40
DYNAS 04 Workshop Ph. Ackerer, IMFS - STRASBOUR Some Difficulties in Modeling Water and Solute Transport in Soils Ph. ACKERER IMFS STRASBOURG [email protected] With the help of B. Belfort, H. Beydoun, F. Lehmann and A. Younès.

Some Difficulties in Modeling Water and Solute Transport in Soils Ph. ACKERER IMFS STRASBOURG

Embed Size (px)

DESCRIPTION

Some Difficulties in Modeling Water and Solute Transport in Soils Ph. ACKERER IMFS STRASBOURG [email protected]. With the help of B. Belfort, H. Beydoun, F. Lehmann and A. Younès. Hillslope hydrology. 0.36 km 2 , 1000-750 m. - PowerPoint PPT Presentation

Citation preview

Page 1: Some Difficulties in Modeling Water and Solute Transport in Soils Ph. ACKERER IMFS STRASBOURG

DYNAS 04 Workshop Ph. Ackerer, IMFS - STRASBOURG

Some Difficulties in Modeling Water and Solute Transport in Soils

Ph. ACKERERIMFS [email protected]

With the help of B. Belfort, H. Beydoun, F. Lehmann and A. Younès.

Page 2: Some Difficulties in Modeling Water and Solute Transport in Soils Ph. ACKERER IMFS STRASBOURG

DYNAS 04 Workshop Ph. Ackerer, IMFS - STRASBOURG

0.36 km2, 1000-750 m

Contact: Bruno AMBROISE Contact: Bruno AMBROISE (IMFS)(IMFS)

Hillslope hydrology

The Ringelbach catchment

Page 3: Some Difficulties in Modeling Water and Solute Transport in Soils Ph. ACKERER IMFS STRASBOURG

DYNAS 04 Workshop Ph. Ackerer, IMFS - STRASBOURG

Saturated area

Discharge

(from B. Ambroise, IMFS)

Page 4: Some Difficulties in Modeling Water and Solute Transport in Soils Ph. ACKERER IMFS STRASBOURG

DYNAS 04 Workshop Ph. Ackerer, IMFS - STRASBOURG

Hillslope hydrology

Mathematical models– Darcy – Richards eq. – Soil hydraulic properties

Parameter measurements– Direct methods – Indirect methods

Numerical methods – Highly non linear PDEs– Very strong parameters contrasts– Long term simulation– ‘Flat’ geometry

Page 5: Some Difficulties in Modeling Water and Solute Transport in Soils Ph. ACKERER IMFS STRASBOURG

DYNAS 04 Workshop Ph. Ackerer, IMFS - STRASBOURG

(from UMR LISAH, Montpellier)

Usual concepts and mathematical models__________________________________________________________________________________

Model concept

Page 6: Some Difficulties in Modeling Water and Solute Transport in Soils Ph. ACKERER IMFS STRASBOURG

DYNAS 04 Workshop Ph. Ackerer, IMFS - STRASBOURG

101

10-1

10-3

10-5

10-7

Sc

ale

(m

)

Model scale

Q

1

Continuum Mec.(Stokes, Hagen-Poiseuille, …)

KT

KL

REVDarcy, Richards,Water retention curves , ….

Usual concepts and mathematical models__________________________________________________________________________________

Page 7: Some Difficulties in Modeling Water and Solute Transport in Soils Ph. ACKERER IMFS STRASBOURG

DYNAS 04 Workshop Ph. Ackerer, IMFS - STRASBOURG

Usual mathematical models – conservation laws__________________________________________________________________________________

( )+ .( v)= f

t

Mass conservation

(p )v gz

k

Generalized Darcy’s law

1 V

h hC( h ). K( h ).( ) S with C( h )

t z z h

V

hD( ). K( ) S with D( ) K( )

t z z

1 V

hK( h ).( ) S

t z z

Richards’ equation

Page 8: Some Difficulties in Modeling Water and Solute Transport in Soils Ph. ACKERER IMFS STRASBOURG

DYNAS 04 Workshop Ph. Ackerer, IMFS - STRASBOURG

re

s r

S

21

1 1

0 0

( ) /eS

lr eh = S h dS h dSK

Mualem, 1976

11 1/

[1 ]e n m

S = m n | h|

1/ 2( ) [1 (1 )]mLr e e e = SS SK

Van Genuchten, 1981

Pore-size distribution models

Usual mathematical models – Soil hydraulic properties__________________________________________________________________________________

