18
Space physics EF2245 Tomas Karlsson Space and Plasma Physics School of Electrical Engineering EF2245 Space Physics 2010 A ctivity Date Time Room Subject(preliminary) Litterature L1 25/10 10-12 Sem . Introduction, Solarwind K R Ch. 1-2, 4 L2 1/11 10-12 Sem . Solarw ind, cont., Shocks K R Ch. 4, 5 T1 4/11 10-12 Sem . L3 8/11 10-12 Sem . Solarwind interaction with celestialbodies K R Ch. 6, 8, 15 (p 503-510) D istribution of Assignm ent1 8/11 T2 11/11 10-12 Conf. L4 15/11 10-12 Sem . Ionospheres K R Ch. 7 T3 18/11 10-12 Sem . Deadline, Assignm ent1 18/11 10.00 L5 19/11 10-12 Sem . Ionospheric electrodynamics RB. L6 22/11 10-12 Sem . The m agnetopause and magnetotail K R Ch. 9 D istribution of Assignm ent2 22/11 T4 25/11 10-12 Sem . L7 26/11 10-12 Sem . The m agnetosphere and its dynam ics K R Ch. 10, 13 L8 29/11 10-12 Sem . A lfvén w aves, U LF pulsationsand global oscillationsofthe m agnetosphere K R Ch. 11, 14 Deadline, Assignm ent2 29/11 10.00 T5 2/12 10-12 Sem . L9 3/12 10-12 Sem . A uroralphysics K R Ch. 14, LL L10 6/12 10-12 Sem . A uroralphysics, cont. K R Ch. 14, LL T6 9/12 10-12 Sem . Examination 13/12 14-19 Sem .

Space physics EF2245 Tomas Karlsson Space and Plasma Physics School of Electrical Engineering

Embed Size (px)

DESCRIPTION

Space physics EF2245 Tomas Karlsson Space and Plasma Physics School of Electrical Engineering. EF2245 Space Physics 2010. Course goals After the course the student should be able to describe and explain basic processes in space plasma physics - PowerPoint PPT Presentation

Citation preview

Space physicsEF2245

Tomas Karlsson

Space and PlasmaPhysics

School of Electrical Engineering

EF2245 Space Physics 2010

Activity Date Time Room Subject (preliminary) Litterature

L1 25/10 10-12 Sem. Introduction, Solar wind KR Ch. 1-2, 4 L2 1/11 10-12 Sem. Solar wind, cont., Shocks KR Ch. 4, 5 T1 4/11 10-12 Sem. L3 8/11 10-12 Sem. Solar wind interaction with

celestial bodies KR Ch. 6, 8, 15 (p 503-510)

Distribution of Assignment 1

8/11

T2 11/11 10-12 Conf. L4 15/11 10-12 Sem. Ionospheres KR Ch. 7 T3 18/11 10-12 Sem. Deadline, Assignment 1

18/11 10.00

L5 19/11 10-12 Sem. Ionospheric electrodynamics

RB.

L6 22/11 10-12 Sem. The magnetopause and magnetotail

KR Ch. 9

Distribution of Assignment 2

22/11

T4 25/11 10-12 Sem. L7 26/11 10-12 Sem. The magnetosphere and its

dynamics KR Ch. 10, 13

L8 29/11 10-12 Sem. Alfvén waves, ULF pulsations and global oscillations of the magnetosphere

KR Ch. 11, 14

Deadline, Assignment 2

29/11 10.00

T5 2/12 10-12 Sem. L9 3/12 10-12 Sem. Auroral physics KR Ch. 14, LL L10 6/12 10-12 Sem. Auroral physics, cont. KR Ch. 14, LL T6 9/12

10-12 Sem.

Examination 13/12 14-19 Sem.

Space physics EF2245

EF2245 Space Physics 2010

Course goals

After the course the student should be able to

• describe and explain basic processes in space plasma physics

• use established theories to estimate quantitatively the behaviour of some of these processes

• make simple analyses of various types of space physics data to compare with the quantitative theoretical predictions

• describe some hot topics of today’s space physics research

Litterature

Kivelson, M.G., and C. T. Russel (ed.), Introduction to Space Physics, Cambridge Univeristy Press.

