24
Some variations of de Jongh’s theorem 2017.07.15 Workshop in Logic and Philosophy of Mathematics Waseda University Naosuke Matsuda Kanagawa Univerity

Some variations of de Jongh’s theorem

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Some variations of de Jongh’s theorem

Some variations of

de Jongh’s theorem 2017.07.15 Workshop in Logic and Philosophy of Mathematics

Waseda University

Naosuke Matsuda Kanagawa Univerity

Page 2: Some variations of de Jongh’s theorem

Motivation and abstract

Page 3: Some variations of de Jongh’s theorem

Motivation and Abstract

■Some variations of de Jongh’s theorem.

[Smorinsky1973]

■Some variations of arithmetical completeness for logic of proofs.

[Iwata-Kurahashi2017]

■Arithmetical completeness for intuitionistic Logic of Proofs.

[Artemov-Iemhoff2007, Dashkov2009]

■Search for a modal logic which captures the provability predicate in Heyting Arithmetic. [Artemov-Beklemishev2005]

Page 4: Some variations of de Jongh’s theorem

Motivation and Abstract

■Some variations of de Jongh’s theorem.

[Smorinsky1973]

■Some variations of arithmetical completeness for logic of proofs.

[Iwata-Kurahashi2017]

■Arithmetical completeness for intuitionistic Logic of Proofs.

[Artemov-Iemhoff2007, Dashkov2009]

■Search for a modal logic which captures the provability predicate in Heyting Arithmetic. [Artemov-Beklemishev2005]

Page 5: Some variations of de Jongh’s theorem

Preliminary

Kripke semantics

Heyting arithmetic

Notations

Page 6: Some variations of de Jongh’s theorem

Heyting Arithmetic

AA : the set of Axioms of (Peano) Arithmetic

Peano Arithmetic (PA) :

Classical Logic (CL) + AA

PA ⊢ 𝛼 ⇔ AA ⊢CL 𝛼

Heyting Arithmetic (HA) :

Intuitionistic Logic (IL) + AA

HA ⊢ 𝛼 ⇔ AA ⊢IL 𝛼

An arithmetical substitution is a mapping which assigns a arithmetical sentence to a propositional variable.

Page 7: Some variations of de Jongh’s theorem

Kripke semantics

Kripke model 𝒦 = ⟨𝑊,≤, {ℳ𝑤}𝑤∈𝑊⟩ :

⟨𝑊,≤⟩ is a partial order

each ℳ𝑤 is a (classical) model s.t.

• 𝑤 ≤ 𝑣 ⇒ 𝐷𝑜𝑚(ℳ𝑤) ⊆ 𝐷𝑜𝑚(ℳ𝑣)

• 𝑤 ≤ 𝑣 and ℳ𝑤 ⊨ 𝛼 ⇒ ℳ𝑣 ⊨ 𝛼 for each (ℳ𝑤-)sentence 𝛼

𝒦,𝑤 ⊩ 𝛼 :

𝒦,𝑤 ⊩ 𝛼 ⇔ ℳ𝑣 ⊨ 𝛼 if 𝛼 is atomic (ℳ𝑣-)sectence

𝒦,𝑤 ⊩ 𝛼 ∧ ∨ / → 𝛽 ⇔ 𝒦, 𝑣 ⊩ 𝛼 and (or / implies) 𝒦, 𝑣 ⊩ 𝛽 for each 𝑣 ≥ 𝑤

𝒦,𝑤 ⊩ ∀(∃)𝑥𝛼 ⇔ 𝒦, 𝑣 ⊩ 𝑥 ≔ 𝑒 𝛼,

for each (some) 𝑒 ∈ 𝐷𝑜𝑚 ℳ𝑣 , for each 𝑣 ≥ 𝑤

𝒦 ⊩ 𝛼 ⇔ 𝒦,𝑤 ⊩ 𝛼 for each 𝑤 ∈ 𝑊

Γ ⊩ 𝛼 ⇔ 𝒦 ⊩ 𝛼 for each 𝒦 s.t. 𝒦 ⊩ 𝛾 for each 𝛾 ∈ Γ

Thm [Kripke 1965]

Γ ⊢𝐼𝐿 𝛼 iff Γ ⊩ 𝛼.

