53
Spa$al thinking in STEM educa$on: Evidence and issues microbiology meteorology engineeri ng geology physics astronomy anatomy neuroscience Cheryl A. Cohen, PhD

Spatial thinking in STEM

Embed Size (px)

Citation preview

Page 1: Spatial thinking in STEM

Spa$al  thinking  in  STEM  educa$on:  Evidence  and  issues  

microbiology

meteorology

engineering

geology physics

astronomy

anatomy

neuroscience

Cheryl  A.  Cohen,  PhD  

Page 2: Spatial thinking in STEM

Goals  of  presenta$on  

•  General  introduc$on  to  spa$al  thinking  •  Examples  of  spa$al  thinking  in  science  educa$on  •  Spa$al  thinking  from  a  cogni$ve  perspec$ve  •  Empirical  evidence  that  spa$al  thinking  contributes  to  science  learning  

•  Exper$se  effect  •  Evidence  for  malleability  of  spa$al  thinking  •  Open  ques$ons  

Page 3: Spatial thinking in STEM

What  is  spa$al  thinking?    

Page 4: Spatial thinking in STEM

Everyday  spa$al  thinking  

•  Packing  the  trunk  of  your  car    •  Assembling  the  cabinet  you  bought  at  IKEA  

•  Using  a  map  to  find  your  way  in  a  new  town  

Page 5: Spatial thinking in STEM

Cogni$ve  processes  

From  the  perspec$ve  of  cogni$ve  psychology,  spa$al  thinking  refers  to  the  mental  processes  of:  – encoding  – storing  – manipula$ng  – drawing  inferences  from  percep$ons  and  images  depic$ng  spa$al  rela$onships  in  2,  3,  and  more  dimensions.  

Individuals  vary  in    their  capacity    

for  these  processes.    

Page 6: Spatial thinking in STEM

Spa$al  thinking  and  working  memory  

– encoding  – storing  – manipula$ng  

 There  is  evidence  that  individual  differences  in  these  working  memory  resources  contribute  to  individual  differences  in  spa$al  thinking  ability.  

Working  memory  processes  

Page 7: Spatial thinking in STEM

Some  qualita$ve  differences  in  spa$al  ability  

Individuals  who  underperform  on  spa$al  tasks:    –  tend  to  lose  informa$on  when  they  aRempt  to  

mentally  transform  images  (Just  &  Carpenter,  1985)    

–  have  difficulty  changing  their  view  perspec$ve  (Kozhevnikov  &  Hegarty,  2001)    

–  have  difficulty  mapping  2D  informa$on  onto  3D  structures  (Cohen  &  Hegarty,  2007)  

       

Page 8: Spatial thinking in STEM

Meta-­‐analysis  of  sex  differences  in  spa$al  skills    

Voyer,  Voyer  &  Bryden  (1995)    Analyzed  286  studies  showing  significant  differences  in  spa$al  performance  by  sex.    Found  significant  effect  size  differences  favoring  males  on  a  number  of  spa$al  tests.    Most  robust  difference  was  on  mental  rota$on  tests  d  =  .65  

Page 9: Spatial thinking in STEM

Examples  of  spa$al  thinking  in  science  

Page 10: Spatial thinking in STEM

Spa$al  thinking  in  STEM  

 •  We  live  in  three  dimensional  space.  

•  As  scien$sts  we  try  to  understand  the  physical  forces  that  act  within  it.  

Page 11: Spatial thinking in STEM

Applica$ons  of  spa$al  thinking  in  science  learning  

•  Represent  and  solve  problems  related  to  physical  forces  

•  Create  and  understand  the  spa$al  rela$onships  within  and  between  physical  en$$es  (biology,  geology)  

•  Understand  models  explaining  complex  (or  invisible)  processes  

•  Comprehend  graphics,  diagrams  and  3D  visualiza$ons  

Page 12: Spatial thinking in STEM
Page 13: Spatial thinking in STEM

Spa$al  thinking  in  organic  chemistry  

From  S;eff,  2007  

Page 14: Spatial thinking in STEM

Understanding  rela$onships  between  2D-­‐3D  views  of  an  object  

Page 15: Spatial thinking in STEM

Spa$al  representa$on  of  complex  data  

From  Kell,  Lubinski,  Benbow  &  Stanley,  2013)  

