos

ÿ

Michael Cross (Caltech, BNU) Spatiotemporal Chaos June 2006 23 / 54

Page 28: Spatiotemporal Chaos in Rayleigh-B©nard Convection

Outline

1 Rayleigh-Bénard Convection

2 Spatiotemporal ChaosWhat is it?Spatiotemporal Chaos in Rayleigh-Bénard convection

3 Domain ChaosAmplitude equation theoryGeneralized Swift-Hohenberg simulationsExperimentSimulations of full fluid equations

4 Conclusions

Michael Cross (Caltech, BNU) Spatiotemporal Chaos June 2006 24 / 54

Page 29: Spatiotemporal Chaos in Rayleigh-B©nard Convection

Summary of Results

Amplitude equation theory predicts

Length scale ξ ∼ ε−1/2

Time scale τ ∼ ε−1

Velocity scale v ∼ ε1/2

with ε = (R − Rc(Ä))/Rc(Ä)

Numerical Tests

generalized Swift-Hohenberg equationsXfull fluid dynamic simulationsX

Experiment× (but now we understand why)

Michael Cross (Caltech, BNU) Spatiotemporal Chaos June 2006 25 / 54

Page 30: Spatiotemporal Chaos in Rayleigh-B©nard Convection

Outline

1 Rayleigh-Bénard Convection

2 Spatiotemporal ChaosWhat is it?Spatiotemporal Chaos in Rayleigh-Bénard convection

3 Domain ChaosAmplitude equation theoryGeneralized Swift-Hohenberg simulationsExperimentSimulations of full fluid equations

4 Conclusions

Michael Cross (Caltech, BNU) Spatiotemporal Chaos June 2006 26 / 54

Page 31: Spatiotemporal Chaos in Rayleigh-B©nard Convection

Amplitudes

Rayleigh's linear stability analysis gives

u = u0eγ t cos(qx) . . . = A(t) cos(qx) . . .

so that in the linear approximation and forR nearRc

d A

dt= γ A with γ ∝ ε = R − Rc

Rc

Michael Cross (Caltech, BNU) Spatiotemporal Chaos June 2006 27 / 54

Page 32: Spatiotemporal Chaos in Rayleigh-B©nard Convection

Amplitudes

Rayleigh's linear stability analysis gives

u = u0eγ t cos(qx) . . . = A(t) cos(qx) . . .

so that in the linear approximation and forR nearRc

d A

dt= γ A with γ ∝ ε = R − Rc

Rc

Useε as small parameter in expansion about threshold

Michael Cross (Caltech, BNU) Spatiotemporal Chaos June 2006 27 / 54

Page 33: Spatiotemporal Chaos in Rayleigh-B©nard Convection

Amplitudes

Rayleigh's linear stability analysis gives

u = u0eγ t cos(qx) . . . = A(t) cos(qx) . . .

so that in the linear approximation and forR nearRc

d A

dt= γ A with γ ∝ ε = R − Rc

Rc

Useε as small parameter in expansion about threshold

Nonlinear saturationd A

dt= (ε − A2)A

Michael Cross (Caltech, BNU) Spatiotemporal Chaos June 2006 27 / 54

Page 34: Spatiotemporal Chaos in Rayleigh-B©nard Convection

Amplitudes

Rayleigh's linear stability analysis gives

u = u0eγ t cos(qx) . . . = A(t) cos(qx) . . .

so that in the linear approximation and forR nearRc

d A

dt= γ A with γ ∝ ε = R − Rc

Rc

Useε as small parameter in expansion about threshold

Nonlinear saturationd A

dt= (ε − A2)A

Spatial variation∂ A

∂t= εA − A3 + ∂2A

∂x2

Michael Cross (Caltech, BNU) Spatiotemporal Chaos June 2006 27 / 54

Page 35: Spatiotemporal Chaos in Rayleigh-B©nard Convection

Amplitude Equations for KL Instability(Busse-Heikes, May-Leonard)

A1 A2 A3

KLKL

KL

d A1/dt = εA1 − A1(A21 + g+ A2

2 + g− A23)

d A2/dt = εA2 − A2(A22 + g+ A2

3 + g− A21)

d A3/dt = εA3 − A3(A23 + g+ A2

1 + g− A22)

give aheteroclinic cycleA1

A2

A3

Michael Cross (Caltech, BNU) Spatiotemporal Chaos June 2006 28 / 54

Page 36: Spatiotemporal Chaos in Rayleigh-B©nard Convection

Three Amplitudes + Rotation + Spatial Variation(Tu and MCC, 1992)

A1 A2 A3

KLKL

KL

∂ A1/∂t = εA1 − A1(A21 + g+ A2

2 + g− A23) + ∂2A1/∂x2

1

∂ A2/∂t = εA2 − A2(A22 + g+ A2

3 + g− A21) + ∂2A2/∂x2

2

∂ A3/∂t = εA3 − A3(A23 + g+ A2

1 + g− A22) + ∂2A3/∂x2

3

gives chaos!