Page 8: Some variations of de Jongh’s theorem

Notations

𝜑 : propositional formula.

CPL : Classical Propositional Logic.

IPL : Intuitionistic Propositional Logic.

ℕ : standard PA model.

Page 9: Some variations of de Jongh’s theorem

Introduction to de Jongh’s theorem

CPL vs PA

IPL vs HA

Page 10: Some variations of de Jongh’s theorem

CPL vs PA

Thm1 If ⊢𝐶𝑃𝐿 𝜑, then 𝑃𝐴 ⊢ 𝜎(𝜑) for each arithmetical substitution 𝜎.

→ very easy.

Thm2 If ⊬𝐶𝑃𝐿 𝜑, then 𝑃𝐴 ⊬ 𝜎 𝜑 for some arithmetical substitution 𝜎.

Proof If ⊬𝐶𝑃𝐿 𝜑, then ℳ ⊭ 𝜑 for some model ℳ.

Let 𝜎 be the following arithmetical substitution:

𝜎 𝑝 = 0 = 0 if ℳ ⊨ 𝑝0 ≠ 0 if ℳ ⊭ 𝑝

,

then we have ℕ ⊭ 𝜑.

ℳ ⊨ 𝑝1, 𝑝2, 𝑝4

ℳ ⊭ 𝑝3

ℕ ⊨ 0 = 0

ℕ ⊭ 0 ≠ 0

Page 11: Some variations of de Jongh’s theorem

CPL vs PA

Thm2 If ⊬𝐶𝑃𝐿 𝜑, then 𝑃𝐴 ⊬ 𝜎 𝜑 for some arithmetical substitution 𝜎.

Thm2+ There exists an arithmetical substitution 𝜎 s.t. if ⊬𝐶𝑃𝐿 𝜑, then 𝑃𝐴 ⊬ 𝜎 𝜑 .

Lemma [Myhill1972]

There are Σ1-sentences 𝑆1, 𝑆2, … s.t.

if 𝑆𝑖′ ≡ 𝑆𝑖 or ¬𝑆𝑖 then 𝐴𝐴 ∪ {𝑆1

′ , 𝑆2′ , … } has a model.

𝜎 𝑝𝑖 = 𝑆𝑖 :

ℳ ⊨ 𝑝1, 𝑝2, 𝑝4

ℳ ⊭ 𝑝3

ℳ ⊭ 𝜑 𝑝1, 𝑝2, 𝑝3, 𝑝4

𝒩 ⊨ 𝑆1, 𝑆2, 𝑆4

𝒩 ⊭ 𝑆3

Σ1

𝒩 ⊭ 𝜑 𝑆1, 𝑆2, 𝑆3, 𝑆4

Page 12: Some variations of de Jongh’s theorem

CPL vs PA

Q If ⊬𝐼𝑃𝐿 𝜑, then does 𝐻𝐴 ⊬ 𝜎 𝜑 hold for some 𝜎 ?

↔ Can we find the following 𝑆1, 𝑆2, … and ℒ ?

Q+ Is there an arithmetical substitution 𝜎 s.t. if ⊬𝐼𝑃𝐿 𝜑, then 𝐻𝐴 ⊬ 𝜎 𝜑 ?

ℳ ⊨ 𝑝2, 𝑝4

ℳ ⊭ 𝑝1, 𝑝3

ℳ1

𝒩 ⊨ 𝑆2, 𝑆4

𝒩 ⊭ 𝑆1, 𝑆3

𝒩1

ℳ ⊨ 𝑝1, 𝑝2, 𝑝4

ℳ ⊭ 𝑝3

ℳ2

𝒩 ⊨ 𝑆1, 𝑆2, 𝑆4

𝒩 ⊭ 𝑆3

𝒩1

𝒦 ⊮ 𝜑 𝑝1, 𝑝2, 𝑝3, 𝑝4 ℒ ⊮ 𝜑 𝑆1, 𝑆2, 𝑆3, 𝑆4

Page 13: Some variations of de Jongh’s theorem

IPL vs HA

Q If ⊬𝐼𝑃𝐿 𝜑, then does 𝐻𝐴 ⊬ 𝜎 𝜑 hold for some 𝜎 ?

