Solution Key_CK-12 Calculus Flexbook

Embed Size (px)

Citation preview

  • 8/10/2019 Solution Key_CK-12 Calculus Flexbook

    1/286

  • 8/10/2019 Solution Key_CK-12 Calculus Flexbook

    2/286

    CK-12 Calculus, Solution Key

    CK-12 Foundation

    Say Thanks to the Authors

    Click http://www.ck12.org/saythanks(No sign in required)

    http://www.ck12.org/saythankshttp://www.ck12.org/saythanks
  • 8/10/2019 Solution Key_CK-12 Calculus Flexbook

    3/286

  • 8/10/2019 Solution Key_CK-12 Calculus Flexbook

    4/286

    Contents www.ck12.org

    Contents

    1 Functions, Limits, and Continuity, Solution Key 1

    1.1 Equations and Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

    1.2 Relations and Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

    1.3 Models and Data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

    1.4 The Calculus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

    1.5 Finding Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

    1.6 Evaluating Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

    1.7 Continuity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

    1.8 Infinite Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

    2 Derivatives, Solution Key 31

    2.1 Tangent Lines and Rates of change . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

    2.2 The Derivative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

    2.3 Techniques of Differentiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

    2.4 Derivatives of Trigonometric Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

    2.5 The Chain Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

    2.6 Implicit Differentiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

    2.7 Linearization and Newtons Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

    3 Applications of Derivatives, Solution Key 67

    3.1 Related Rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 683.2 Extrema and the Mean Value Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

    3.3 The First Derivative Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

    3.4 The Second Derivative Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

    3.5 Limits at Infinity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

    3.6 Analyzing the Graph of a Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

    3.7 Optimization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

    3.8 Approximation Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

    4 Integration, Solution Key 129

    4.1 Indefinite Integrals Calculus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

    4.2 The Initial Value Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

    4.3 The Area Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

    4.4 Definite Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

    4.5 Evaluating Definite Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

    4.6 The Fundamental Theorem of Calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

    4.7 Integration by Substitution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

    4.8 Numerical Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

    5 Applications of Definite Integrals, Solution Key 164

    5.1 Area Between Two Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

    5.2 Volumes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

    iv

    http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/
  • 8/10/2019 Solution Key_CK-12 Calculus Flexbook

    5/286

    www.ck12.org Contents

    5.3 The Length of a Plane Curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

    5.4 Area of a Surface of a Revolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

    5.5 Applications from Physics, Engineering, and Statistics. . . . . . . . . . . . . . . . . . . . . . . 193

    6 Transcendental Functions, Solution Key 198

    6.1 Inverse Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

    6.2 Exponential and Logarithmic Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

    6.3 Differentiation and Integration of Logarithmic and Exponential Functions . . . . . . . . . . . . 2066.4 Exponential Growth and Decay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

    6.5 Derivatives and Integrals Involving Inverse Trigonometric Functions . . . . . . . . . . . . . . . 213

    6.6 LHospitals Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

    7 Integration Techniques, Solution Key 219

    7.1 Integration by Substitution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220

    7.2 Integration by Parts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

    7.3 Integration by Partial Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

    7.4 Trigonometric Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234

    7.5 Trigonometric Substitutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239

    7.6 Improper Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245

    7.7 Ordinary Differential Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248

    8 Infinite Series, Solution Key 254

    8.1 Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255

    8.2 Infinite Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259

    8.3 Series Without Negative Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261

    8.4 Series With Odd or Even Negative Terms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262

    8.5 Ratio Test, Root Test, and Summary of Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264

    8.6 Power Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267

    8.7 Taylor and Maclaurin Series. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271

    8.8 Calculations with Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278

    v

    http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/
  • 8/10/2019 Solution Key_CK-12 Calculus Flexbook

    6/286

    www.ck12.org Chapter 1. Functions, Limits, and Continuity, Solution Key

    CHAPTER 1 Functions, Limits, andContinuity, Solution Key

    Chapter Outline

    1.1 EQUATIONS ANDGRAPHS

    1.2 RELATIONS ANDFUNCTIONS

    1.3 MODELS AND DATA

    1.4 THE C ALCULUS

    1.5 FINDINGLIMITS

    1.6 EVALUATINGLIMITS

    1.7 CONTINUITY

    1.8 INFINITELIMITS

    1

    http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/
  • 8/10/2019 Solution Key_CK-12 Calculus Flexbook

    7/286

    1.1. Equations and Graphs www.ck12.org

    1.1 Equations and Graphs

    1. Letx=1. Then find the correspondingy.

    2x3y=52 (1)3y=5

    23y=53y=523y=3

    y= 1

    (1,1)is one solution.

    Letx=4. Then find the correspondingy.

    2x3y=52 (4)3y=5

    83y=53y= 3

    y=1

    (4,1)is another solution.

    To find thexintercept, lety=0 and solve forx.

    2x3y=52x3 (0) =5

    2x=5

    x=5

    2

    Thexintercept is

    52 ,0

    .

    To find thexintercept, letx=0 and solve fory.

    2x3y=52 (0)3y=5

    3y=5y= 5

    3

    Theyintercept is

    0,53

    .

    2

    http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/
  • 8/10/2019 Solution Key_CK-12 Calculus Flexbook

    8/286

    www.ck12.org Chapter 1. Functions, Limits, and Continuity, Solution Key

    The equation gives a linear relationship betweenxandy. Its graph can be sketched through any two solutions. There

    is no symmetry.

    2. Solve fory:

    3x2y=5

    y

    = 3x2

    +5

    y=3x25

    Ifx=1, theny=3 (1)25=35= 2. One solution is(1,2).Ifx= 1, theny=3 (1)25=35= 2. Another solution is(1,2).To find thexintercepts, lety=0.

    y=3x250=3x255=3x2

    5

    3= x2

    5

    3= x

    Thexintercepts are

    5

    3,0

    .

    To find theyintercept, letx=0.

    y=3 (0)25y= 5

    Theyintercept is(0,5).The graph is a parabola with a= 3,b=0, and c= 5. It is symmetric with respect to x = b2a =0, which is theyaxis.3. Use a graphing calculator. Enter the relationship on the Y=menu. Look at the table of points. There are manysolutions, such as (2,6) and (2,6). The xintercepts are(0,0) , (1,0) ,(1,0). The yintercept is(0,0). Byinspection, the graph is symmetric about the origin.

    4. Use a graphing calculator. Enter the relationship on the Y=menu. Look at the table of points. There are manysolutions, such as (2,0) and (1,6). The xintercepts are (0,0) ,(3,0) ,(2,0). The yintercept is (0,0). Byinspection, the graph has no symmetry.

    5. The best answer is b. Even though the values of both cars are falling, the value of the BMW is always greater

    than that of the Chevy for any value oft.

    6. Graph c is the best representation because you would expect a decline as soon as you bought the car and you

    would expect that the value would decline more gradually after the initial drop.

    7. a. Let represent the length of the pool and let w represent the width of the pool. Then A (w) = l w=(w + 25) w=w2 + 25w.

    3

    http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/
  • 8/10/2019 Solution Key_CK-12 Calculus Flexbook

    9/286

    1.1. Equations and Graphs www.ck12.org

    b.

    264=w2 + 25w

    0=w2 + 25w + 264

    0= (w + 33) (w8)0=w + 33 or 0=w8

    33=w or 8=wThe width is 8 yards. The length is 8 + 25=33 yards.

    8. The rate of change will be 8,50018,00020082004 =

    9,5004

    = 2,375. Since the rate of depreciation is constant, the formulafor the changing value of the car is linear. Because at time 0, the value of the car is $18,000, theyintercept of theformula is 18,000. The formula isy= 2,375x + 18,000.9. The formula for the changing value of the car is y=2,375x + 18,000. Whenx=7,y= 2,375 (7) + 18,000=16,625 + 18,000=$1,375.10. A linear model may not be the best function to model depreciation because the graph of the function decreases

    as time increases; hence at some point the value will take on negative real number values, an impossible situation

    for the value of real goods and products.

    4

    http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/
  • 8/10/2019 Solution Key_CK-12 Calculus Flexbook

    10/286

    www.ck12.org Chapter 1. Functions, Limits, and Continuity, Solution Key

    1.2 Relations and Functions

    1. Apply the vertical line test to the graph of the relationship shown. The graph gives a function. The domain is the

    set of all real numbers, or(,). The range is {2 y 2}.2. A vertical line can cross the graph in more than one place. The graph is not a function.