Page 9: Some Difficulties in Modeling Water and Solute Transport in Soils Ph. ACKERER IMFS STRASBOURG

DYNAS 04 Workshop Ph. Ackerer, IMFS - STRASBOURG

Particle-size distribution (Arya & Paris, 1981)

1/ 2

(1 )4 / 6p b

i i ib

r = R n

Pore radius Ri: average particle radius for fraction ib : soil densityp : particle densityn : number of particle : 1.35 – 1.40

p bivi

p b

WV =

Water content

W: fraction of particle distribution

2 cos( )i

w i

h = g r

Water pressure

: surface tension : contact angle

Usual mathematical models – Soil hydraulic properties__________________________________________________________________________________

Page 10: Some Difficulties in Modeling Water and Solute Transport in Soils Ph. ACKERER IMFS STRASBOURG

DYNAS 04 Workshop Ph. Ackerer, IMFS - STRASBOURG

Robbez-Masson, UMR LISAH, Montpellier

Page 11: Some Difficulties in Modeling Water and Solute Transport in Soils Ph. ACKERER IMFS STRASBOURG

DYNAS 04 Workshop Ph. Ackerer, IMFS - STRASBOURG

Macropores in un-colonised and colonised soil (from Pierret et al., 2002)

Page 12: Some Difficulties in Modeling Water and Solute Transport in Soils Ph. ACKERER IMFS STRASBOURG

DYNAS 04 Workshop Ph. Ackerer, IMFS - STRASBOURG

Hierarchy of flow/transport models for variably-saturated structured media (after Altman et al., 1996)

Page 13: Some Difficulties in Modeling Water and Solute Transport in Soils Ph. ACKERER IMFS STRASBOURG

DYNAS 04 Workshop Ph. Ackerer, IMFS - STRASBOURG

From Tuller & Or, 2001

Page 14: Some Difficulties in Modeling Water and Solute Transport in Soils Ph. ACKERER IMFS STRASBOURG

DYNAS 04 Workshop Ph. Ackerer, IMFS - STRASBOURG

New mathematical models

Richard’s equation with alternative h() and K()

Network models

Alternative models

Some recent concepts__________________________________________________________________________________

Page 15: Some Difficulties in Modeling Water and Solute Transport in Soils Ph. ACKERER IMFS STRASBOURG

DYNAS 04 Workshop Ph. Ackerer, IMFS - STRASBOURG

Pore-size distribution models

( )

( ) ( )( )

R h

sm

m

KK h = K h

K h

Modified Van Genuchten, Vogel et al. (1998, 2001)

Soil Hydraulic Properties, h() and K()__________________________________________________________________________________

Page 16: Some Difficulties in Modeling Water and Solute Transport in Soils Ph. ACKERER IMFS STRASBOURG

DYNAS 04 Workshop Ph. Ackerer, IMFS - STRASBOURG

ln( / )me

h hS Q

0.5 2( ) (2 ) exp( / 2)x

Q x u du

20.5ln( / ) ln( / )( ) m m

rh h h hh = Q QK

Kosugi, 1996

Soil Hydraulic Properties, h() and K()__________________________________________________________________________________

Page 17: Some Difficulties in Modeling Water and Solute Transport in Soils Ph. ACKERER IMFS STRASBOURG

DYNAS 04 Workshop Ph. Ackerer, IMFS - STRASBOURG

Soil Hydraulic Properties, h() and K()__________________________________________________________________________________

Pore-scale models (Tuller & Or, 2002)

Page 18: Some Difficulties in Modeling Water and Solute Transport in Soils Ph. ACKERER IMFS STRASBOURG

DYNAS 04 Workshop Ph. Ackerer, IMFS - STRASBOURG

Soil Hydraulic Properties, h() and K()__________________________________________________________________________________

(a) Fitted liquid saturation for silt loam soil with biological macropores. (b) Predicted relative hydraulic conductivity. (Note that 1 J kg-1 =  10-2 bar.)(from Tuller & Or, 2002)

Pore-scale models (Tuller & Or, 2002)

Page 19: Some Difficulties in Modeling Water and Solute Transport in Soils Ph. ACKERER IMFS STRASBOURG