Michael Cross (Caltech, BNU) Spatiotemporal Chaos June 2006 29 / 54

Page 37: Spatiotemporal Chaos in Rayleigh-B©nard Convection

Simulations of Amplitude Equations(Tu and MCC, 1992)

Grey: A1 largest; White:A2 largest; Black:A3 largest

Michael Cross (Caltech, BNU) Spatiotemporal Chaos June 2006 30 / 54

Page 38: Spatiotemporal Chaos in Rayleigh-B©nard Convection

Scaling

RescaleX = ε1/2x, T = εt, A = ε−1/2A

∂T A1 = A1 − A1(A21 + g+ A2

2 + g− A23) + ∂2

X1A1

∂T A2 = A2 − A2(A22 + g+ A2

3 + g− A21) + ∂2

X2A2

∂T A3 = A3 − A3(A23 + g+ A2

1 + g− A22) + ∂2

X3A3

Numerical simulations show chaotic dynamics withO(1) length and time scalesTherefore in unscaled (physical) units

Length scale ξ ∼ ε−1/2

Time scale τ ∼ ε−1

Velocity scale v ∼ ε1/2

Michael Cross (Caltech, BNU) Spatiotemporal Chaos June 2006 31 / 54

Page 39: Spatiotemporal Chaos in Rayleigh-B©nard Convection

Issues

Important Issues

Validity of scaling results from truncated expansions

Validity of “mean field” results in nonlinear fluctuating state

Other Approximations

Restriction to 3 roll orientations

Amplitudes assumed real

No wave number variationNo dislocations or phase grain boundaries

No perpendicular derivative terms

(∂xi − i

2qc∂2

yi

)2

−→ ∂2xi

Michael Cross (Caltech, BNU) Spatiotemporal Chaos June 2006 32 / 54

Page 40: Spatiotemporal Chaos in Rayleigh-B©nard Convection

Tests of the Theory

Simulations of generalized Swift-Hohenberg equations in periodicgeometries show results consistent with predictions[MCC, Meiron, and Tu (1994)]

Experiments give results that are consistent either with finite values ofξ, τ

at onset, or much smaller power lawsξ ∼ ε−0.2, τ ∼ ε−0.6

[Hu et al. (1995) + many others]

Simulations of generalized Swift-Hohenberg equations in circulargeometries of radius0 gave results similar to experiment but alsoconsistent with finite size scaling

ξM = ξ f (0/ξ) with ξ ∼ ε−1/2

[MCC, Louie, and Meiron (2001)]

Fluid simulations …

Michael Cross (Caltech, BNU) Spatiotemporal Chaos June 2006 33 / 54

Page 41: Spatiotemporal Chaos in Rayleigh-B©nard Convection

Outline

1 Rayleigh-Bénard Convection

2 Spatiotemporal ChaosWhat is it?Spatiotemporal Chaos in Rayleigh-Bénard convection

3 Domain ChaosAmplitude equation theoryGeneralized Swift-Hohenberg simulationsExperimentSimulations of full fluid equations

4 Conclusions

Michael Cross (Caltech, BNU) Spatiotemporal Chaos June 2006 34 / 54

Page 42: Spatiotemporal Chaos in Rayleigh-B©nard Convection

Generalized Swift-Hohenberg SimulationsMCC, Meiron, and Tu (1994)

Real field of two spatial dimensionsψ(x, y; t)

∂ψ

∂t= εψ + (∇2 + 1)2ψ − ψ3 gives stripes

Michael Cross (Caltech, BNU) Spatiotemporal Chaos June 2006 35 / 54

Page 43: Spatiotemporal Chaos in Rayleigh-B©nard Convection

Generalized Swift-Hohenberg SimulationsMCC, Meiron, and Tu (1994)

Real field of two spatial dimensionsψ(x, y; t)

∂ψ

∂t= εψ + (∇2 + 1)2ψ − ψ3

+ g2z·∇ × [(∇ψ)2∇ψ ] + g3∇·[(∇ψ)2∇ψ ]

gives domain chaos!