    3. The function is a rational function. Set the denominator=0 and solve for x.

    x21=0(x1) (x + 1) =0

    x=1 or x= 1

    The domain is {x = 1,1}. Graph the function on your graphing calculator.

    The range is {y>3}{y

  • 8/10/2019 Solution Key_CK-12 Calculus Flexbook

    11/286

    1.2. Relations and Functions www.ck12.org

    7. This function is the basic function f(x) = 1x

    shifted 2 units right and 3 units up and then flipped.

    8. f(x) = x2 + 3= (x + 2) + 3. This function is the basic function f(x) = x. Note that there is a

    negative sign in front of thex.The new function becomes f(x) =xand the graph of this function is a reflection

    of f(x) =

    xaround theyaxis. Then the function is shifted 2 units left and 3 units up. It is then flipped upsidedown.

    6

    http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/
  • 8/10/2019 Solution Key_CK-12 Calculus Flexbook

    12/286

    www.ck12.org Chapter 1. Functions, Limits, and Continuity, Solution Key

    9. (f o g) (x) = f(g (x)) = 3x+ 2; (go f) (x) =g (f(x)) = 3x + 210. (f o g) (x) = f(g (x)) =

    x2

    =x; (go f) (x) =g (f(x)) =

    x2 =x

    7

    http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/
  • 8/10/2019 Solution Key_CK-12 Calculus Flexbook

    13/286

    1.3. Models and Data www.ck12.org

    1.3 Models and Data

    1. a.

    b. Based on the plot, I will use linear regression.

    c. Use the graphing calculator to find the line of best fit.

    Rounding to the nearest ten-thousandth, the line of best fit has the equationy=3.1335x + 0.3296.

    d. The equation is a model of the formula for the circumference of a circle: C= d. The slopem is an estimate of. They

    interceptb should be 0 but due to measurement errors, it is not 0.

    2. a.

    b. Use the graphing calculator to find the line of best fit.

    Rounding, the line of best fit has the equationy=0.120547x39.0465.d. Letx=700 (number of thousands in 700,000 ). Then

    8

    http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/
  • 8/10/2019 Solution Key_CK-12 Calculus Flexbook

    14/286

    www.ck12.org Chapter 1. Functions, Limits, and Continuity, Solution Key

    y=0.120547x39.0465=0.125047 (700)39.0465=45.34

    Since we cant have a fractional part of the number of manatees, round up to 46. About 46 manatees will be killed

    in the year 2000.

    3. a.

    b. Use the graphing calculator to find the line of best fit.

    Rounding, the line of best fit has the equationy=2.0132x0.2624.The slopemof the line of best fit is close to 2. The model is certainly shows that twice the measurement of the wrist,

    x, is the measurement of the neck,y.

    c. Letx=52. Then

    y=2.0132 (52)0.2624=0.125047 (700)39.0465=104.12

    4. a.

    b. Based on the sketch, a quadratic model could be used.

    c. Use the graphing calculator to find the quadratic model.

    9

    http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/
  • 8/10/2019 Solution Key_CK-12 Calculus Flexbook

    15/286

    1.3. Models and Data www.ck12.org

    The model isy=0.0194x20.29696x + 37.7636.d. The model might dip and then grow because the first wave of women into the workforce tended to take whatever

    jobs they could find without regard to salary.

    5. Lety=100. Then solve the equation below forx:

    100=0.0194x20.29696x + 37.76360=0.0194x20.29696x62.2364

    x=b b24ac

    2a

    x=0.29696

    (0.29696)24 (0.0194) (62.2364)

    2 (0.0194)

    x=0.29696 4.9177298816

    0.0388

    x=0.29696 + 2.2175944180

    0.0388 or x=

    0.296962.21759441800.0388

    Because we need a positive solution (for the number of years ), the solution isx= 0.29696+2.21759441800.0388 =64.808.

    Based on the model, women will make as much as men 64 years after 1960 or 1960 +64 = 2024. It could be realistic.

    6. a.

    b. Based on the sketch, use a cubic model.

    c.

    10

    http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/
  • 8/10/2019 Solution Key_CK-12 Calculus Flexbook

    16/286

    www.ck12.org Chapter 1. Functions, Limits, and Continuity, Solution Key

    The cubic model is y=0.00031x30.01614x2 + 0.257394x + 1.19651273.d. The year 1975 is year 1. The year 2012 is year 37 in the data. Let x=37.

    Then

    y=0.00031 (37)3

    0.01614 (37)2 + 0.257394 (37) + 1.19651273

    =4.33

    The price of gas could be $4.33 in 2012.

    7. Use the graphing calculator to find the linear model.

    The best linear model is y=0.051627x + 1.54389.

    For the year 2012, let x=37 again.

    y=0.051627x + 1.54389

    =0.051627 (37) + 1.54389

    =$3.45

    This models predicts the price per gallon of gas to be $3.45. It is hard to say which model works best.

    8. a. Use the graphing calculator to make a scatter plot and find the exponential model.

    Rounding, the exponential model is y=1,000 (1.1275)x.b. The earnings triple wheny=$3,000.

    Solve the equation 3,000=1,000 (1.1275)x forx.

    11

    http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/
  • 8/10/2019 Solution Key_CK-12 Calculus Flexbook

    17/286

    1.3. Models and Data www.ck12.org

    3,000

    1,000=

    1,000 (1.1275)x1,000

    3= (1.1275)x

    ln (3) =ln (1.1275)x

    ln (3) =xln (1.1275)

    ln (3)ln (1.1275)

    =xln (1.1275)

    ln (1.1275)

    9.15=x

    It will take a little more than 9 years for the earnings to triple.

    9. a. y =3,000 (1.1275)x

    b. The earnings triple wheny=$9,000. Solve the equation 9,000=3,000 (1.1275)x.

    9,000

    3,000 =

    3,000

    (1.1275)x

    3,000

    3= (1.1275)x

    9.15=x

    The equation reduced to the same equation as in Exericse 8. The solution is the same. It will take a little more than

    9 years for the earnings to triple.

    10. a. Use the graphing calculator to make the scatter plot.

    b. Use the graphing calculator to find the sine model of the data.

    The sine model isy=29.452706sin (0.520555x1.62865) + 51.827236.

    12

    http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/
  • 8/10/2019 Solution Key_CK-12 Calculus Flexbook

    18/286

    www.ck12.org Chapter 1. Functions, Limits, and Continuity, Solution Key

    1.4 The Calculus

    1. a. The formula for slope of the tangent line for f(x) =x2 atx=3 ism= x232

    x3 = x29x3 =

    (x3)(x+3)x3 =x + 3.

    Px,x2

    m=x + 1

    P (2.9,8.41) 2.9 + 3=5.9

    P (2.95,8.7025) 2.95 + 3=5.95

    P (2.975,8.850625) 2.975 + 3=5.975

    P (2.995,8.970025) 2.995 + 3=5.995

    P (2.999,8.994001) 2.999 + 3=5.999

    b. The sequence of slopes are approaching m=6.2. a. Draw tangent lines on the graph of f(x) =x2. The slope of the tangent line is negative forx

  • 8/10/2019 Solution Key_CK-12 Calculus Flexbook

    19/286

    1.4. The Calculus www.ck12.org

    The tangent lines have slopes of 0 whenx=0.57 andx= 0.57.c. Using the graph, the tangent line appear to have positive slope forx0.57.d. Using the graph, the tangent line appear to have negative slope for 0.57

  • 8/10/2019 Solution Key_CK-12 Calculus Flexbook

    20/286

    www.ck12.org Chapter 1. Functions, Limits, and Continuity, Solution Key

    Each width is equal to 12

    . Call the rectanglesR1to R4.

    The areas are:

    R1=1

    2 f

    3

    2

    =

    1

    2 9

    4=

    9

    8

    R2=1

    2 f(2) = 1

    24=2

    R3=1

    2 f

    5

    2

    =

    1

    2 25

    4 =

    25

    8

    R4= 12 f(3) = 1

    29= 9

    2

    The approximation under the curve isR1+R2+R3+R4= 98+ 2 +

    258 +

    92 = 10.75.

    b. Divide the area under the curve from x=1 tox=3 in eight equal rectangles.