Page 16: Spatial thinking in STEM

Classifica$on  of  spa$al  thinking  skills  

Page 17: Spatial thinking in STEM

Factor  analy$c  approach    

History  of  research  in  cog  psych  on  the  components  and  processes  involved  in  spa$al  thinking.    Thurstone  (1938):  Primary  Mental  Abili0es.    –  Intelligence  is  not  a  single  en$ty,  but  is  composed  of  separable  factors  

–  Iden$fied  seven  primary  factors,  including  spa$al  visualiza$on    

Page 18: Spatial thinking in STEM

Factor  analy$c  approach  

•  Factor  analy$c  studies  have  classified  different  types  of  spa$al  skills  

•  A  widely  used  classifica$on  is  by  Carroll  (1995)  

•  Reanalyzed  more  than  90  factor  analy$c  studies  

•  Spa0al  visualiza0on  was  the  most  commonly  measured  spa$al  factor.    

Page 19: Spatial thinking in STEM

Spa$al  visualiza$on  

•  Spa0al  visualiza0on:  the  processes  of  apprehending,  encoding,  and  mentally  manipula$ng  three-­‐dimensional  spa$al  forms  (Carroll,  1993).    

•  “power  in  solving  increasingly  difficult  problems  involving  spa$al  forms”  (p.  315)  

Page 20: Spatial thinking in STEM

Mental  Rota$on  

Standard  

   A                                                          B                                                          C                                                D  

Instruc;ons:  Circle  the  figure  that  is  a  rotated  version  of  the  standard.  

Mental  rota$on  skill  is  classified  as  a  form  of  spa$al  visualiza$on  in  some  factor  analyses  

Page 21: Spatial thinking in STEM

Spa$al  visualiza$on  task  

Page 22: Spatial thinking in STEM

Spa$al  visualiza$on  task  

Page 23: Spatial thinking in STEM

How  did  you  solve  this  problem?  

•  Did  you  mentally  slice  the  figure  and  imagine  what  you  would  see?  

•  Did  you  use  an  analy$c  strategy,  such  as  matching  the  features  of  the  answer  choices  to  the  spa$al  proper$es  of  the  test  figure?  

Page 24: Spatial thinking in STEM

Strategies  

•  Imagis;c  strategies:    using  internal  visual  spa$al  images  to  reason  about    scien$fic  phenomena  

 •  Analy;c  strategies:  using  algorithms  and  heuris$cs  to  reason  about  external  representa$ons  

Page 25: Spatial thinking in STEM

Evidence  for  contribu$on  of  spa$al  thinking  to  performance  in  science  

Page 26: Spatial thinking in STEM

Empirical  evidence  

•  Longitudinal  studies  

•  Correla$onal  studies  of  science  students  

Page 27: Spatial thinking in STEM

Longitudinal  studies  

Longitudinal  studies  of  intellectually  talented  youth    are  the  strongest  source  of  evidence  that  spa$al  thinking  skills  contribute  to  success  and  par$cipa$on  in  science  

Spa$al  ability  accounts  for  a  sta$s$cally  significant  propor$on  of  the  variance  in  par$cipa$on  in  science,  over  and  above  SAT  Mathema$cal  and  SAT  Verbal  scales  (Shea,  Lubinski  &  Benbow,  2001;  Webb,  Lubinski  &  Benbow,  2007).    

   

Page 28: Spatial thinking in STEM

Project  Talent  Study    (Wai,  Lubinski  &  Benbow,  2009)  

•  n  =  400,000    •  stra$fied  random  sample  •  measured  spa$al  ability  at  age  13  •  followed  students  for  11+  years  •  people  who  received  degrees  in  mathema$cs,  engineering  and  physical  sciences  and  those  who  went  on  to  pursue  scien$fic  occupa$ons  had  significantly  higher  spa$al  abili$es  at  age  13  than  those  who  received  degrees  in  other  fields  or  prac$ced  other  professions    

 

Page 29: Spatial thinking in STEM

Spa$al  ability  predicts  higher  level  achievements  

•  Spa$al  ability  predicts  receiving  a  Ph.D.  in  science  as  opposed  to  receiving  a  bachelors’  degree  in  science)  and  crea$ve  accomplishments  (such  as  patents)  

Kell,  Lubinski,  Benbow  &  Stanley,  2013  

Page 30: Spatial thinking in STEM

Correla$onal  studies  of  STEM  students  Correla$onal  studies  measure  the  spa$al  abili$es  of  students  in  science  classes,  or  in  a  laboratory  and  examine  the  correla$ons  of  these  ability  measures  with  various  aspects  of  science  achievement.    