A Yes! There is a substitution.

(Weak version of de Jongh’s theorem / Arithmetical completeness)

Q+ Is there an arithmetical substitution 𝜎 s.t. if ⊬𝐼𝑃𝐿 𝜑, then 𝐻𝐴 ⊬ 𝜎 𝜑 ?

A Yes! There is a uniform substitution.

(de Jongh’s theorem / Uniform version of arithmetical completeness)

Π2

Page 14: Some variations of de Jongh’s theorem

Some variants of de Jongh’s theorem

Proof of (weak) de Jongh’s theorem

Strong verision

de Jongh’s theorem for one

propositional variable

Page 15: Some variations of de Jongh’s theorem

Proof of (weak) de Jongh’s theorem

Thm If ⊬𝐼𝑃𝐿 𝜑, then 𝐻𝐴 ⊬ 𝜎 𝜑 for some arithmetical substitution 𝜎.

Lemma [Jaskowski1936,Smorinski1973]

If ⊬𝐼𝑃𝐿 𝜑, then 𝒦 ⊮ 𝜑 for some 𝒦 based on either of the following tree:

Lemma [Myhill1972]

There are Σ1-sentences 𝑆1, 𝑆2, … s.t.

if 𝑆𝑖′ ≡ 𝑆𝑖 or ¬𝑆𝑖 then 𝐴𝐴 ∪ {𝑆1

′ , 𝑆2′ , … } has a PA model.

Page 16: Some variations of de Jongh’s theorem

Proof of (weak) de Jongh’s theorem

Thm If ⊬𝐼𝑃𝐿 𝜑, then 𝐻𝐴 ⊬ 𝜎 𝜑 for some arithmetical substitution 𝜎.

ℳ0

ℳ12 ℳ11 ℳ13

ℳ21 ℳ22 ℳ23 ℳ24 ℳ25 ℳ26

𝒦 ⊮ 𝜑 𝑝1, 𝑝2

𝑝2

𝑝1

ℕ ℕ ℕ

𝒯1 𝒯2 𝒯3 𝒯4 𝒯5 𝒯6

ℒ ⊮ 𝜑 𝐴1, 𝐴2

𝐴1 ≡ ¬𝑆1 ∧ ¬𝑆3 ∧ ¬𝑆4 ∧ ¬𝑆5 ∧ ¬𝑆6

𝐴2 ≡ ¬𝑆1 ∧ ¬𝑆2 ∧ ¬𝑆3 ∧ ¬𝑆4

𝒯𝑖⊨ 𝑆𝑖

but 𝒯𝑖⊭ 𝑆𝑗

Page 17: Some variations of de Jongh’s theorem

Strong version

Thm If ⊬𝐼𝑃𝐿 𝜑, then 𝐻𝐴 ⊬ 𝜎 𝜑 for some arithmetical substitution 𝜎.

Thm+ If ⊬𝐼𝑃𝐿 𝜑, then 𝐻𝐴 ⊬ 𝜎 𝜑 for some arithmetical Σ1-substitution 𝜎.

Thm++ There exists an arithmetical Π2-substitution 𝜎 s.t. ⊬𝐼𝑃𝐿 𝜑 implies 𝐻𝐴 ⊢ 𝜎 𝜑 .

Thm+++ Let 𝑆1, 𝑆2, … be arbitrary Π2-sentences, independent over 𝑃𝐴 + {true Π1-sentences}, and let 𝜎 𝑝𝑖 = 𝑆𝑖. Then ⊬𝐼𝑃𝐿 𝜑 implies 𝐻𝐴 ⊢ 𝜎 𝜑 .