    15

    http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/
  • 8/10/2019 Solution Key_CK-12 Calculus Flexbook

    21/286

    1.4. The Calculus www.ck12.org

    Each width is equal to 14

    . Call the rectanglesR1to R8.

    The areas are:

    R1=1

    4 f

    5

    4

    =

    1

    4 25

    16=

    25

    64

    R2=1

    4 f

    3

    2

    =

    1

    4 9

    4=

    9

    16

    R3=1

    4 f

    7

    4

    =

    1

    4 49

    16=

    49

    64

    R4=1

    4 f(2) = 1

    44=1

    R5=1

    4 f

    9

    4 =1

    4 81

    16=

    81

    64

    R6=1

    4 f

    5

    2

    =

    1

    4 25

    4 =

    25

    16

    R7=1

    4 f

    11

    4

    =

    1

    4 121

    16 =

    121

    64

    R8=1

    4 f(3) = 1

    49= 9

    4

    The approximation of the area under the curve isR1+R2+R3+R4+R5+R6+R7+R8=9.6875.

    c.

    16

    http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/
  • 8/10/2019 Solution Key_CK-12 Calculus Flexbook

    22/286

    www.ck12.org Chapter 1. Functions, Limits, and Continuity, Solution Key

    Each width is equal to 12

    . Call the rectanglesR1to R4.

    The midpoint ofR1is 1+ 32

    2 =52

    2 = 54

    . The midpoint ofR2is32 +2

    2 =72

    2 = 74

    . The midpoint ofR3is 2+ 52

    2 =92

    2 = 94

    . The

    midpoint ofR4is52 +3

    2 =

    112

    2 = 11

    4.

    The areas are:

    R1=1

    2 f

    5

    4

    =

    1

    2 25

    16=

    25

    32

    R2=1

    2 f

    7

    4

    =

    1

    2 49

    16=

    49

    32

    R3=1

    2 f9

    4 = 1

    2 81

    16

    =81

    32

    R4=1

    2 f

    11

    4

    =

    1

    2 121

    16 =

    121

    32

    The approximation of the area under the curve isR1+R2+R3+R4= 2532+

    4932+

    8132+

    12132 =8.625.

    6. a.

    17

    http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/
  • 8/10/2019 Solution Key_CK-12 Calculus Flexbook

    23/286

    1.4. The Calculus www.ck12.org

    Each width is equal to 14

    . Call the rectanglesR1to R4.

    The areas are:

    R1=1

    4 f

    1

    4

    =

    1

    4

    14

    3+ 4

    1

    4

    =

    1

    4 1

    64+ 1

    =

    63

    256

    R2=1

    4 f

    1

    2

    =

    1

    4

    12

    3+ 4

    1

    2

    =

    1

    41

    8+ 2

    =

    15

    32

    R3=1

    4 f

    3

    4 =1

    4

    3

    43

    + 43

    4 =1

    4

    37

    64+ 3 =

    155

    256

    R4=1

    4 f(1) = 1

    4

    (1)3 + 4 (1)

    =1

    4 (1 + 4) = 3

    4

    The approximation of the area under the curve isR1+R2+R3+R4= 63256+

    1532+

    155256+

    34=2.07.

    b. The area from x= 1 to x=0 is below thexaxis. We are not finding area under a curve but the are between thecurve and thexaxis. The area fromx = 1 tox =0 is below the xaxis is symmetric to the area under the curvefromx=0 tox=1.

    7. The length of the interval is 40=4. Divide 4 by 6 to get that the length of each sub-interval is of length 46 = 23 .

    18

    http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/
  • 8/10/2019 Solution Key_CK-12 Calculus Flexbook

    24/286

    www.ck12.org Chapter 1. Functions, Limits, and Continuity, Solution Key

    Call the rectanglesR1to R6.

    The areas are:

    R1=1

    6 f

    2

    3

    =

    1

    6

    2

    3=0.136

    R2=

    1

    6 f43 = 16 43 =0.192R3=

    1

    6 f(2) = 1

    6

    2=0.236

    R4=1

    6 f

    8

    3

    =

    1

    6

    8

    3=0.272

    R3=1

    6 f

    10

    3

    =

    1

    6

    10

    3 =0.304

    R3=1

    6 f(4) = 1

    62=0.333

    The approximation of the area under the curve is R1+R2+R3+R4+R5+R6= 0.136 + 0.192 + 0.236 + 0.272 +0.304 + 0.333=1.473.

    8. The average velocity of a falling object from t= ato t=bis given by s(b)s(a)ba =

    4.9b24.9a2ba . Simplifying, we get

    the average velocity is 4.9(b2a2)

    ba = 4.9(ba)(b+a)

    ba =4.9 (b + a).

    Make a sequence of values ofx that get closer tob=4 and find the average velocity between eachx and 4.

    x average velocity =4.9 (4 +x)

    3.9 4.9 (4 + 3.9) =4.9 (7.9) =38.71

    3.95 4.9 (4 + 3.95) =4.9 (7.95) =38.955

    3.99 4.9 (4 + 3.99) =4.9 (7.99) =39.151

    3.999 4.9 (4 + 3.999) =4.9 (7.999) =39.1951

    3.9999 4.9 (4 + 3.9999) =4.9 (7.9999) =39.19951

    The velocity of the ball after 4 seconds is 39.2 m/sec.

    19

    http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/
  • 8/10/2019 Solution Key_CK-12 Calculus Flexbook

    25/286

  • 8/10/2019 Solution Key_CK-12 Calculus Flexbook

    26/286

    www.ck12.org Chapter 1. Functions, Limits, and Continuity, Solution Key

    limx4

    3x33x =180b.

    limx4

    3x33x

    = 180

    c.

    limx0

    3x33x =0d.

    The function values are the same as the limits because the function is defined at those values.

    4. a. limx3 f(x) =1.5 because f(3) =1.5.

    b. limx2 f(x) =0 because f(2) =0.

    c. limx1 f(x) =2 because f(1) =2.

    21

    http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/
  • 8/10/2019 Solution Key_CK-12 Calculus Flexbook

    27/286

    1.5. Finding Limits www.ck12.org

    d. limx4 f(x)does not exist because the right-hand limit and the left-hand limit are not the same.

    5. a. limx2 f(x) =0 because f(2) =0.

    b. limx0 f(x)because the function is not defined at x=0.

    c. limx4 f(x)is a number close to 1 but less than 1 because of the horizontal asymptote ofy=1.

    d. limx50 f(x)is a number close to 1 but less than 1 because of the horizontal asymptote ofy=1.

    6. Use a graphing calculator to make a table of values to find the limit.

    The limit exists and limx2x2 + 3

    =7

    7.

    The limit exists and limx1 x+1x21 = 0.5. (Note: you will get an error if you try to find f(1)directly. The limitof values of both sides are approaching 0.5, but the function is not defined at x= 1.8.

    The limit exists and limx22x + 5=1.

    9.

    The limit exists and limx2x2 + 3x

    =28.

    10.

    22

    http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/
  • 8/10/2019 Solution Key_CK-12 Calculus Flexbook

    28/286

    www.ck12.org Chapter 1. Functions, Limits, and Continuity, Solution Key

    The limit does not exist. Note that there is a break in the graph whenx= 1.

    23

    http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/
  • 8/10/2019 Solution Key_CK-12 Calculus Flexbook

    29/286

    1.6. Evaluating Limits www.ck12.org

    1.6 Evaluating Limits

    1. limx2x23x + 4

    =223 (2) + 4=46 + 4=2

    2. limx4 x2

    16x4 =limx4 (x4)(x+4)x4 =limx4(x + 4) =4 + 4=8

    3. limx4

    x2x4 =limx4

    x2

    x2

    x+2 =limx4 1

    x+2= 1

    4+2= 12+2 =

    14

    4. The rational function x2x+1 cannot be simplified. Use a graphing calculator to view the graph and you will see that

    limx1 x2x+1 does not exist.

