36
Solutions to Schrödinger's equation for spherical potential wells : Modelling the Atomic Nucleus and the H atom electron

Solutions to Schrödinger's equation for spherical ...cronodon.com/files/Schrodinger-equation-nuclei-and-atoms.pdf · Solutions to Schrödinger's equation for spherical potential

Embed Size (px)

Citation preview

Solutions to Schrödinger's equation for spherical potential wells:

Modelling the Atomic Nucleus

and the H atom electron

1. Modelling the Atomic Nucleus

Using a spherical rectangular potential well

q

1D finite rectangular well

0

−V0

(3D) finite spherical rectangular well

f

V(r) = 0 for r ≥ R

V(r) = −V0 for r < R

0 Rr

r r

We begin by using the time-independent Schrodinger wave equation (TISWE):

[ ] 0 )(2

2222 =-+úû

ùêë

鶶

+¶¶

+¶¶ yy rVE

Mzyx h

Where:

M = nucleon mass, E = total energy of nucleon (= 0 at nuclear surface)V(r) is the finite spherical rectangular well potential function:

V(r) = 0 for r ≥ RV(r) = −V0 for r < R

In spherical polars (changing the Laplacian operator):

x = rsinqsinf, y = rsinqsinf, z = rcosq

The TISWE becomes:

[ ] 0 )(2

sin1cot12

22

2

222222 =-+úû

ùêë

鶶

+¶¶

+¶¶

+¶¶

+¶¶ yy

fqqq

qrVE

Mrrrrrr h

Separation of variables gives:

[ ]

[ ] )1(sin

1cot

1)(

22

:)RYrby (multiply

0)(2

sincot2

:

),()(),,(

2

2

22

2

2

2

2

22

2

22

2

2222

2

22

2

+=úû

ùêë

鶶

+¶¶

+¶¶

-=-++

=-+¶¶

+¶¶

+¶¶

++

=

llYYY

YrVE

MrdrdR

Rr

drRd

Rr

RYrVEMY

rRY

Rr

YrR

drdR

rY

drd

Y

gives

YrRr

fqqq

q

fqqq

q

fqfqy

h

h

Where we have set each side equal to a constant which we have designated l(l+1) for later convenience.

[ ]

0)1(sin

1cot

1

)1()(22

2

2

22

2

2

2

2

22

=++úû

ùêë

鶶

+¶¶

+¶¶

+=-++

llYYY

Y

llrVEMr

drdR

Rr

drRd

Rr

fqqq

q

h(1)

(2)

Separating Y further by variables gives:

0sin

)1(cot11

1

m designatedconstant a toequal sideeach set have wewhere

1)1(cot

1

2)equation (in

)()(),(

2

2

2

2

22

2

2

22

2

2

2

=-++Q

Q+

QQ

-=F

F

=F

F-=ú

û

ùêë

é++

QF+

QF

QF

FQ=

qqq

q

f

fqq

q

fqfq

mll

dd

dd

mdd

mdd

lldd

dd

gives

Y

(3, m is zero or a positive integer)

(4)

Equation 3 is for the familiar harmonic oscillator whose solution is:

))sin()(cos()( )( BmiBmAAe Bmi +++==F + fff f

0sin

)1(cot11

2

2

2

2

=-++Q

Q+

QQ qq

qq

mll

dd

dd

The solution to equation 4:

Change of variable, let m = cosq, gives:

mqq

mq

mq

qqq

mq

mqm

q

qmq

m

qqm

qqm

dd

dd

dd

dd

dd

dd

dd

dd

dd

dd

dd

dd

dd

dd

dd

Q-

Q-=÷÷

ø

öççè

æ Q-=÷

øö

çèæ Q

-==

=

-=

-=

sincossin

sin

dd

:ruleChain

cos

sin22

( ) 0sin

)1(21

0sin

)1(cotd

: of in terms /dθd and d/din ngSubstituti

)1(

sincossincos

2

2

2

22

2

2

2

2

22

2

22

2

2

2

=Q÷÷ø

öççè

æ-++

Q-

Q-

=Q÷÷ø

öççè

æ-++

Q+

Q

Q-

Q-=

Q

Q+

Q-=

Q-

Q-

qmm

mm

qqq

q

mq

mm

mm

q

mmq

mq

mqq

mq

mll

dd

dd

gives

mll

dd

d

dd

dd

dd

gives

dd

dd

dd

dd

dd

dd

Considering the simplest case where m = 0, gives:

( ) 0)1(21 2

22 =Q++

Q-

Q- ll

dd

dd

mm

mm

This is Legendre’s equation!