DYNAS 04 Workshop Ph. Ackerer, IMFS - STRASBOURG

Pedotransfer functions (Wösten, 2001)

Soil Hydraulic Properties, h() and K()__________________________________________________________________________________

Page 20: Some Difficulties in Modeling Water and Solute Transport in Soils Ph. ACKERER IMFS STRASBOURG

DYNAS 04 Workshop Ph. Ackerer, IMFS - STRASBOURG

Soil Hydraulic Properties, h() and K()__________________________________________________________________________________

Smooth functions

Prunty & Casey, 2002

0.52

0 11

n

e i i ii

S a a h b h h d

21

1 1

0 0

( ) /eS

lr eh = S h dS h dSK

Mualem, 1976

Page 21: Some Difficulties in Modeling Water and Solute Transport in Soils Ph. ACKERER IMFS STRASBOURG

DYNAS 04 Workshop Ph. Ackerer, IMFS - STRASBOURG

Kinematic–dispersive wave model (Di Pietro et al., 2003)

Network models __________________________________________________________________________________

Page 22: Some Difficulties in Modeling Water and Solute Transport in Soils Ph. ACKERER IMFS STRASBOURG

DYNAS 04 Workshop Ph. Ackerer, IMFS - STRASBOURG

From Pan et al., 2004

Alternative models__________________________________________________________________________________

Two-phase flow using Lattice Boltzmann approach

Page 23: Some Difficulties in Modeling Water and Solute Transport in Soils Ph. ACKERER IMFS STRASBOURG

DYNAS 04 Workshop Ph. Ackerer, IMFS - STRASBOURG

Alternative models__________________________________________________________________________________

Water retention curve from Pan et al., 2004.

Page 24: Some Difficulties in Modeling Water and Solute Transport in Soils Ph. ACKERER IMFS STRASBOURG

DYNAS 04 Workshop Ph. Ackerer, IMFS - STRASBOURG

Parameter estimation

Spatial variability and scales__________________________________________________________________________________

Direct measurements and interpolation

Indirect estimation by inverse approach

Page 25: Some Difficulties in Modeling Water and Solute Transport in Soils Ph. ACKERER IMFS STRASBOURG

DYNAS 04 Workshop Ph. Ackerer, IMFS - STRASBOURG

U n it 2

U n it 9

U n it 4

U n it 1 0

U n it 7

U n it 6

U n it 1

U n it 3

B 1 B 2

B 3

0 2 4 x [m ]

4

2

0

z [m

]

6 8 1 0 1 2 1 4

8

6

4

2

0

z [m

]

0 .0 7

0 .0 8

0 .0 9

0 .1 0

0 .11

0 .1 2

U n it 2U n it 4

v [m /n s]

B 1 B 2 B 3

S o il

sand

y an

d pa

rtly

sil

ty g

rave

ls

unsa

tura

ted

satu

rate

d

Grain size. In-well Pumping

K (m/s) K(m/s) K (m/s) Nb. of meas. 318 207 20 Minimum 1.5 10-5 3.4 10-5 8.7 10-4 Maximum 0.21 1.9 10-2 3.9 10-3 Average (geo.) 1.5 10-3 1.9 10-3 2.5 10-3 Variance (LnK) 2.56 1.43 0.264

(Ptak, Teutsch, 1994)

Spatial variability and scales__________________________________________________________________________________

Page 26: Some Difficulties in Modeling Water and Solute Transport in Soils Ph. ACKERER IMFS STRASBOURG

DYNAS 04 Workshop Ph. Ackerer, IMFS - STRASBOURG

.

...

Measurement locations

Probability distribution of indicator 1

1 0

0

0 1

1 0

Conditioning

1 0.21 0 0.13 0.03

0.52 0.48 0.32 0.15 0

0 0.66 1 0.65 0.03

0.42 1 0.84 0.53 0

Interpolation

0 1

1

0 0

0 0

Conditioning

0 0.55 1 0.82 0.75

0.02 0.32 0.28 0.66 1

0 0.12 0 0.52 0.41

0.01 0 0.22 0.31 0

Interpolation

Spatial variability and scales__________________________________________________________________________________

Probability distribution of indicator 2

Page 27: Some Difficulties in Modeling Water and Solute Transport in Soils Ph. ACKERER IMFS STRASBOURG

DYNAS 04 Workshop Ph. Ackerer, IMFS - STRASBOURG

0 0.55 1 0.82 0.75

0.02 0.32 0.28 0.66 1

0 0.12 0 0.52 0.41

0.01 0 0.22 0.31 0

.