Stripes Orientations Domain Walls

Michael Cross (Caltech, BNU) Spatiotemporal Chaos June 2006 35 / 54

Page 44: Spatiotemporal Chaos in Rayleigh-B©nard Convection

Scaling of Correlation LengthMCC, Meiron, and Tu (1994)

Michael Cross (Caltech, BNU) Spatiotemporal Chaos June 2006 36 / 54

Page 45: Spatiotemporal Chaos in Rayleigh-B©nard Convection

Outline

1 Rayleigh-Bénard Convection

2 Spatiotemporal ChaosWhat is it?Spatiotemporal Chaos in Rayleigh-Bénard convection

3 Domain ChaosAmplitude equation theoryGeneralized Swift-Hohenberg simulationsExperimentSimulations of full fluid equations

4 Conclusions

Michael Cross (Caltech, BNU) Spatiotemporal Chaos June 2006 37 / 54

Page 46: Spatiotemporal Chaos in Rayleigh-B©nard Convection

Experiment and DiagnosisHu et al. (1995)

Michael Cross (Caltech, BNU) Spatiotemporal Chaos June 2006 38 / 54

Page 47: Spatiotemporal Chaos in Rayleigh-B©nard Convection

Experimental Results for Correlation LengthHu et al. (1995)

Michael Cross (Caltech, BNU) Spatiotemporal Chaos June 2006 39 / 54

Page 48: Spatiotemporal Chaos in Rayleigh-B©nard Convection

Outline

1 Rayleigh-Bénard Convection

2 Spatiotemporal ChaosWhat is it?Spatiotemporal Chaos in Rayleigh-Bénard convection

3 Domain ChaosAmplitude equation theoryGeneralized Swift-Hohenberg simulationsExperimentSimulations of full fluid equations

4 Conclusions

Michael Cross (Caltech, BNU) Spatiotemporal Chaos June 2006 40 / 54

Page 49: Spatiotemporal Chaos in Rayleigh-B©nard Convection

Spectral Element Numerical SolutionMCC, Greenside, Fischer et al.

Accurate simulation of long-time dynamics

Exponential convergence in space, third order in time

Efficient parallel algorithm, unstructured mesh

Arbitrary geometries, realistic boundary conditions

Conducting

ÿþýüû

Insulating

dT/dx=0

"Fin" Ramp

Michael Cross (Caltech, BNU) Spatiotemporal Chaos June 2006 41 / 54

Page 50: Spatiotemporal Chaos in Rayleigh-B©nard Convection

Simulations Complement Experiments

Knowledge of full flow field and other diagnostics (e.g. total heat flow)

No experimental/measurement noise (roundoff “noise” very small)

Measure quantities inaccessible to experiment e.g. Lyapunov exponentsand vectors

Readily tune parameters

Turn on and off particular features of the physics (e.g. centrifugal effects,realistic v. periodic boundary conditions)

Michael Cross (Caltech, BNU) Spatiotemporal Chaos June 2006 42 / 54

Page 51: Spatiotemporal Chaos in Rayleigh-B©nard Convection

Full Fluid Dynamic SimulationsScheel, Caltech thesis (2006)

Realistic Boundaries

Periodic Boundaries

Michael Cross (Caltech, BNU) Spatiotemporal Chaos June 2006 43 / 54

Page 52: Spatiotemporal Chaos in Rayleigh-B©nard Convection

Lyapunov ExponentJayaraman et al. (2005)

Temperature Temperature Perturbation

Michael Cross (Caltech, BNU) Spatiotemporal Chaos June 2006 44 / 54

Page 53: Spatiotemporal Chaos in Rayleigh-B©nard Convection

Lyapunov Exponent(Jayaraman et al., 2005)

Aspect ratio0 = 40, Prandtl numberσ = 0.93, rotation rateÄ = 40

Michael Cross (Caltech, BNU) Spatiotemporal Chaos June 2006 45 / 54

Page 54: Spatiotemporal Chaos in Rayleigh-B©nard Convection

Full Fluid Simulations for Domain Chaos

Summary of results of full 3d fluid simulations:

Simulations of Rayleigh-Bénard convection with Coriolis forces giveτ ∼ ε−1 for small enoughε. For largerε a slower growth is seen perhapsconsistent withτ ∼ ε−0.7

[Scheel and MCC (2005)]

Scaling of largest Lyapunov exponent consistent withλ ∼ c + ε1 with ccomparable to the finite size shift in onset[Jayaraman et al. (2006)]

Role of centrifugal force[Becker, Scheel, MCC, and Ahlers (2006)]

Michael Cross (Caltech, BNU) Spatiotemporal Chaos June 2006 46 / 54

Page 55: Spatiotemporal Chaos in Rayleigh-B©nard Convection

Frequency ScalingScheel and MCC (2005)

