18
SOLUTION SET Chapter 2 WAVE NATURE OF LIGHT- THE INTERACTION OF LIGHT WITH MATERIALS "LASER FUNDAMENTALS" Second Edition By William T. Silfvast

SOLUTION SET Chapter 2 WAVE NATURE OF LIGHT- THE

Embed Size (px)

Citation preview

Page 1: SOLUTION SET Chapter 2 WAVE NATURE OF LIGHT- THE

SOLUTION SET

Chapter 2

WAVE NATURE OF LIGHT-THE INTERACTION OF LIGHT WITH MATERIALS

"LASER FUNDAMENTALS"

Second Edition

By William T. Silfvast

Page 2: SOLUTION SET Chapter 2 WAVE NATURE OF LIGHT- THE

CH 2-

1. Show how to go from the integral form to the differential form of Maxwell's four equations.

(b)

lC)

~ {ver~el1ce .lla.o reVV\

f E· iS t J \7· E Jv = r~ ( ~)Jv 5 v v

~ t r\7· 5 .lV= i. [rohl ~Q.B:f

~ B. e1S =- \ \7. 8 .AV== D ~ 7. B:: 0 s v

S.io k e ~ lh e. b r-e.. V\i\

J, B·il ~ )\7x8·JA=µol"'f[µD(J+g:Q),dA ) A A ~

=-/ 7 x B ::: ,µD ( "f + ~)

s To Ile~ ~or~~

f - - tJf- - - t:Ja EI e/-e = . v x E . d.A = - -A d-:r

ff J B -- - . dA Q

A

Page 3: SOLUTION SET Chapter 2 WAVE NATURE OF LIGHT- THE

{ H 2.

2. Calculate the electrical force of attraction between a positive and negative charge separated by a distance of 5 .3 x io-11 rn (the average distance between an electron in its ground state and the nucleus). How does this force compare to the gravita­tional force an electron would experience at sea level?

--n~ 1 V"a. v t t tt. tt ()" $\~ I

~:::. ~ 't

f I

Page 4: SOLUTION SET Chapter 2 WAVE NATURE OF LIGHT- THE

L 1-1 2..

3. Show that the function E = E 0 e-i(kzz-wr) is a solution to Maxwell's wave equa­tion (eqn. 2.26), assuming that c = 1/(µ 0 .s 0 )

112.

Page 5: SOLUTION SET Chapter 2 WAVE NATURE OF LIGHT- THE

4. Consider two waves, having slightly different angular frequencies w1 and cv 2 and wave numbers k 1 and k 2 , of the form

Ei = Ei°e-i (k1z- w1t) and E2

= Ege-i (kH. - w2 t),

where Ei°_ = Ef. Assume their "difference" wave numbers and frequencies can be written as

6k = k1 - k2 and 6w = W1 - w2.

Show that the sum of these two waves leads to a slowly varying amplitude func­tion associated with the difference frequencies and wave numbers multiplied by a term associated with the actual frequencies and wave numbers. Hint: Reduce the sum to the product of two cosine functions.

0 -.A ( ... ~ - w' ~) E, -::. E1 e.

, '

,,h_ I -:-_ ,(..,_ -t" ~ '2-

I.) - I~ .__ AW. v-'l- vv ~

- "2_ i; e - j ( ~ ~ -W ~) l.-o.S [{ ( t. ~ °i- - ./.\. u.J ~

\..__-~--.. - . A•~-'-

5{~w'1 vo.v-~1'.-i7 a~p/,'frtde

Page 6: SOLUTION SET Chapter 2 WAVE NATURE OF LIGHT- THE

5. Show that the group velocity and the phase velocity are equal when there is no dispersion and are different when dispersion is present. Hint: Begin with the def­initions of group and phase velocity.

Vp ~ ol ~ - -cut -

vb~ ~w n-

w w ~ 4<.. = -- uJ ---~

I d'%w-

cl Y\ ~W-=. D

Vp

V\.. - ..+ c..

Vcr = %_-=- Vp

-C./rt

. .......,.,. ~•Ollil"'1M

w el Y\... - dW l

I-+ d; s p e.f"-S ; ~ "I. Tl._e. VI. ~ ~ * 0

a~~ Vb- -:/ Vr;;,

V\_W c_

c f..t z.

Page 7: SOLUTION SET Chapter 2 WAVE NATURE OF LIGHT- THE

6. Obtain (2.101) from (2.90) and (2.95).

s lA k s:t,· r~ n 117 : .