.

.

1 0.21 0 0.13 0.03

0.52 0.48 0.32 0.15 0

0 0.66 1 0.65 0.03

0.42 1 0.84 0.53 0

Probability normalization

Pk = Pk / (Pi)

0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0 1,10,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

1,1

Faciès 5Faciès 4Faciès 3Faciès 2Faciès 1

Pro

babi

lité

Integrated density function

Spatial variability and scales__________________________________________________________________________________

Page 28: Some Difficulties in Modeling Water and Solute Transport in Soils Ph. ACKERER IMFS STRASBOURG

DYNAS 04 Workshop Ph. Ackerer, IMFS - STRASBOURG

Spatial variability and scales__________________________________________________________________________________

Experimental site in Alsace

Ksat

init (30 cm)

Page 29: Some Difficulties in Modeling Water and Solute Transport in Soils Ph. ACKERER IMFS STRASBOURG

DYNAS 04 Workshop Ph. Ackerer, IMFS - STRASBOURG

Spatial variability and scales__________________________________________________________________________________

Fluxes after 8 weeks

Water Nitrate

Water Nitrate

Fluxes after 16 weeks

Water

Fluxes after 20 weeks

Nitrate

Page 30: Some Difficulties in Modeling Water and Solute Transport in Soils Ph. ACKERER IMFS STRASBOURG

DYNAS 04 Workshop Ph. Ackerer, IMFS - STRASBOURG

Inverse methods__________________________________________________________________________________

Parameter identification by inverse approaches

Generalized least-square approach

j j

2 2nth nh ntθ nθ

n+1 n+1 n+1 n+1 n+1j k j j k j k j

n=0 j=1 n=0 j=1h θ

1 1ˆ ˆJ p = h p -h + θ p ,h p -θσ σ

n+1j k

V

1h p = h(z,t)dV

V n+1 n+1j k j k

V

1θ p ,h p = θ(z,t) dV

V

bn 1

yi ia y

Page 31: Some Difficulties in Modeling Water and Solute Transport in Soils Ph. ACKERER IMFS STRASBOURG

DYNAS 04 Workshop Ph. Ackerer, IMFS - STRASBOURG

Inverse methods__________________________________________________________________________________

d = 3.5cm S10 C10 S9 C9

S8 C8

L = 100 cm S7 C7

S6 C6 S5 C5 S4 C4

S3 C3

S2 C2

S1 C1

e = 0.7cm C0

M (g, t)

Sable

Δh imposée

Balance

10cm

Déversoir

Capteur de pression

Sonde capacitive

Plaque poreuse

Eau

Vanne d’ouverture

Alimentation en eau

Experimental set-up

Page 32: Some Difficulties in Modeling Water and Solute Transport in Soils Ph. ACKERER IMFS STRASBOURG

DYNAS 04 Workshop Ph. Ackerer, IMFS - STRASBOURG

Computed and measured variables

Inverse methods__________________________________________________________________________________

Page 33: Some Difficulties in Modeling Water and Solute Transport in Soils Ph. ACKERER IMFS STRASBOURG

DYNAS 04 Workshop Ph. Ackerer, IMFS - STRASBOURG

Parameter Init. Est. Min Max

θr (cm3 /cm3) 0.045 0.1272 0.053 0.201

θs (cm3/cm3) 0.43 0.418 0.286 0.55

α (cm-1) 0.145 0.054 0.051 0.057

n 2.68 7.85 7.50 8.20

K1s(cm/h) 29.67 16.68 12.82 20.54

KPs(cm/h) 0.004 0.0049 0.0039 0.0059

Inverse methods__________________________________________________________________________________

Parameter estimation and validation

Page 34: Some Difficulties in Modeling Water and Solute Transport in Soils Ph. ACKERER IMFS STRASBOURG

DYNAS 04 Workshop Ph. Ackerer, IMFS - STRASBOURG

First order confidence interval

1 1 1 1

1 2

( )

1 2

.. ..

.. .. .. .. .. ..

.. . .. . .. .

.. .. .. .. .. ..

.. .. .. .. .. ..

.. .. .. .. .. ..