Slopes give frequency∝ ε1.07 (0 = 40 cylinder) andε1.04 (periodic)

Michael Cross (Caltech, BNU) Spatiotemporal Chaos June 2006 47 / 54

Page 56: Spatiotemporal Chaos in Rayleigh-B©nard Convection

Scaling of Lyapunov ExponentJayaraman et al. (2005)

Michael Cross (Caltech, BNU) Spatiotemporal Chaos June 2006 48 / 54

Page 57: Spatiotemporal Chaos in Rayleigh-B©nard Convection

Importance of Centrifugal ForceBecker, Scheel, MCC, and Ahlers (2006)

Aspect ratio0 = 20,ε ' 1.05,Ä = 17.6

Centrifugal force 0 Centrifugal force x4 Centrifugal force x10

Michael Cross (Caltech, BNU) Spatiotemporal Chaos June 2006 49 / 54

Page 58: Spatiotemporal Chaos in Rayleigh-B©nard Convection

Time ScalingBecker, Scheel, MCC, and Ahlers (2006)

o simulations0 = 20 with centrifugal force×2; ¤ experiment0 = 40¦ simulations0 = 40 no centrifugal force

Michael Cross (Caltech, BNU) Spatiotemporal Chaos June 2006 50 / 54

Page 59: Spatiotemporal Chaos in Rayleigh-B©nard Convection

Current Picture

Simulations of the full fluid equations near onset without centrifugal forcesare consistent with predictions of scaling of times asε−1; not yet able toprobe scaling of lengths.

Centrifugal forces are important in experiment, enhancing the finite sizeeffects and limiting size of region of domain chaos.

Maximum centrifugal force cf. Coriolis force∼ (α1T)Ä0/u.(Near thresholdÄK L ∼ 101, u ∼ ε1/2).

Michael Cross (Caltech, BNU) Spatiotemporal Chaos June 2006 51 / 54

Page 60: Spatiotemporal Chaos in Rayleigh-B©nard Convection

Outline

1 Rayleigh-Bénard Convection

2 Spatiotemporal ChaosWhat is it?Spatiotemporal Chaos in Rayleigh-Bénard convection

3 Domain ChaosAmplitude equation theoryGeneralized Swift-Hohenberg simulationsExperimentSimulations of full fluid equations

4 Conclusions

Michael Cross (Caltech, BNU) Spatiotemporal Chaos June 2006 52 / 54

Page 61: Spatiotemporal Chaos in Rayleigh-B©nard Convection

Conclusions

Spatiotemporal chaos is a third paradigm of complex dynamics (cf. chaos,turbulence)

Rotating convection shows spatiotemporal chaos in the weakly nonlinearregime near onset where there is hope for a quantitative understanding.

Numerical simulations of realistic experimental geometries are nowfeasible

Michael Cross (Caltech, BNU) Spatiotemporal Chaos June 2006 53 / 54

Page 62: Spatiotemporal Chaos in Rayleigh-B©nard Convection

Conclusions

Spatiotemporal chaos is a third paradigm of complex dynamics (cf. chaos,turbulence)

Rotating convection shows spatiotemporal chaos in the weakly nonlinearregime near onset where there is hope for a quantitative understanding.

Numerical simulations of realistic experimental geometries are nowfeasible

Truncated amplitude equation model makes predictions for scaling oflengths∝ ε−1/2 and times∝ ε−1

Scalings and features of dynamics predicted by truncated amplitude modelconfirmed by GSH simulations and full fluid simulations

Disagreement between experiment and predictions resolved (finite size,centrifugal effects)

Michael Cross (Caltech, BNU) Spatiotemporal Chaos June 2006 53 / 54

Page 63: Spatiotemporal Chaos in Rayleigh-B©nard Convection

To Do

More precise experimental tests of the (homogeneous) theory

Understand theoretically how good the truncated amplitude equation modelshould be

Relate to lattice systems of coupled heteroclinic oscillators

Understand the origins of chaos in the system and models

Michael Cross (Caltech, BNU) Spatiotemporal Chaos June 2006 54 / 54

Page 64: Spatiotemporal Chaos in Rayleigh-B©nard Convection

To Do

More precise experimental tests of the (homogeneous) theory

Understand theoretically how good the truncated amplitude equation modelshould be

Relate to lattice systems of coupled heteroclinic oscillators

Understand the origins of chaos in the system and models

THE END

Michael Cross (Caltech, BNU) Spatiotemporal Chaos June 2006 54 / 54