Page 18: Some variations of de Jongh’s theorem

de Jongh’s theorem for one propositional variable

Thm

𝜑 𝑝 : propositional formula consisting of only one propositional variable 𝑝.

𝑆 : arbitrary Σ1-sentence independent over 𝑃𝐴.

⇒ ⊬𝐼𝑃𝐿 𝜑 implies 𝐻𝐴 ⊬ 𝜎 𝑆 .

Lemma [Nishimura1960]

𝜑 𝑝 : propositional formula consisting

of only one propositional variable 𝑝.

⊬𝐼𝑃𝐿 𝜑 𝑝 .

⇒ 𝒩 ⊮ 𝜑 𝑝 𝒩 :

ℳ′

ℳ′ ⊨ 𝑝 ℳ ⊭ 𝑝

Page 19: Some variations of de Jongh’s theorem

de Jongh’s theorem for one propositional variable

Thm

𝜑 𝑝 : propositional formula consisting of only one propositional variable 𝑝.

𝑆 : arbitrary Σ1-sentence independent over 𝑃𝐴.

⇒ ⊬𝐼𝑃𝐿 𝜑 implies 𝐻𝐴 ⊬ 𝜎 𝑆 .

Proof

ℳ′

ℳ′ ⊨ 𝑝 ℳ ⊭ 𝑝

𝒯

𝒯 ⊨ 𝑆 ℕ ⊭ 𝑆

Page 20: Some variations of de Jongh’s theorem

Summary

Page 21: Some variations of de Jongh’s theorem

Summary

■Some variations of de Jongh’s theorem.

[Smorinsky1973]

■Some variations of arithmetical completeness for logic of proofs.

[Iwata-Kurahashi2017]

■Arithmetical completeness for intuitionistic Logic of Proofs.

[Artemov-Iemhoff2007, Dashkov2009]

■Search for a modal logic which captures the provability predicate in Heyting Arithmetic. [Artemov-Beklemishev2005]

Page 22: Some variations of de Jongh’s theorem

References

Page 23: Some variations of de Jongh’s theorem

References

[Artemov-Iemhoff2007] ARTEMOV, Sergei; IEMHOFF, Rosalie. The basic intuitionistic logic of proofs. The Journal of Symbolic Logic, 2007, 72.2: 439-451.

[Artemov-Beklemishev2005] ARTEMOV, Sergei N.; BEKLEMISHEV, Lev D. Provability logic. In: Handbook of Philosophical Logic, 2nd Edition. Springer Netherlands, 2005. p. 189-360.

[Dashkov2009] DASHKOV, Evgenij. Arithmetical completeness of the intuitionistic logic of proofs. Journal of Logic and Computation, 2009, 21.4: 665-682.

[Jaskowski1936] Jaśkowski, Stanisław. Recherches sur le syst~me de la logique intuitionniste. Actes du congres international de philosophie scientifique, Philosophie des mathematiques, 1936.

[Iwata-Kurahashi2017] SOHEI, Iwata; TAISHI, Kurahashi. Arithmetical completeness theorem for Logic of proofs. Talk in the spring meeting of the Mathematical Society of Japan, 2017.

Page 24: Some variations of de Jongh’s theorem

References

[Kripke 1965] KRIPKE, Saul A. Semantical analysis of intuitionistic logic I. Studies in Logic and the Foundations of Mathematics, 1965, 40: 92-130.

[Myhill 1972] MYHILL, John. An Absolutely Independent Set of Σ10-

Sentences. Mathematical Logic Quarterly, 1972, 18.7: 107-109.

[Nishimura1960] NISHIMURA, Iwao. On formulas of one variable in intuitionistic propositional calculus. The Journal of Symbolic Logic, 1960, 25.4: 327-331.

[Smorynski1973] SMORYNSKI, Craig Alan. Applications of Kripke models. In: Metamathematical investigation of intuitionistic arithmetic and analysis. Springer, Berlin, Heidelberg, 1973. p. 324-391.