This can be solved by power series solution. The solutions are Legendre polynomials, Pl(m) = Pl(cosq), the first few of which are:

)3cos30cos35(81

)(cos

)cos3cos5(21

)(cos

)1cos3(21

)(cos

cos)(cos

1)(cos

244

33

22

1

0

+-=

-=

-=

==

qqq

qqq

qq

qqq

P

P

P

P

P

For the general case, including m ≠ 0, and as long as |m| ≤ l, a solution which remains finite for all values of m is:

)()1()( ||

||2||2 mm

mm lm

mmm

l Pdd

P -=

where Plm(m) is the associated Legendre function.

The associated Legendre function multiplied by the solution to equation 3 for f, and normalised, gives the spherical harmonics which are solutions to Y(q,f) = Q(q)F(f):

fqp

fq imml

ml eP

mlmll

Y )(cos)!()!(

412

),( ×+-+

=

Associated Legendre Functions with argument cosq

qq

qqq

qqq

qqq

qq

qqq

qq

qq

qq

q

333

223

213

203

222

12

202

11

01

00

sin15)(cos

sincos15)(cos

sin)1cos5(23

)(cos

)3cos5(cos21

)(cos

sin3)(cos

cossin3)(cos

)1cos3(21

)(cos

sin)(cos

cos)(cos

1)(cos

-=

=

--=

-=

=

-=

-=

-=

=

=

P

P

P

P

P

P

P

P

P

P

Spherical Harmonics

f

f

f

f

f

f

qp

fq

qqp

fq

qqp

fq

qqp

fq

qp

fq

qqp

fq

qp

fq

qp

fq

qp

fq

pfq

fq

i

i

i

i

i

i

ml

eY

eY

eY

Y

eY

eY

Y

eY

Y

Y

Y

3333

2223

213

303

2222

12

202

11

01

00

sin35

81

),(

cossin2105

41

),(

)1cos5(sin21

81

),(

)cos3cos5(7

41

),(

sin215

41

),(

cossin215

21

),(

)1cos3(5

41

),(

sin23

21

),(

cos3

21

),(

121

),(

),(

-=

=

--=

-=

=

-=

-=

-=

=

=

-

fqp

fq imml

ml eP

mlmll

Y )(cos)!()!(

412

),( ×+-+

=

[ ] )1()(22

2

2

2

22

+=-++ llrVEMr

drdR

Rr

drRd

Rr

h

Returning to the radial equation (1):

We introduce the wave number:

22 2)]([ hMrVEk -=

and change the variable to r = kr and replace R by √(p/2kr)R'

2

222

2

2

:rulechain

/ ,

rrrr

rr

r

rr

dRd

kddR

dd

kddR

drd

kdr

Rd

ddR

kdrd

ddR

drdR

krkdrd

=÷÷ø

öççè

æ=÷÷

ø

öççè

æ=

==

==

2

221232325

2

2

2123

22

22

2221

221

243

2221

22

0)1(2

rrp

rrp

rrprp

r

rrprp

r

rpp

rr

rr

r

dRd

dRd

dRd

Rd

Rd

dRd

RddR

RRkr

R

with

llddR

RdRd

R

gives

¢+¢

-¢=

¢+¢-=

¢=¢=

=+-++

----

--

Substituting in the new expressions for our differential operators into:

( )

RllRdRd

dRd

gives

RlldRd

Rd

RddRd

R

gives

RlldRd

R

dRd

dRd

R

gives

llddR

RdRd

R

¢+-+¢+¢

¢+-+¢

+¢-¢

¢+-+÷÷ø

öççè

æ ¢+¢-+

÷÷ø

öççè

æ ¢+¢

=+-++

--

---

---

---

21221212

223

21221212

2232121

2122123

2

22123252

22

22

))1((41

))1((243

2)1(

2221

2

22243

0)1(2

rrrr

rr

r

rrr

rrr

rr

rr

rrrr

rprpr

rrp

rrprpr

rr

rr

r

021

have we

41

)1(41

21

21

21

since

))1((41

22

2

22

22

2122

22

-¢÷÷ø

öççè

æ÷øö

çèæ +-+

¢+¢

++=++=÷øö

çèæ +÷øö

çèæ +=÷

øö

çèæ +

¢+-+¢-¢

+¢ -

RldRd

dRd

lllllll

RllRdRd

dRd

gives

rr

rr

r

rrr

rr

r

which is Bessel’s equation!