    5. limx1 10x23x+1 = 10(1)2

    3(1)+1 =1023+1 =

    122 =6

    6.

    limx

    1

    x + 32

    x1 =lim

    x

    1

    x + 32

    x1

    x + 3 + 2

    x + 3 + 2=lim

    x1(x + 3)2x + 3 + 2x + 34

    (x1)x + 3 + 2=lim

    x1x + 34

    (x1)x + 3 + 2 = limx1 x1(x1)x + 3 + 2=lim

    x11

    x + 3 + 2

    = 11 + 3 + 2

    = 1

    4 + 2=

    1

    2 + 2=

    1

    4

    7.

    limx5

    x225x3125 = limx5

    (x5) (x + 5)(x5) (x2 + 5x + 25)

    =limx5

    x + 5

    x2 + 5x + 25=

    5 + 5

    52 + 5 (5) + 25=

    10

    75=

    2

    15

    8. limx1(g o f(x)) =limx1 g (f(x)) =limx1 g

    1x+1

    The function f(x) = 1

    x+1 is not defined atx=1, which meansg

    1x+1

    is not defined there. Thus, limx1 g (f(x))

    does not exist.

    9. Use the Squeeze Theorem.

    limx5

    (5x11) limx5

    f(x) limx5

    x24x + 9

    5 (5)11 limx5

    f(x) 524 (5) + 914 lim

    x5f(x) 14

    Thus, limx5 f(x) =14, too.

    24

    http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/
  • 8/10/2019 Solution Key_CK-12 Calculus Flexbook

    30/286

    www.ck12.org Chapter 1. Functions, Limits, and Continuity, Solution Key

    10. The function sin

    1x

    is bounded below by x4 and bounded above by x4.

    First, use the Squeeze Theorem:

    limx0

    x4 limx0

    sin

    1

    x

    lim

    x0x4

    04

    limx0 sin1x 040 lim

    x0sin

    1

    x

    0

    Thus, limx0 sin

    1x

    =0. Then limx0x4 sin

    1x

    =limx0x4 limx0 sin

    1x

    =00=0.

    25

    http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/
  • 8/10/2019 Solution Key_CK-12 Calculus Flexbook

    31/286

    1.7. Continuity www.ck12.org

    1.7 Continuity

    1.

    The function has a break atx= 1. It is continuous everywhere except for x= 1.2.

    The function has a break atx= 2. It is continuous everywhere except for x= 2.3.

    limx0+

    x

    1 + x1 = limx0+

    x1 + x1

    1 +

    x + 1

    1 + x + 1

    = limx0+

    x

    1 +

    x + 1

    1 +

    x1

    = limx0+

    x

    1 +

    x + 1

    x

    = limx0+

    1 +

    x + 1

    = 1 +

    10 + 1

    =1 + 1=2

    4.

    limx2

    x38|x2|(x2)= limx2

    x38(x2) (x2)

    = limx2

    (x2)x2 + 2x + 4(x2) (x2)

    = limx2

    x2 + 2x + 4

    x + 2

    26

    http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/
  • 8/10/2019 Solution Key_CK-12 Calculus Flexbook

    32/286

    www.ck12.org Chapter 1. Functions, Limits, and Continuity, Solution Key

    x y= x38|x2|(x2)

    1.99 1194.08

    1.999 11,994

    1.9999 119,994

    limx2

    x38|x2|(x2)=

    5. Forx>1,|x1|=x1. Then limx1+ 2x|x1|(x1) =limx1+ 2x(x1)

    (x1) =limx1+2x=2.

    6. Forx>2, |x + 2|=x + 2. Then

    limx2+ |x + 2

    |+x + 2

    |x + 2|x2 = limx2+(x + 2) +x + 2

    (x + 2)x2

    7. f(2) = (2)3 + 2 (2)2 (2) + 1= 8 + 8 + 2 + 1=3f(3) = (3)3 + 2 (3)2 (3) + 1= 27 + 18 + 3 + 1= 5By the Intermediate Value Theorem, there is an xvaluec with f(c) =0.8. f(9) =

    9 3

    91= 0.08

    f(10) =

    10 3

    101=0.008By the Intermediate Value Theorem, there is an xvaluec with f(c) =0.

    9. The valuex =a is considered a maximum because it is a high point in the graph and the graph turns back down.Because it is not the highest point in the interval,x=ais called a relative maximum. The value x=cis a maximumof the interval and is the absolute maximum because it is the highest maximum The value x=bis a minimum of theinterval and is, in fact, an absolute minimum of the interval because it is the lowest value of the interval. The value

    x=dis neither a maximum nor a minimum.

    10. [Note: I think that this question should be replaced with an easier question - see comments on pdf file.]

    27

    http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/
  • 8/10/2019 Solution Key_CK-12 Calculus Flexbook

    33/286

    1.8. Infinite Limits www.ck12.org

    1.8 Infinite Limits

    1.

    x f(x) = (x + 2)2

    (x2)213.01 1248.76

    3.001 12498.75

    3.0001 124998.75

    limx

    3+

    (x + 2)2

    (x2)2

    1= +

    2.

    limx

    (x + 2)2

    (x2)21 = limxx2 + 4x + 4

    x24x + 41

    = limx

    x2 + 4x + 4

    x24x + 3

    = limx

    x2

    x2+ 4x

    x2+ 4

    x2

    x2

    x2 4x

    x2+ 3

    x2

    = limx1 + 4

    x+ 4

    x2

    1 4x

    + 3x2

    =1 + 0 + 0

    10 + 0=1

    3.

    x f(x) = (x + 2)2

    (x2)21

    1.01 455.281.001 4505.251.0001 45,005.25

    limx1+

    (x + 2)2

    (x2)21 =

    4. limx 2x1x+1 =limx2xx 1

    xxx

    + 1x

    =limx2 1

    x

    1+ 1x

    = 201+0 = 2

    28

    http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/
  • 8/10/2019 Solution Key_CK-12 Calculus Flexbook

    34/286

    www.ck12.org Chapter 1. Functions, Limits, and Continuity, Solution Key

    5. limx x5+3x4+1

    x31 =limxx5

    x5 3x4

    x5 + 1

    x5

    x3

    x5+ 1

    x5

    =limx1+ 3

    x4+ 1

    x51

    x2+ 1

    x5

    The limit of the denominator is 0, so this is an indeterminate form. We can argue the limit in this way: the numerator

    approaches 1 asx goes to . The denominator approaches 0 and is a positive quantity because 1x2> 1

    x5. The ratio

    1+ 3x4

    + 1x5

    1

    x2+ 1

    x5

    is a positive quantity that increases without bound because 1 divided by a very small positive number is a

    large positive number.

    Thus, limx x5+3x4+1x31 = .

    6.

    limx

    3x42x2 + 3x + 12x42x2 = limx

    3x4

    x4 2x2

    x4 + 3x

    x4+ 1

    x4

    2x4

    x4 2x2

    x4

    = limx

    3 2x2

    + 3x3

    + 1x4

    2 + 2x2

    =30 + 0 + 0

    2 + 0 =

    3

    2

    7.

    limx

    2x3x + 3x52x3 + 2x3 = limx

    2x3

    x5 x

    x5+ 3

    x5

    x5

    x5 2x3

    x5 + 2x

    x5 3

    x5

    = limx

    2x2 1

    x4+ 3

    x5

    1 2x2

    + 2x4 3

    x5

    = 00 + 010 + 00 =0

    8. Zero: Set numerator=0.

    (x + 4)2 =0

    x + 4=0

    x= 4

    Vertical asymptotes: Set denominator=0.

    (x4)21=0x28x + 161=0

    x28x + 15=0(x5) (x3) =0

    x=5 or x=3

    The vertical asymptotes arex=5 orx=3.