(j /1) 2

~ /: (1 + ~e~ b~6~-~~-/~wJ) 11_'\ I + [ \ .... ........ -....... ]

w ~-·'- w"" - ,I "w b .

l 5j • -- Y- r

:net•-~·-'·~~

Page 8: SOLUTION SET Chapter 2 WAVE NATURE OF LIGHT- THE

7. Express (2.102) and (2.103) in terms of frequency (instead of angular frequency) and r (instead of y).

fl) -- 27/ v -~ --,) - Jd_ vv -/ r - '21/-

Page 9: SOLUTION SET Chapter 2 WAVE NATURE OF LIGHT- THE

8. For a medium (such as a gas) of low density and with a single resonance frequency, show that , if the imaginary part K of the complex index of refraction is signifi­cantly smaller than the real part TJ, then for values of w far from w 0 the expressions for TJ and K can be expressed as follows:

Ne2

( 1 ) . Ne2

( yw ) TJ = 1 + ? and K = . . 2mso w 0 - w 2 2mso (w6 - w2) 2

2, "L rv- 'L (.,,{.) - w j) >> Cl := w

)( <_ <_ lU J 6 pt1 ~_,.j f Y4-1l/41fC!es

~ "' V\)_ - k "2 S' V\_ ~ I+

f""\J [1 + V\_ -/\le l ( I \l t/~ Vit 4 w,}· - uiU

2J :r. y ,/ ,-.J 10 -/I) l'lft.tl

(,,l ~ ,,, V\ f 'f' t) ~ ~ bo t.rt..

Page 10: SOLUTION SET Chapter 2 WAVE NATURE OF LIGHT- THE

9. Assume that a dielectric material has a single resonance frequency at v 0

3 x 1014 Hz, the polarization decay time is r = 2 x 10-7 s, and the density of polariiable charges is 5 x 1026 m-3 . Determine the full width at half maximum (FWHM) of the ~bsorption resonance in the material and determine the maximum numerical value of a.

ex. -=. "2. w I< .. c.

\c..l-=. - I

c, '2. -($'-w '- =!

c 2 Lf ~ r w ""'i

+~

(),_ ~e-1 l.. V\ \< :: .fJ_ ¥W

'-/ ( I + I<.'°) l<=-l"' ~>.,_w .._

l tf 2 c, -

o v- le. +-- /t::. - '-/ r 7 w 'l. 0

I + l \ + C1 '4.. ~ ·- ___ ..

- °2 - l. 'll'J...W .._

L# 2

Page 11: SOLUTION SET Chapter 2 WAVE NATURE OF LIGHT- THE

10 (Uivit)

2.2

2

1.8

1.'6

Y\ 1.4

1.2

1

'0.8 I . I

0.6

0-4

0.2 0.92 0.94 0.96 0.98 1 1.02 1.04 ':1:()6 1.0:8 1.1

W/w/)

1.8

1.6

1.4

1.2

K 1

0.8

0.6

0.4

0.2 / 01.--~-1-~-d:=====:i::::::....~_L_~-"'~-~-======-~.l--~....L~_J 0.92 0.94 0.% 0.98 1 1.02 1.04 1.06 1.08 1.1

W/U/c

Page 12: SOLUTION SET Chapter 2 WAVE NATURE OF LIGHT- THE

LH 2..

10. A species of atomic weight 60 is doped into an Ah 0 3 crystal at a concentration of 0.1 o/o by weight (cf. Section 5.3). The combined material is found to have an ab­sorbing feature that peaks at 750 nm and a damping constant of 1013 s-1. Assume that each atom of the species contributes to the macroscopic polarization associ­ated with that absorbing feature . Make a plot of TJ and K versus wavelength in the wavelength region of the absorbing feature.

)... =-7 _s--~ ~ IM..

¥ =: It/~

,, \'­- lli ~ 3,Cf9xtoi>~-~ XI~ - !.

c, -~~ - "' >tur.J1 ~. ~s-xio- 1'

:: j,£.7)(10 ~: -

l'} t if_xto_ . . ,

Page 13: SOLUTION SET Chapter 2 WAVE NATURE OF LIGHT- THE

11. Show that, for a low-density medium such as a gas (as in Problem 8), the maxi­mum and minimum values of r; are located at frequencies that correspond to the half-maximum values of K. Hint: Assume that in this frequency region y 2w 2 >> Cw6 - w2 ) 2 near resonance.

' ~ Lis:.? ( \ \ ~ (_ '<""\ + A k) = I +- V1A t-Q W/ - w ~ - ..., 'r w) ~3 Al,J!l.. 2.~

. F & v- ~ 1 tA.. $ N ~ I /) Y~ l '=? ~· rv 3 XI tJ

' \ '2.. 2. .;:!/ t;t c.i\..-J.. W '2 """-' (!- rr X I D 1 'I/ ~ t./ X I D

{_/-1 2.