Solutions to Bessel’s equation:

021

22

2

22 -¢÷

÷ø

öççè

æ÷øö

çèæ +-+

¢+¢

RldRd

dRd r

rr

rr

for half an odd integer, Jl+½, are:

)(2

)()( 21 krJkr

krjrR ll +×==p

which are spherical Bessel functions, the first few of which are:

krkr

krkr

krj

krkr

krj

cos1

sin)(

1)(

sin1

)(

21

0

-=

=

Higher order solutions can be found from the recurrence formula:

)()(12

)( 11 krjkrjkrl

krj lll -+ -+

=

Energy Eigenvalues

Consider the first solution for l = 0:

... 3, 2, 1,

:withby designatedion eigenfuncteach ofenergy kinetic theGives

)]([2

: and umbers, quantum twointroduced have weWhere

2

:zero) still ( issmallest next The

kR

:iscondition thissatisfyingk of aluesmallest v The

radiusnuclear theis R r where

0sin

:requiring condition)(boundary surfacenuclear at the zero bemust This

sin)()(

22

20

10nuc

nuc

0

=

=-=

=

==

=

=

==

v

E

ErVEMk

l

Rk

l

Rk

kRkR

krkr

krjrR

v

vtotvl

nuc

nuc

nuc

nuc

vl

hn

p

p

Evaluation of the model

If we construct a nucleus by assuming that neutrons and protons can populate the same set of energy levels (requiring that no two neutrons or protons can have the same set of quantum numbers and introducing nucleon spin with two possible values: +½ and −½) we predict the first few magic numbers, corresponding to fully occupied energy levels (n): 2, 8 and 20. However, it fails to accurately predict the higher magic numbers given by the shell model.

Our rectangular spherical potential, in which the potential abruptly changes at the nuclear surface, is inaccurate. A more realistic potential would include a more gradual change in potential at the well edge (such as by using the Woods-Saxon potential). We also need to account for fine structure by introducing spin-orbit coupling.

the introduction of spin-orbit coupling accurately predicts all the magic numbers (at least up to 184). The shape of the well (flatness of the well bottom and the steepness of its sides) affects the exact energy levels, but not their order (again we reserve the possibility of differences for very high magic numbers).

2. Modelling the Hydrogen Atom

Using a Coulomb Potential Well

The Coulomb potential is a central (spherically symmetric) potential and the angular part of the wave functions are the same as for any other central potential, namely the spherical harmonics.

However, the radial wavefunction is quite different from that for the spherical rectangular well.

r

VrThe Coulomb potential

[ ]

units) SI(in ,4

)( :or units), cgs(in ,)(

0)1()]([2

:

2

)()())((

drd

)()())((

drd

:rR(r) G(r)let : variableof Change

)1()(22

0

22

2

2

2

22

2

2

2

2

2

2

2

2

2

2

2

22

re

rVre

rV

with

llrVEMr

drGd

Gr

GivesdrdR

drrd

rdr

rdr

drdR

drdR

drrdR

rrRdrd

rrRdrG(r)d

drrdR

rrRrrR

llrVEMr

drdR

Rr

drRd

Rr

pe-=-=

=+--+

+=++=

úûù

êëé +==

+=

=

+=-++

h

h

rr

e

r

2

2

0

00

2

2

2

2

22

2

22

22

2

ar

have we

radiusBohr theis a where,

:units natural theUsing

2)1(

2

: toequivalent iswhich

02

)1(2

:gives This

Me

EE

ar

EGGre

Mrll

drd

M

GMr

llre

EM

drGd

R

h

hh

hh

==

=

=

=úû

ùêë

é-

++-

=úû

ùêë

é +-++

re

Mrll

V

llV

GGVd

Gd

gives

GGll

dd

ei

GGeMe

lldd

MeEE

eff

eff

eff

R

2

2

2

2

2

22

2

2

42

2

2

22

4

2

2

2

4

2

4

2)1(

)(

:ergsin or,

2)1()(

:units) natural(in is potential effective thewhere

:

2)1(

..

2Me

)1(2Me

2Me

:giveswhich 2

-+

=

-+

=

=+-

=úû

ùêë

é-

++-

=úû

ùêë

é-++-

==

r

rrr

er

errr

errr

ee

hhhh

h

Where the first term on the RHS is the centrifugal potential, l(l+1)/2Mr2, and the second term is the coulomb energy, -e2/r.