    End behavior:

    29

    http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/
  • 8/10/2019 Solution Key_CK-12 Calculus Flexbook

    35/286

    1.8. Infinite Limits www.ck12.org

    limx

    (x + 4)2

    (x4)21 = limxx2 + 8x + 16

    x28x + 15

    = limx

    x2

    x2+ 8x

    x2+ 16

    x2

    x2

    x2 8x

    x2+ 15

    x2

    = limx 1 +

    8

    x+16

    x2

    1 8x

    + 15x2

    = 1 + 0 + 01 + 0 + 0

    = 1

    limx

    (x + 4)2

    (x4)21 = limx

    x2 + 8x + 16

    x28x + 15

    = limx

    x2

    x2+ 8x

    x2+ 16

    x2

    x2

    x2 8x

    x2+ 15

    x2

    = limx

    1 + 8x

    + 16x2

    1

    8

    x

    + 15

    x2

    =1 + 0 + 0

    1 + 0 + 0=1

    9. Zero:

    There are no vertical asymptotes.

    limx

    3x3x2 + 2x + 2 = lim

    x3x3x2 + 2x + 2 =

    10. 2x28

    x+2

    = 2(x24)

    x+2

    = 2(x2)(x+2)x+2

    =2 (x

    2)

    Zero:

    2 (x2) =0x2=0

    x=2

    There are no vertical asymptotes. There is a discontinuity at x= 2.

    limx

    2x28x + 2

    = limx

    [2 (x

    2)] =

    limx

    2x28x + 2

    = limx [2 (x2)] =

    30

    http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/
  • 8/10/2019 Solution Key_CK-12 Calculus Flexbook

    36/286

    www.ck12.org Chapter 2. Derivatives, Solution Key

    CHAPTER 2 Derivatives, Solution KeyChapter Outline

    2.1 TANGENTL INES ANDRATES OF CHANGE

    2.2 THE D ERIVATIVE

    2.3 TECHNIQUES OF DIFFERENTIATION

    2.4 DERIVATIVES OF TRIGONOMETRIC FUNCTIONS

    2.5 THE C HAINR UL E

    2.6 IMPLICIT DIFFERENTIATION

    2.7 LINEARIZATION ANDNEWTONS METHOD

    31

    http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/
  • 8/10/2019 Solution Key_CK-12 Calculus Flexbook

    37/286

    2.1. Tangent Lines and Rates of change www.ck12.org

    2.1 Tangent Lines and Rates of change

    1. a. Lety= f(x). Forx0=3, f(x) = 12x2 = 12(3)

    2 = 92 and forx0=4, f(4) = 12x2 = 12(4)

    2 = 162 =8.

    The average rate of change ofy with respect to x over[3,4]is msec= f(x1)f(x0)

    x1x0 = f(3)f(1)

    31 = 8 92

    43 =72

    1 = 72

    .

    b. First, find f (x).

    f (x0) = limh0

    f(x0+ h) f(x0)h

    =limh0

    12(x0+ h)

    2 12x0

    h

    =limh0

    12x20+ 2hx0+ h

    2 12x0

    h

    =limh02hx0+ h

    2

    h

    =limh0

    h (2x0+ h)

    h

    =limh0

    (2x0+ h)

    =2x0

    The instantaneous rate of change ofy= f(x)with respect tox at x0=3 is f (3) =2x0=2 (3) =6.

    c. The slope of the tangent line at x1=4 is f (4) =2x0=2 (4) =8.

    d. The slope of the secant line between x0=3 andx1=4 is the same as the average rate of change ofy with respect

    tox over the interval[3,4]. Thenmsec= f(x1)f(x0)

    x1x0 = 8 92

    43 =72

    1 = 72

    .

    e.

    32

    http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/
  • 8/10/2019 Solution Key_CK-12 Calculus Flexbook

    38/286

    www.ck12.org Chapter 2. Derivatives, Solution Key

    2. a. Lety= f(x). Forx0=2, f(2) = 12

    and forx0=3, f(3) = 13

    .

    The average rate of change ofy with respect to x over[2,3]is msec= f(x1)f(x0)

    x1x0 =13 1232 =

    26 36

    1 = 16 .b. First, find f (x).

    33

    http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/
  • 8/10/2019 Solution Key_CK-12 Calculus Flexbook

    39/286

  • 8/10/2019 Solution Key_CK-12 Calculus Flexbook

    40/286

    www.ck12.org Chapter 2. Derivatives, Solution Key

    3. The slope of the tangent line at a point x is f (x).

    f (x0) = limh0

    f(x0+ h) f(x0)h

    =limh0

    (x0+ h)2 + 1x20+ 1

    h

    =limh0

    x20+ 2x20h + h

    2 + 1x201h

    =limh0

    2x20h + h2

    h

    =limh0

    h2x20+ hh

    =limh0

    2x20+ h

    =2x20

    The slope of the tangent line at x0=6 is f (6) =2x20=2 (6) =12.

    4. a. Lety= f(x). Forx0=1, f(1) = 1

    1=1 and forx0=4, f(3) =

    13

    =

    3

    3 .

    The average rate of change ofy with respect tox over [1,3] is msec= f(x1)f(x0)

    x1x0 = f(3)f(1)

    31 =

    33 1

    2 =

    3

    3 1

    12

    =

    35

    http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/
  • 8/10/2019 Solution Key_CK-12 Calculus Flexbook

    41/286

    2.1. Tangent Lines and Rates of change www.ck12.org

    3

    6 12 .b.

    f (x0) = limh0

    f(x0+ h) f(x0)h

    =limh

    0

    1x0+h

    1x0

    h

    =limh0

    1x0+h

    1x0

    h

    x0+ h

    x0

    x0+ h

    x0

    =limh0

    (

    x0+h)(

    x0)(

    x0+h) (

    x0+h)(

    x0)

    x0

    h

    x0+ h

    x0

    =limh0

    x0

    x0+ h

    h

    x0+ h

    x0

    =limh0

    x0

    x0+ h

    h

    x0+ h

    x0

    x0+

    x0+ h

    x0+

    x0+ h=lim

    h0x0 (x0+ h)

    h

    x0+ h

    x0

    x0+

    x0+ h

    =limh0

    hh

    x0+ h

    x0

    x0+

    x0+ h

    =limh0

    1x0+ h

    x0

    x0+

    x0+ h

    = 1x0+ 0

    x0

    x0+

    x0+ 0

    = 1

    x0

    x0

    x0+

    x0= 1

    x0

    x0

    2

    x0

    = 12

    x03

    c. f (1) = 12

    13 = 12

    5. a. h (35) =4.9 (3.5)2 =6002.5 meters

    b.

    v= h (35)h (0)350

    =4.9 (35)24.9 (0)2

    35

    =4.9 (35)2

    35

    =4.9 (35)

    =171.5 m/sec

    c. Seth (t) =200 and solve for the numbers of minutestthat pass for the rocket to travel 200 meters.

    36

    http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/
  • 8/10/2019 Solution Key_CK-12 Calculus Flexbook

    42/286

    www.ck12.org Chapter 2. Derivatives, Solution Key

    200=4.9t2

    200

    4.9 = t2

    40.82= t2

    6.39= t2

    Next, find the average velocity:

    v=200h (0)

    6.390=

    2004.9 (0)26.39

    = 200

    6.39

    =31.3 m/sec

    d. Writeh (t) = f(t)do avoid confusingh (t)withh in the formula for the instantaneous rate of change.

    f (t0) = limh0

    f(t0+ h) f(t0)h

    =limh0

    4.9 (t0+ h)24.9t20

    h

    =lim

    h0

    4.9

    t20+ 2ht0+ h

    2

    4.9t20

    h

    =limh0

    4.9t20+ 9.8hx0+ 4.9h24.9t20

    h

    =limh0

    9.8ht0+ 4.9h

    h

    =limh0

    4.9h (2x0+ 1)

    h

    =limh0

    4.9 (2t0+ 1)

    =9.8t0

    Rewrite the formula with h (t): h (t) =9.8t0. Thenh (35) =9.8 (35) =343 m/sec.6. a.

    v= (2)(0)

    20=

    9.9 (2)39.9 (0)320

    =79.2

    2

    =39.6 nanometers/nanosecond

    37

    http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/
  • 8/10/2019 Solution Key_CK-12 Calculus Flexbook

    43/286

    2.1. Tangent Lines and Rates of change www.ck12.org

    b.