•  Biology/medicine  

•  Chemistry  

•  Physics/engineering  

Page 31: Spatial thinking in STEM

Correla$onal  studies:  Anatomy  

Rochford  (1985):    Spa$al  ability  predicted  performance  among  second  year    medical  students  on  test  items  that  had  spa$al  content.      Students  had  difficul$es  in  processes  of  sec$oning,  transla$ng,  rota$ng  and  visualizing  shapes.        

Page 32: Spatial thinking in STEM

Correla$onal  studies:  Anatomy  

The  ability  to  draw  the  cross-­‐sec$on  of  a  novel  three-­‐dimensional  object  was  correlated  with  tests  of  mental  rota$on  (r  =  .39,  p  <  .05)  and  perspec$ve  taking  ability  (  r  =  .59,  p  <  .01).  

 (see  next  slide  for  task)  

Page 33: Spatial thinking in STEM

Instruc;ons  Imagine  you  are  looking  at  the  figure  on  the  right  from  the  perspec$ve  of  the  arrow.    Draw  the  cross  sec$on  of  the  figure  where  it  is    intersected    by  the  line.  

Correct  answer  

Selected  par;cipant  drawings  Cohen  &  Hegarty  (2007)  

Page 34: Spatial thinking in STEM

Correla$onal  studies:  Chemistry  •  Bodner  and  McMillan  (1986)  found  significant  correla$ons  

(ranging  from  .29–.35)  between  measures  of  spa$al  visualiza$on  and  measures  of  performance  in  an  introductory  organic  chemistry  course.    

•  Other  studies  indicated  small  but  significant  correla$ons  (in  the  .2–.3  range)  between  measures  of  spa$al  ability  and  performance  in  college  courses  in  both  general  chemistry  (Carter,  LaRussa,  &  Bodner,  1987)  and  organic  chemistry  (Pribyl  &  Bodner,  1987).    

•  Spa$al  ability  was  not  significantly  correlated  with  items  that  measured  rote  knowledge  or  the  applica$on  of  simple  algorithms.    

Page 35: Spatial thinking in STEM

Correla$onal  studies:  Chemistry  

Significant  effects  of  spa$al  ability  (range    of  .32  -­‐  .38  in  different  studies)  on  ability  to  translate  between  different  diagramma$c  representa$ons  in  organic  chemistry  (Stull,  Hegarty,  Dixon,  &  S$eff,  2012).    

Page 36: Spatial thinking in STEM

Correla$onal  studies:  Physics  

Kozhevnikov  and  Thornton  (2006)  found  correla$ons  of  .28-­‐.32  between  a  measure  of  spa$al  visualiza$on  ability  and  mechanics  problem  solving  that  force  and  mo$on  events.    

(see  next  slide  for  sample  problem)  

Page 37: Spatial thinking in STEM

A  sled  on  ice  moves  in  the  ways  described  in  ques$ons  1–7  below.  Fric$on  is  so  small  that  it  can  be  ignored.  A  person  wearing  spiked  shoes  standing  on  the  ice  can  apply  a  force  to  the  sled  and  push  it  along  the  ice.  Choose  the  one  force    (A  through  G),  which  would  keep  the  sled  moving  as  described  in  each  statement  below.  

Page 38: Spatial thinking in STEM

Correla$onal  studies:  Physics  

•  Hegarty  and  Sims  (1994)  found  correla$ons  between  spa$al  ability  and  ability  to  infer  the  mo$on  of  different  machine  components  when  the  machine  was  working  (mental  anima$on).  