1-1-t."-tO. \ > '? ~ ~: ( w. •-1~ "..'. ::rvw} .for ,,,,...d x.

' • •

~

/ I

, I t

" "'T": t • r, ' x )11'- --;"\,,,. I +- -k x +- · · • · . (;\. ~ I"'"{ ' "-·ti 0 f' exptt~S I ()"\ L' -r ~

\/'\ ·+ .) II"" ::::: l + .l. t::.J. ~, .. ~ I A. I .. t: ' v \ r I -.... - . '2... 1-"\et ~() \_ W0 - W -A O WJ

= I + i ~e ~ [Lw0 -w)~;fw)::::i d'~

Page 14: SOLUTION SET Chapter 2 WAVE NATURE OF LIGHT- THE

12. In regions of the spectrum where the absorption is small, TJ can be expressed as

TJ2 = 1 + Ne2 ( w6 - w2 ) mco Cw6 - w2)2 + y2w2 .

Convert this equation to wavelength A. instead of angular frequency w. Show that it is of the form

Use the following index data for crown glass in the expression just displayed to plot (TJ 2 - 1)-1 versus A.-2 and obtain the values of C, N, and A. 0 .

L.. Ne..... [ tvu '-- w L... 1 Wavelength Index of Y\ : t + ~eo ~,,, "l_ w'l...)"+ '('w'-j (nm) refraction

Y; J l,lo\ v--l~ ( '1'-\. W ~- 0.. h S. ~ v--p 1t tn1 I-~ $ ~t.t. 728.135 1.5346 ' 706.519 1.5352 (!3!,/- ~ W 'I..) 2.. > '/ '( 1

W L. ~~ a...~!.t.tiC4. uJ )Wo

667.815 1.53629 I :J ..,., .. i.. t\, Ne.). [ • .. -- .

587.562 1.53954 I"-"""'- \r\ - \ ";:: - - 161 't - L-tJ "a... 1 ~ M.l. t;) CN' cl .

504.774 501.567

492.193 471.314 447.148 438.793 414.376

412.086 401.619 388.865

1.54417 1.54473

1.54528

1.54624 1.54943 1.55026 1.55374

1.55402 1.55530 .. 1.55767

- - Ne" f \ . . . 1 - ~l~~~)2.-~~!:)LJ

\....

w ~ (_-::: ~ &ol7;1fC.) IV e ..._

u ~ clct-t'"t 1'b o i-ir a.. ~lo\. C) N > 1\ u

C = 7.7f; x 10-'~11'\Al..

f.-0

-== ltOIS-x.10- 7V1'A.

N ':> /,'-('( X /02."retfa*$/'M'J

Page 15: SOLUTION SET Chapter 2 WAVE NATURE OF LIGHT- THE

C. # 2.

13. Two electromagnetic waves in the blue spectral region ( 450 nm) are separated in frequency by 1 MHz and in wavelength by 1 pm. What is the group velocity of · this wave combination?

W= 27TV

- - Rl'Tl ... ~

Page 16: SOLUTION SET Chapter 2 WAVE NATURE OF LIGHT- THE

. . - -----c_ II ~ 14. Two electromagnetic waves of nearly the same (600-nm) wavelength are mea-

sured on a spectrum analyzer to have a frequency difference of 1.0 x 108 Hz. While traveling through a dispersive medium, an interferometer is used to mea- ·_ sure their w.avelength difference of 0.0010 nm. What is the group velocity of the wave combination in that medium?

A :::: ~ 00 f\ V\,;\

A. v -.:. ltJ ~ Ht

\I '".: A W - 'L1T A /..) Ak= 3J[' AA V& Ak. - ~k A'l-

v & : )_ '- ~ _ ((,., OOXll.l-"1,,._f /O % AA . {)r

0

1JC/ XI~_.,,.,;;-

Page 17: SOLUTION SET Chapter 2 WAVE NATURE OF LIGHT- THE

c. fl 2-

15. Determine what emission frequency width would be required to have a temporal coherence length of 10 m at a source wavelength of 488 nm.

)\-;;. 1..-t q, Cl V\ 11\A.._

>-I..._

.ci,\

/0 ~

Page 18: SOLUTION SET Chapter 2 WAVE NATURE OF LIGHT- THE

CHL 16. If a photographic film has a minimum resolution of 10 µ.,m, what minimum feature

size could be observed at a distance of 2 m without observing coherent effects? (Assume the minimum feature size is equal to the minimum resolution.)

a. s. s t.it. "'~ A :::. S" o o "'- !;I.A

y-::: "L w-.,.