    (t0) = lim

    h0(t0+ h)(t0)

    h

    =limh0

    9.9 (t0+ h)39.9t30

    h

    =limh0

    9.9t30+ 3t

    20 h + 3t0h

    2 + h39.9t30

    h

    =limh0

    9.9t30+ 29.7t20 h + 29.7t0h

    2 + 9.9h39.9t30h

    =limh0

    29.7t20 h + 29.7t0h2 + 9.9h3

    h

    =limh0

    9.9h

    3t20+ 3t0h + h2

    h

    =limh0

    9.9

    3t20+ 3t0h + h

    =29.7t20

    The instantaneous velocity att0=2 is (2) =29.7 (2)2 =118.8 nanometers/nanosecond.

    38

    http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/
  • 8/10/2019 Solution Key_CK-12 Calculus Flexbook

    44/286

    www.ck12.org Chapter 2. Derivatives, Solution Key

    2.2 The Derivative

    1.

    f (x) = limh0

    f(x + h) f(x)h

    =limh

    0

    6 (x + h)26x2h

    =limh0

    6x2 + 2xh + h2

    6x2h

    =limh0

    6x2 + 12xh + 6h26x2h

    =limh0

    12xh + 6h2

    h

    =limh0

    6h (2x + h)

    h

    =limh0

    6 (2x + h)

    =6

    (2x

    )=12x

    Whenx0=3, y= f(3) =6 (3)2 =54. The slope of the tangent line is m= f (3) =12 (3) =36. Then the equation

    of the tangent line atx=3 is

    yy0=m (xx0)y54=36 (x3)y54=36x108

    y=36x54

    39

    http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/
  • 8/10/2019 Solution Key_CK-12 Calculus Flexbook

    45/286

    2.2. The Derivative www.ck12.org

    2.

    f (x) = limh0

    f(x + h) f(x)h

    =limh0

    x + h + 2 x + 2h

    =limh0

    x + h + 2 x + 2

    h

    x + h + 2 +

    x + 2

    x + h + 2 +

    x + 2

    =lim

    h0(x + h + 2) (x + 2)

    h

    x + h + 2 +

    x + 2

    =limh0

    x + h + 2x + 2h

    x + h + 2 +

    x + 2

    =limh0

    h

    hx + h + 2 + x + 2=lim

    h01

    x + h + 2 +

    x + 2

    = 1

    x + 2 +

    x + 2

    = 1

    2

    x + 2

    When x0= 8, y= f(8) = 8 + 2= 10. The slope of the tangent line is m = f (8) = 12

    8 + 2= 1

    2

    10. Then

    the equation of the tangent line atx=3 is

    yy0= m (xx0)y

    10=

    1

    2

    10

    (x8)

    y

    10= 1

    2

    10x 4

    10

    y= 1

    2

    10x 4

    10+

    10

    3.

    40

    http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/
  • 8/10/2019 Solution Key_CK-12 Calculus Flexbook

    46/286

    www.ck12.org Chapter 2. Derivatives, Solution Key

    f (x) = limh0

    f(x + h) f(x)h

    =limh0

    3 (x + h)32 3x32h

    =limh0

    3x3 + 3x2h + 3xh2 + h3

    23x3 + 2h

    =limh0

    3x3 + 9x2h + 9xh2 + 3h33x3h

    =limh0

    9x2h + 9xh2 + 3h3

    h

    =limh03h3x2 + 3xh + h2

    h

    =limh0

    3

    3x2 + 3xh + h2

    =9x2

    Whenx0= 1, y= f(1) =3 (1)3

    2= 5. The slope of the tangent line is m= f (1) =9 (1)2

    =9. Thenthe equation of the tangent line atx=3 is

    yy0=m (xx0)y

    (

    5) =9 (x

    (

    1))

    y + 5=9x + 6

    y=9x + 4

    4.

    41

    http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/
  • 8/10/2019 Solution Key_CK-12 Calculus Flexbook

    47/286

    2.2. The Derivative www.ck12.org

    f (x) = limh0

    f(x + h) f(x)h

    =limh0

    1x+h+2 1x+2

    h

    =limh0

    1(x+h+2)

    (x+2)(x+2) 1(x+2) (x+h+2)(x+h+2)

    h

    =limh0

    (x+2)(x+h+2)(x+h+2)(x+2)

    h

    =limh0

    x+2xh2(x+h+2)(x+2)

    h

    =limh0

    h(x+h+2)(x+2)

    h

    =limh0

    h(x + h + 2) (x + 2) h

    =limh0

    1(x + h + 2) (x + 2)

    = 1(x + 2) (x + 2)

    = 1(x + 2)2

    Whenx0= 1, y= f(1) = 1(x+2) = 11+2= 1. The slope of the tangent line ism= f (1) = 1(1+2)2 = 1

    12=

    1. Then the equation of the tangent line atx= 1 is

    yy0=m (xx0)y1= 1 (x (1))y1= x1

    y= x

    5.

    f (x) = limh0

    f(x + h) f(x)h

    =limh0

    a (x + h)2b ax2bh

    =limh0

    ax2 + 2x2h + h2bax

    2 + b

    h

    =limh0

    ax2 + 2axh + ah2ax2h

    =limh0

    2axh + ah2

    h

    =limh0

    ah

    2x + ah2

    h

    =limh0

    a

    2x + ah2

    =2ax

    42

    http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/
  • 8/10/2019 Solution Key_CK-12 Calculus Flexbook

    48/286

    www.ck12.org Chapter 2. Derivatives, Solution Key

    When x0= b, y= f(b) = ab2 b. The slope of the tangent line is m= f (b) =2ab. Then the equation of the

    tangent line atx= 1 is

    yy0=m (xx0)y ab2b =2ab (xb)

    yab2 + b=2abx2ab2y=2abxab2b

    6. To find the derivative of f(x) =x13 , we will use the relationship below. It shows that the difference of two numbers

    as a difference of cubes and then factor the difference of two cubes.

    ab=

    a13

    3

    b13

    3=

    a13 b 13

    a

    13

    2+ a

    13 b

    13 +

    b

    13

    2

    =

    a13 b 13

    a

    23 + a

    13 b

    13 + b

    23

    f (x) = lim

    h0f(x + h) f(x)

    h

    =limh0

    (x + h)13 (x) 13h

    =limh0

    (x + h) 13 (x) 13

    h

    (x + h) 23 + (x + h) 13 x 13+x 23

    (x + h)

    23 + (x + h)

    13 x

    13+x

    23

    =lim

    h0x + hx

    h

    (x + h)23 + (x + h)

    13 x

    13+x

    23

    =lim

    h0h

    h

    (x + h)23 + (x + h)

    13 x

    13+x

    23

    =lim

    h01

    h(x + h)23 + (x + h)

    13 x

    13+x

    23

    = 1

    x23+x

    13x

    13+x

    23

    = 1

    3x23

    whenx0=1, y= f(1) = (1)13 =1. The slope of the tangent line is m= f (1) = 1

    3(1)23

    = 13

    .

    Then the equation of the tangent line atx=1 is

    43

    http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/
  • 8/10/2019 Solution Key_CK-12 Calculus Flexbook

    49/286

    2.2. The Derivative www.ck12.org

    yy0=m (xx0)y1= 1

    3(x1)

    y1= 13

    x 13

    y= 13

    x 13

    + 1

    y=1

    3x +

    2

    3

    7. Use Exercise 5. For f(x) =5x22, a=5 andb= 2 and f (x) =2ax=25x=10x. Thus, dydx

    x=1

    =10 (1) =

    10.

    8. The function f(x) = 3

    xis continuous atx=0 because it satisfies these three conditions:

    1. f(0) = 30=0

    2. limx0+ 3

    x=0 and limx0 3

    x=0. Thus, limx0 3

    x=0.3. limx0 3

    x= f(0) =0.

    f(x)is not differentiable at x=0 because f (x) = 13x

    23

    is not defined forx=0.

    9. The function is continuous atx=1 because it satisfies these three conditions:

    1. f(1) =12 + 1=22. limx1 f(x) =limx1

    x2 + 1

    =1 + 1=2 and limx1+ f(x) =limx1+2x=2. Thus, limx1 f(x) =2.

    3. limx1 f(x) = f(1) =2.

    Forx =1, f(x) = x2 + 1, which gives a =1 and b =1. By Exercise 5, f (x) = 2abxfor x 1. Thus, f (x) = 2xand is defined atx=1.