   

(see  next  slide  for  sample  problem)  

Page 39: Spatial thinking in STEM

Instruc;ons:  Given  the  pulley  system  above,  verify  if  the  statements  below  are  true  or  false:  

Hegarty  &  Sims,    

Page 40: Spatial thinking in STEM

Issues  in  interpreta$on  of  correla$onal  studies  

•  Correla$onal  studies  are  oqen  based  on  small  sample  sizes  

•  Researchers  focus  on  par$cularly  demanding  tasks  

•  Most  observed  correla$ons  of  spa$al  ability  with  science  achievement,  while  sta$s$cally  significant,  are  small  

Page 41: Spatial thinking in STEM

Exper$se  effect  

•  Correla$ons  between  spa$al  ability  and  performance  in  science  are  more  evident  for  beginning  science  students  than  for  advanced  students  or  prac$$oners  (Hambrick  et  al.,  2012)  

•  Spa$al  abili$es  may  be  more  important  at  the  early  stages  of  science  learning,  with  domain-­‐specific  strategies  and  conceptual  knowledge  playing  a  greater  role  at  later  stages  (URal  &  Cohen,  2012).  

Page 42: Spatial thinking in STEM

Spa$al  thinking  skills  are  malleable  

Page 43: Spatial thinking in STEM

Can  spa$al  thinking  skill  be  improved?  

 •  URal  et  al.,  (2013):  Meta-­‐analysis  of  217  research  studies  

•  Examined  three  types  of  studies:  – Training  that  used  video  games  – Semester-­‐long  course    – Prac$ce  and  strategic  instruc$on  

Page 44: Spatial thinking in STEM

Training  meta-­‐analysis  

Criteria  for  inclusion  in  meta-­‐analysis:    –   spa$al  training  was  educa$onally  relevant  –   durability:  training  effects  lasted  longer  than  a  few  days  – there  was  some  transfer  to  non-­‐trained  problems  and  tasks.    

Page 45: Spatial thinking in STEM

Training  meta-­‐analysis  

•  Considered  the  effects  of  several  moderators,  including  the  presence  and  type  of  control  groups,  sex,  age,  and  type  of  training.    

•  Aqer  elimina$ng  outliers,  the  average  effect  size  (Hedges’s  g)  for  training  rela$ve  to  control  was  0.47  (SE  =  0.04).    

Page 46: Spatial thinking in STEM

Issues  in  science  educa$on  

Page 47: Spatial thinking in STEM

The  Na$onal  Research  Council  (NRC;  2006)  surveyed  educa$on  at  all  levels  (K-­‐undergrad)  and  found  that    spa$al  thinking  was…  

…“not  just  undersupported  but  underappreciated,  undervalued,  and  therefore  underinstructed”    (p.  5)  .    •  The  NRC  called  for  a  na$onal  commitment  to  develop  spa$al  thinking  across  all  areas  of  the  school  curriculum.  

Spa$al  skills  are  not  explicitly  trained  

Page 48: Spatial thinking in STEM

PaRerns  of  persistence  in  STEM  

•  Price  (2010):    –  Followed  more  than  140,000  science  majors  at  Ohio  State  University  

– More  than  40%  did  not  complete  STEM  major    

•  Min  et  al.,  (2011):  – Analyzed  paRerns  of  dropout  and  persistence  in  engineering  

– Dropout  from  program  is  most  likely  to  occur  around  the  third  semester.  

Page 49: Spatial thinking in STEM

Open  research  ques$ons  

•  Given  evidence  for  the  malleability  of  spa$al  thinking  skill,  would  iden$fica$on  of  spa$al  ability  and  subsequent  scaffolding  improve  reten$on  in  STEM?  

 

Page 50: Spatial thinking in STEM

Open  research  ques$ons  

•  How  do  other  affec$ve/cogni$ve  variables  contribute  to  persistence  in  STEM?,  e.g,  – mo$va$on    

–  self-­‐efficacy    

–  stereotype  effect  (females  and  underrepresented  minori$es)      

–  incremental  vs.  en$ty  theories  of  intelligence  (is  it  possible  to  improve  spa$al  thinking?)  

Page 51: Spatial thinking in STEM

References  

•  A  bibliography  of  studies  cited  in  this  talk  is  available  upon  request.  

Page 52: Spatial thinking in STEM

Acknowledgements  

Hegarty  (2014).  Spa$al  thinking  in  undergraduate  science  educa$on.  Spa0al  Cogni0on  and  Computa0on:  14:  142-­‐167.  

Page 53: Spatial thinking in STEM

End