Boström, R., Electrodynamics of the Ionosphere, in Cosmical Geophysics, Ed. Egeland et al.

Lyons, L., Formation of Auroral Arcs via Magnetosphere-Ionosphere Coupling, Reviews of Geophysics, 30, 2, 93-112, 1992.

Do you know MatLab?

EF2245 Space Physics 2010

eF m a

F eE

0

E

een x

sin( )pex t

2

0

epe

e

n e

m

2 2

20

e

e

n e x d x

m dt

L

+

++

++

++

+

+

+

+

++

+

+

+

++

+

++

--

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

L

x

d

EF2245 Space Physics 2010

Plasma frequency

Single particle motion

EF2245 Space Physics 2010

,0,x zE EE

Consider a charged particle in a magnetic field.

y

xB = Bz z

+

Assume an electric field in the x-z plane:

dm q

dt

vv B E

xy x

yx

zz

dvm qv B qE

dtdv

m qv Bdt

dvm qE

dt

Constant acceleration along z

22

2

2 22

2 2

y yxg g x

y x xg g y x

dv dvd v qBv

dt m dt dt

d v dv dvqB q Bv E

dt m dt dt m

Drift motion

EF2245 Space Physics 2010

22

2

2 22

2 2

y yxg g x

y x xg g y x

dv dvd v qBv

dt m dt dt

d v dv dvqB q Bv E

dt m dt dt m

22

2

2

22

xg x

xy

xg y

d vv

dtE

d vEB

vdt B

g x

g y

i t

x

i txy

v v e

Ev v e

B

Average over a gyro period:

, 2 2

yx x zdrift y

E E Bv

B B B

E B

In general:

2 2 2drift

q

B qB qB

E B E B F Bv

Drift motion

F = 0

F = qE

F = mg

F = -grad B

2drift qB

F Bu

EF2245 Space Physics 2010

Maxwell’s equations

0 B

t

B

E

0 0 0 t

E

B j

Gauss’ law

No magnetic monopoles

Faraday’s law

Ampére’s law

Lorentz’ force equation

( )q F E v B

Ohm’s law

j E

j

yx zAA A

x y z

A

, ,y yx xz zA AA AA A

y z z x x y

A

Energy density2 2

00

,2 2B E

B EW W

0

E

EF2245 Space Physics 2010

Frozen in magnetic flux PROOF II

2

0

1

t

B

v B B

A B

Order of magnitude estimate:

0

22

0 0

1 m

v BA L vL R

BBL

v B

B

Magnetic Reynolds number Rm:

Rm >> 1 t

B

v B

2

0

1

t

B

BRm << 1

Frozen-in fields!

Diffusion equation!

EF2245 Space Physics 2010

This together with mass conservation, two of Maxwell’s equations and Ohm’s law make up the most common MHD equations:

Magnetohydrodynamics (MHD)

dp

dt

pt

vj B f

vv v j B f (1) ( ) j E v B(3)

0 0 t

EB j(4)

Only consider slow variations

t

B

E(5)

EF2245 Space Physics 2010

v

0t

v(2)

Magnetohydrodynamics (MHD)

dp

dt

vj B(1)

In equilibrium:

0 p j B

0

10p

B B

2

0 0

10

2

Bp

B B

Represents tension along B

If magnetic tension = 0

2

02

Bp konst

Magnetic pressure

EF2245 Space Physics 2010

Solar wind

EF2245 Space Physics 2010

Solar corona

Solar wind properties

EF2245 Space Physics 2010

Solar wind properties

EF2245 Space Physics 2010

Solar wind properties

1.4∙10-9

1.4∙10-11

1.4∙10-13

1.4∙10-15

Pinterstellar 10-13 – 10-14 Pa

EF2245 Space Physics 2010

Critical radius for realistic temperatures

EF2245 Space Physics 2010

Solar wind

solutions

EF2245 Space Physics 2010