    44

    http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/
  • 8/10/2019 Solution Key_CK-12 Calculus Flexbook

    50/286

    www.ck12.org Chapter 2. Derivatives, Solution Key

    10. Using the property that f(x +y) = f(x) +f(y) + 3xy,

    f(x) = f(x + 0) = f(x) +f(0) + 3x (0)

    f(x) = f(x + 0) = f(x) +f(0) + 0

    f(x) = f(x) +f(0)

    f(x) f(x) = f(0)0= f(0)

    Because fis differentiable, then we can find for all x:

    f(x) = lim

    h0f(x + h)

    f(x)

    h

    =limh0

    f(x) +f(h) + 3xh f(x)h

    =limh0

    f(h) + 3xh

    h

    =limh0

    f(h)

    h+lim

    h03xh

    h

    =4 +limh0

    3x

    =4 + 3x

    45

    http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/
  • 8/10/2019 Solution Key_CK-12 Calculus Flexbook

    51/286

    2.3. Techniques of Differentiation www.ck12.org

    2.3 Techniques of Differentiation

    1.

    y=5x7

    dy

    dx=5

    d

    dx

    x7

    =5

    7x71

    =35x6

    2.

    y=1

    2

    x32x2 + 1

    dy

    dx=

    1

    2

    d

    dx

    x32x2 + 1

    =1

    2

    d

    dx

    x3

    + d

    dx

    2x2+ ddx

    [1]

    =1

    2

    3x3122x21+ 0

    =1

    2 3x24x

    =3

    2x22x

    3.

    y=

    2x3 12

    x2 + 2x +

    2

    dy

    dx=

    d

    dx

    2x3 12

    x2 + 2x +

    2=

    d

    dx

    2x3

    +

    d

    dx

    1

    2x3

    + d

    dx[2x] +

    d

    dx

    2

    =

    2d

    dx

    x3 1

    2

    d

    dx

    1

    2x2

    + 2d

    dx[x] +

    d

    dx

    2

    =

    2

    3x31 1

    2

    2x21

    + 2 [1] + 0

    =3

    2x2 22

    x + 2

    =3

    2x2

    2x + 2

    46

    http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/
  • 8/10/2019 Solution Key_CK-12 Calculus Flexbook

    52/286

  • 8/10/2019 Solution Key_CK-12 Calculus Flexbook

    53/286

    2.3. Techniques of Differentiation www.ck12.org

    8.

    y=

    x + 1

    x

    y=

    x12

    +

    1

    x 12

    y=x12 +x

    12

    dy

    dx=

    d

    dx

    x

    12 +x

    12

    =

    d

    dx

    x

    12

    +

    d

    dx

    x

    12

    =

    1

    2x

    12 22

    +

    1

    2xx

    12 22

    =1

    2x

    12 1

    2x

    32

    = 1

    2x12

    1

    2x32

    = 1

    2

    x 1

    2 2

    x3

    9.

    y= 3

    x + 3

    dy

    dx=

    d

    dx

    3x + 3

    =(

    x + 3) ddx

    [3]3 ddx

    [

    x + 3]

    (

    x + 3)2

    =(

    x + 3)03 ddx

    x

    12+ 3

    (

    x + 3)2

    =03 1

    2x

    12 22+ 0

    (

    x + 3)2

    =32x

    12

    (

    x + 3)2

    = 3

    2x12(

    x + 3)2

    = 3

    2

    x (

    x + 3)2

    48

    http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/
  • 8/10/2019 Solution Key_CK-12 Calculus Flexbook

    54/286

    www.ck12.org Chapter 2. Derivatives, Solution Key

    10.

    y=4x + 1

    x29dy

    dx=

    d

    dx 4x + 1

    x2

    9

    =

    x29 ddx[4x + 1] (4x + 1) ddx x29

    (x29)2

    =

    x29 [4] (4x + 1) [2x]

    (x29)2

    =

    4x236 8x2 + 2x

    (x29)2

    =4x2368x22x

    (x29)2

    =4x22x36

    (x29)2

    11.

    F= GmM

    r2

    dF

    dr=

    d

    dr

    G

    mM

    r2

    = ddr

    GmMr2

    = 2GmMr21= 2GmMr3

    =2GmM

    r3

    12.

    d

    d

    0+

    3

    30

    =

    (30) dd0+

    30+3 dd[30]

    (30)2

    =(30)

    0+ 3

    2 0+30

    (30)2

    =(30)

    0+ 3

    2

    (30)2

    =0+ 3

    2

    30

    49

    http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/
  • 8/10/2019 Solution Key_CK-12 Calculus Flexbook

    55/286

    2.3. Techniques of Differentiation www.ck12.org

    13.

    y= 2

    x3

    =2x3

    dy

    dx=

    d

    dx 2x3

    =2 (3)x

    3

    1

    = 6x4d2y

    dx2=

    d

    dx

    6x4= 6 (4)x41=24x5

    d3y

    dx3=

    d

    dx

    24x5

    =24 (5)x51=

    120x6

    = 120x6

    d3y

    dx3

    x=1

    = 12016

    = 120

    50

    http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/
  • 8/10/2019 Solution Key_CK-12 Calculus Flexbook

    56/286

    www.ck12.org Chapter 2. Derivatives, Solution Key

    2.4 Derivatives of Trigonometric Functions

    1.

    y=x sinx + 2

    y=xd

    dx[sinx] + sinx

    d

    dx[x] +

    d

    dx[2]

    =x cosx + sinx1 + 0=x cosx + sinx

    2.

    y=x2 cosx

    x tanx

    1

    y=x2 ddx

    [cosx] + cosxd

    dx

    x2x d

    dx[tanx] + tanx

    d

    dx[x]

    + d

    dx[1]

    =x2 (sinx) + cosx (2x) x sec2x + tanx (1)0= x2 sinx + 2x cosxx sec2x tanx

    3.

    y=sin2x

    =sinx sinx

    y=sinx ddx

    [sinx] + sinx ddx

    [sinx]

    =sinx cosx + sinx cosx

    =2sinx cosx

    4.

    y=sinx1sinx + 1

    y=(sinx + 1) d

    dx(sinx1) (sinx1) d

    dx(sinx + 1)

    (sinx + 1)2

    =(sinx + 1) (cosx) (sinx1) (cosx)

    (sinx + 1)2

    =sinx cosx + cosx (sinx cosx cosx)

    (sinx + 1)2

    =sinx cosx + cosx sinx cosx + cosx

    (sinx + 1)2

    = 2cosx

    (sinx + 1)2

    51

    http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/
  • 8/10/2019 Solution Key_CK-12 Calculus Flexbook

    57/286

    2.4. Derivatives of Trigonometric Functions www.ck12.org

    5.

    y=cosx + sinx

    cosx sinxy=

    (cosx sinx) ddx

    (cosx + sinx) (cosx + sinx) ddx

    (cosx sinx)(cosx sinx)2

    =(cosx sinx) ( sinx + cosx) [(cosx + sinx) ( sinxcosx)]

    (cosx sinx)2

    =cosx sinx + cos2x + sin2xcosx sinx cosx sinx cos2x sin2x cosx sinx

    (cosx sinx)2

    =2cossinx + 12cosx sinxcos2x sin2x

    (cosx sinx)2

    =2cosx sinx + 1 + 2cosx sinx + cos2x + sin2x

    (cosx sinx)2

    =2cosx sinx + 1 + 2cosx sinx + 1

    (cosx sin)2

    =

    2

    (cosx sinx)2

    = 2

    cos2x2cosx sinx + sin2x=

    2

    12cosx sinx6.

    y=

    x

    tanx+ 2

    = x

    12

    tanx

    + 2

    y=(tanx) d

    dx

    x

    12

    x12

    ddx

    (tanx)

    (tanx)2 + 0

    =(tanx)

    12x

    12

    x12

    sec2x

    tan2x

    =(tanx)

    12x

    12

    tan2x

    x12

    sec2x

    tan2x

    = 1

    2

    x tanx

    x

    cos2x sin2xcos2x

    = cotx

    2

    x x

    sin2x

    = cotx

    2

    x x csc2x

    7.

    y=cscx sinx +x

    =1 +x

    y=0 + 1=1

    52

    http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/
  • 8/10/2019 Solution Key_CK-12 Calculus Flexbook