Let’s consider limiting cases:

Gebd

Gd

be

b

Gd

Gd

Gd

Gd

Mrll

for

b

b

er

r

e

r

er

er

r

r

r

r

-==

-=

³=

=+

><

®+

®¥®

-

-

-

22

2

2

b

2

2

2

2

2

ddG

:DE theintoback solution thisngsubstitutiby seen becan As

0,-b where

e~)G(

:isequation thisosolution t acceptableAn

0

:so ,0 so and 0 E states boundFor

:giveswhich

02)1(

and 0energy Coulomb the,

At the other extreme, when r→ 0 we have:

parity. galternatin with states bound theof nature waveheconsider t : thissee To

)1()

:polynomial aby multipliedsolution thisbe toexpected issolution general The

~)G(

:form theof be osolution t expect the weTherefore,

)1()1(

)1(

~)(

:is which ofsolution acceptableAn

)1(

max1

1

12

12

2

1

22

2

å=

-+

-+

+-

+

-=

+=+»

i

oi

ii

ibl

bl

ll

l

l

ceρG(ρ

e

llll

dGd

lddG

G

Gll

dGd

r

rr

rr

rr

rr

rr

rr

r

r

)()1()

:have weso 1/n, bat shortly th see shall We

/1/1max

rr rr feρceρG(ρ nli

oi

ii

inl -+

=

-+ =-=

=

åNow we need to find the values of the coefficients, ci:

2

21112

22

2

11

2

2

122

2

22

2

)1(2

)1(2)1(

)1(dG

:follows as

0)]1(1[2])1[(2

:satisfies )f( shown that becan it then

2)1(2)1(

:satisfies )G( If

rrrr

rrr

rrr

r

rr

rr

r

rerrr

errr

r

rrr

rrr

r

dfd

epddf

epbll

feblbll

dGd

ddf

epfebfeld

flbddf

bld

fd

fell

dGd

GGll

dd

blblbl

blblbl

bl

-+-+-+

-+-+-

-+

+÷÷ø

öççè

æ-

++÷÷

ø

öççè

æ+

+-

+=

+-+=

=+-+-++

÷÷ø

öççè

æ--

+=Þ=ú

û

ùêë

é-

++-

( ) ( )

( ) ( )

).-b (since required as

)1(12)1(2

)1(12)1(2

2)1()1(2

)1(2)1(

:

2

2

2

22

2

22

22

2

=

+-+-++

Þ

++-++-++

Þ

÷÷ø

öççè

æ--

+=+÷÷

ø

öççè

æ-

++÷÷

ø

öççè

æ+

+-

+

e

rr

rr

rerr

rr

r

errrrrrr

flbddf

blld

fd

fblbddf

blld

fd

fll

dfd

ddf

bll

fblbll

Thus

0)]1(1[2])1[(2

:equation The

2

2

=+-+-++ flbddf

bld

fdr

rr

r

is very similar to Laguerre’s differential equation into which it can be transformed by a suitable change of variable. The polynomial solutions we seek, f, will turn out to be solutions to Laguerre’s equation, called Laguerre poynomials.

å

åå--

=

-

--

=

---

=

-=

=

=

=-++=++

1

0

2i2

2

1

0

1i1

0

i

2

2

)1((-1)

(-1)(-1)dd

:1-l-n wavesstationaryfor

modes ofnumber thefact that theusing and fin ngsubstituti and

0]1)1([22)1(2

:econvenienclater for gRearrangin

ln

i

ii

ln

i

ii

ln

i

ii

iicd

fd

icc

flbddf

bddf

ld

fd

rr

rrr

rr

rrr

åå

åå

åååå

--

=

--

=

-

--

=

--

=

-

--

=

--

=

--

=

---

=

-

-++=++-

-++=++-Þ

-++=++-

Þ

1

0

j1

0

1j

1

0

j1

0

1i

1

0

i1

0

i1

0

1i1

0

1j

)]1)1((22[(-1)])1(2)1[((-1)

:

)]1)1((22[(-1)])1(2)1[((-1)

(-1)]1)1([2(-1)2(-1))1(2)1((-1)

ln

i

ii

ln

i

jj

ln

i

ii

ln

i

ii

ln

i

ii

ln

i

ii

ln

i

ii

ln

i

ii

lbbicjljjc

Thus

lbbiciliic

clbicbcliic

rr

rr

rrrr

When j = 1 + 1, we have:

)22)(1()1(2

cc

:tscoefficien for the formula a have weNow

n1b giveswhich

1)]c-1)2(b(l1)-l--[2b(n0

:have we,1 with and zero equal separatelymust each term

)]1)1((22[)]1)(1(2)1([

i

1i

1-l-n

1

iliniln

n-l-i

clbbicilii ii

+++---

=

=++=

=-++-=++++

+

+

Energy eigenvalues

Referring back to our equation for E:

ee 2

4

2hMe

EE R ==

Since we know that e = -b2 and b = 1/n, we have the equation for the energy eigenvalues, one eigenvalue corresponding to each orbital:

... 3, 2, 1,

units) (SI 4

e2

units) (cgs 2

0

2

22

4

22

4

=

÷÷ø

öççè

æ-=

-=

n

nMe

E

nMe

E

n

n

peh

h

The negative sign indicates bound states. (Fine and hyperfine structure corrections can be applied to En for more accuracy).

Normalisation

We still need to determine the coefficient c0 which will enable us to determine the other coefficients by recursion. To determine c0 we require the integral of the square of the wavefunction = 1, since this is the probability distribution function of the electron and the probability of the electron being somewhere in space = 1.

1a

:1n 0,for

e.g. is, c when normalised is )(f

1)(a

:require we

1sin),(

:normalised YWith

1sin),()(

1sin),,(

/2

0

2

0223

o

0n

/2

0

2223o

0

2

0

2

m

0 0

2

0

22/30

2

2

0 0

2

0

=

==

=

=

=

=

+

+

= =

¥

= = =

-

¥

= = =

ò

ò

ò ò

ò ò ò

ò ò ò

dpec

l

dpef

ddY

dddYfea

ddrdrr

nl

l

nnl

l

lm

l

rlmnl

nl

rnlm

r

r

p

q

p

f

p

q

p

f

r

p

q

p

f

r

r

rr

fqqfq

fqrqrfqrr

fqqfqy

on.distributiy probabilit observable obtain the to

ion wavefunct thesquare wesincet unimportan is c ofsign the:Note

2||

:

2||

:obtain We

!r

:integral standard following theUsing

0

2300

30

22

0

01

q

-

¥

+-

=

=

ac

gives

ac

qdre q

r

aa

0

0

0

0

0

0

3/

2

0

23

032

3/

00

23

031

3/20

2

0

23

030

2/

0

23

021

2/

0

23

020

/23

010

31

527

22

61

31

324

272

32

131

2

21

3

1

21

21

2

12

ar

ar

ar

ar

ar

ar

ear

aR

ear

ar

aR

ear

ar

aR

ear

aR

ear

aR

ea

R

-

-

-

-

-

-

÷÷ø

öççè

æ÷÷ø

öççè

æ=

÷÷ø

öççè

æ-÷÷

ø

öççè

æ÷÷ø

öççè

æ=

÷÷ø

öççè

æ+-÷÷

ø

öççè

æ=

÷÷ø

öççè

æ÷÷ø

öççè

æ=

÷÷ø

öççè

æ-÷÷

ø

öççè

æ=

÷÷ø

öççè

æ=

Some radial wavefunctions, Rnl(r):

Putting it all together

[ ]

[ ])3)(2)(1()3)(2(3)3(361

)(

)2)(1()2(221

)(L

1)(

1)(

:exampleFor

!)1()(

:spolynomial Laguerre

)!()!1(21

:bygiven ist coefficienion normalisat radial The

spolynomial Laguerre theofargument theis 2r/na :Note

1-n , ... 2, 1, 0, ..., 3, 2, 1,n

22

functions waveRadial

233

2k2

1

0

0

2230

0

121

0

0

++++++-++-=

++++-=

++-=

=

÷÷ø

öççè

æ-+

-=

+--

=

==

÷øö

çèæ

÷÷ø

öççè

æ=

å=

+--

-

kkkxkkxkxxL

kkxkxx

kxxL

xL

sx

sp

kpxL

lnln

naN

l

nar

Lena

rNR

k

k

k

sp

s

skp

nl

lln

nar

l

nlnl

fqqp

y

py

p

iar

ar

eear

ar

aer

Y

)1cos5(sin21

81

2!71

811

)(

:1m with orbital 4f2

2)(

2

1

:orbital 1s

E.g.

24

3

023

0431

230

100

00

0

0

-÷÷ø

öççè

æ-=

=

=

=

-

--