.. .. .. .. .. ..

.. .. .. .. .. ..

.. .. .. .. .. ..

.. ..

k np

acn np

n n n n

k np

h h h h

p p p p

J

h h h h

p p p p

Sensitivity matrix

11TC J W J

Covariance matrix

( )k kkp J p C

Parameter uncertainty

Inverse methods__________________________________________________________________________________

Page 35: Some Difficulties in Modeling Water and Solute Transport in Soils Ph. ACKERER IMFS STRASBOURG

DYNAS 04 Workshop Ph. Ackerer, IMFS - STRASBOURG

Inverse methods__________________________________________________________________________________

Paramètres Ks Ks(P) r s n

Ks 1 -0,449 0,779 0,103 0,336 0,148

Ks(P) 1 -0,325 0,473 -0,591 0,212

r 1 -0,082 -0,018 0,543

s 1 0,162 -0,131

1 -0,707

n 1

Correlation matrix

Page 36: Some Difficulties in Modeling Water and Solute Transport in Soils Ph. ACKERER IMFS STRASBOURG

DYNAS 04 Workshop Ph. Ackerer, IMFS - STRASBOURG

Inverse methods__________________________________________________________________________________

Parameters and computed variablepc,1 Yc,1

Min(J(p))

Virtual data set P, y(p)

Measurements: Ym,1 = y(p) + 1

Measurements: Ym,n = y(p) + n

Parameters and computed variablepc,n Yc,n

Min(J(p))

Measurements: Ym,i = y(p) + i

Parameters and computed variablepc,i Yc,i

Min(J(p))

Exp. Covariance matrix

First Monte Carlo approach

Page 37: Some Difficulties in Modeling Water and Solute Transport in Soils Ph. ACKERER IMFS STRASBOURG

DYNAS 04 Workshop Ph. Ackerer, IMFS - STRASBOURG

Virtual data set P, y(p)

Inverse methods__________________________________________________________________________________

Measurements: Ym,1 = Yo + 1

Parameters and computed variablepc,1 Yc,1

Min(J(p))

Measurements: Ym,n = Yo + n

Parameters and computed variablepc,n Yc,n

Min(J(p))

Exp. Covariance matrix

Parameters and computed variablepc,i Yc,i

Min(J(p))

Measurements: Ym = Yo + i

Second Monte Carlo approach

ObservationsYo = y(p) +

Page 38: Some Difficulties in Modeling Water and Solute Transport in Soils Ph. ACKERER IMFS STRASBOURG

DYNAS 04 Workshop Ph. Ackerer, IMFS - STRASBOURG

Ksat(cm/j)3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0

r

0.084

0.086

0.088

0.090

0.092

0.094

0.096

0.098

0.100

0.102

0.104

1ère Méthode de Monte-Carlo

Méthode de Linéarisation2ième Méthode de Monte-Carlo

Comparison between 1er order and Monte Carlo Approaches

Inverse methods__________________________________________________________________________________

Page 39: Some Difficulties in Modeling Water and Solute Transport in Soils Ph. ACKERER IMFS STRASBOURG

DYNAS 04 Workshop Ph. Ackerer, IMFS - STRASBOURG

Conclusions__________________________________________________________________________________

Many challenges remain:

Understanding of processes and their mathematical modelling

Parameter scaling: from measurements to element size

Soil heterogeneity description

Accurate of numerical codes will be of great help

Page 40: Some Difficulties in Modeling Water and Solute Transport in Soils Ph. ACKERER IMFS STRASBOURG

DYNAS 04 Workshop Ph. Ackerer, IMFS - STRASBOURG

References

Frontis Workshop on Unsaturated-Zone Modeling: Progress, Challenges and Applications, Wageningen, The Netherlands 3-5 October 2004. http://library.wur.nl/frontis/unsaturated/

Arya & Paris, Soil Sci. Soc. Am. J.,1981Binayak P. Mohanty, Water Res. Res, 1999Di Pietro et al., J. of Hydrology ,2003Pan et al., Water Res. Res., 2004Pierret et al., Géoderma, 2002Prunty & Casey, Vadose Zone J, 2002Tulle & Or, Vadose Zone J, 2002Vogel et al., Adv. Water Res., 2001Vogel & Roth, J of Hydrology, 2003Wösten, J. of Hydrology., 2001