    58/286

    www.ck12.org Chapter 2. Derivatives, Solution Key

    8.

    y=secx

    cscx

    = sinx

    cosx

    =tanx

    y=sec2x

    9.

    y=cscx

    y= cscx cotxy=cotx

    d

    dx(cscx) (cscx) d

    dx(cotx)

    =cotx (cscx cotx) + cscxcsc2xy

    6

    =cot2

    6

    csc

    6

    csc3

    6

    =32 ( (2)) (2)3

    =3 (2) (8)=6 + 8

    =14

    10.

    d

    dx[cosx] = lim

    h0cos (x + h) cosx

    h

    =lim

    h0

    cosx cos h sinx sin hcosxh

    =limh0

    cosx cos hcosx

    h sinx sin h

    h

    =limh0

    cosx (cos h1)

    h sinx sin h

    h

    =cosx limh0

    (cos h1)

    h

    sinx lim

    h0

    sin h

    h

    =cosx0 sinx1= sinx

    53

    http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/
  • 8/10/2019 Solution Key_CK-12 Calculus Flexbook

    59/286

  • 8/10/2019 Solution Key_CK-12 Calculus Flexbook

    60/286

    www.ck12.org Chapter 2. Derivatives, Solution Key

    4.

    f(x) =sin3x

    f (x) =3sin31x ddx

    (sinx)

    =3sin2x (cosx)=3sin2x cosx

    5.

    f(x) =sinx3

    f (x) =cosx3 d

    dx

    x3

    =cosx33x2

    =3x2 cosx3

    6.

    f(x) =sin3x3

    f (x) =3sin31x3 d

    dx

    sin

    x3

    =3sin2x3cosx33x2

    =9x2 sin2x3

    cosx3

    7.

    f(x) =tan

    4x5

    f (x) =sec2

    4x5 d

    dx

    4x5

    =sec2

    4x5

    45x4=20x4 sec2

    4x5

    8.

    f(x) =

    4x sin2 (2x)

    =

    4x sin2

    (2x) 12

    f (x) =1

    2

    4x sin2 (2x) 12 22 d

    dx

    4x sin2 (2x)

    =1

    2

    4x sin2 (2x) 12 [42sin (2x) cos (2x)2]

    =44sin (2x) cos (2x)

    2

    4x sin2 (2x)

    =22sin (2x) cos (2x)

    4x sin2 (2x)

    55

    http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/
  • 8/10/2019 Solution Key_CK-12 Calculus Flexbook

    61/286

    2.5. The Chain Rule www.ck12.org

    9.

    f(x) = sinx

    cos (3x2)

    f (x) =cos (3x2) d

    dx[sinx] sinx d

    dx[cos (3x2)]

    cos2 (3x2)=

    cos (3x2)cosx sinx [sin (3x2)] (3)cos2 (3x2)

    =cos (3x2)cosx + 3sinx [sin (3x2)]

    cos2 (3x2)

    10.

    f(x) = (5x + 8)3x3 + 7x

    13f (x) = (5x + 8)3 d

    dx

    x3 + 7x

    13+x3 + 7x

    13 ddx

    (5x + 8)3

    = (5x + 8)3

    13

    x3 + 7x

    12

    3x2 + 7

    +

    x3 + 7x

    13

    3 (5x + 8)2 (5)

    =13 (5x + 8)3

    x3

    + 7x12

    3x2

    + 7

    + 15x

    3

    + 7x13

    (5x + 8)2

    11.

    f(x) =

    x32x5

    3

    f (x) =3

    x32x5

    2 d

    dx

    x32x5

    =3

    x32x5

    2(2x5) ddx

    [x3] (x3) ddx

    [2x5](2x5)2

    =3

    x32x5

    2

    (2x5) (1) (x3) (2)(2x5)2

    =3 (x3)2(2x5)6 (x3)3

    (2x5)24

    56

    http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/
  • 8/10/2019 Solution Key_CK-12 Calculus Flexbook

    62/286

    www.ck12.org Chapter 2. Derivatives, Solution Key

    2.6 Implicit Differentiation

    1.

    x2 +y2 =500

    d

    dx

    x2 +y2

    =

    d

    dx[500]

    d

    dx

    x2

    + d

    dx

    y2

    = d

    dx[500]

    2x + 2ydy

    dx=0

    2ydy

    dx = 2xdy

    dx=2x

    2y

    dy

    dx= x

    y

    2.

    x2y + 3xy2=1d

    dx

    x2y + 3xy2 = d

    dx[1]

    d

    dx

    x2y

    +

    d

    dx[3xy] d

    dx[2] =

    d

    dx[1]

    ydy

    dx

    x2

    +x2 d

    dx[y] +y

    dy

    dx[3x] + 3x

    d

    dx[y]0=0

    y (2x) +x2dy

    dx+y (3) + 3x

    dy

    dx=0

    2xy +x2dy

    dx+ 3y + 3x

    dy

    dx=0

    x2dy

    dx+ 3x

    dy

    dx= 2xy3y

    x2 + 3x

    dydx

    = 2xy3ydy

    dx=2xy3y

    x2 + 3xdy

    dx=y (2x + 3)

    x (x + 3)

    57

    http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/
  • 8/10/2019 Solution Key_CK-12 Calculus Flexbook

    63/286

    2.6. Implicit Differentiation www.ck12.org

    3.

    1

    x

    +1

    y

    =1

    2x1 +y1 =

    1

    2d

    dx

    x1 +y1

    =

    d

    dx

    1

    2

    d

    dx

    x1

    +

    d

    dx

    y1

    =0

    x2y2 dydx

    =0

    y2 dydx

    =x2

    dy

    dx = x

    2

    y2dy

    dx= y

    2

    x2

    4.

    x y=

    3

    x12 y 12 =

    3

    d

    dx

    x

    12 y 12

    =

    d

    dx

    3

    d

    dx

    x

    12

    d

    dx

    y

    12

    =0

    1

    2x

    12

    1

    2y

    12

    dy

    dx =0

    12

    y12

    dy

    dx= 1

    2x

    12

    dy

    dx=12x

    12

    12y

    12

    dy

    dx=

    y12

    x12

    dy

    dx=

    yx

    =

    y

    x

    58

    http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/
  • 8/10/2019 Solution Key_CK-12 Calculus Flexbook

    64/286

    www.ck12.org Chapter 2. Derivatives, Solution Key

    5.

    sin

    25xy2

    =x

    d

    dx

    sin

    25xy2

    =

    d

    dx[x]

    cos

    25xy2

    y2 (25) + 25x

    2y

    dy

    dx

    =1

    cos

    25xy2

    25y2 + 50xydy

    dx

    =1

    25y2 cos

    25xy2

    + 50xy cos

    25xy2 dy

    dx=1

    50xy cos25xy2 dydx =

    1

    25y2 cos25xy2dy

    dx=

    125y2 cos25xy250xy cos (25xy2)

    6.

    tan3x2y2 =tan

    4

    d

    dx

    tan3

    x2y2 = dy

    dx

    tan

    4

    3tan2

    x2

    y2

    sec2

    x2

    y2

    2x2ydy

    dx

    =0

    3tan2x2y2sec2 x2y2(2x)3tan2 x2y2sec2 x2y22y dy

    dx

    =0

    3tan2 x2y2sec2 x2y22y dydx

    = 3tan2 x2y2sec2 x2y2(2x)

    dy

    dx=3tan2 x2y2sec2 x2y2(2x)3tan2 (x2y2) sec2 (x2y2) (2y)

    dy

    dx=

    x

    y

    59

    http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/
  • 8/10/2019 Solution Key_CK-12 Calculus Flexbook

    65/286

    2.6. Implicit Differentiation www.ck12.org

    7.

    x2yy2x= 1d

    dx

    x2yy2x = d

    dx[1]

    d

    dxx2y

    d

    dxy2x =0

    ydy

    dx

    x2

    +x2 d

    dx[y]

    x

    dy

    dx

    y2

    +y2 d

    dx[x]

    =0

    y (2x) +x2

    dy

    dx

    x2 (2y)

    dy

    dx

    y2 (1) =0

    2xy +x2

    dy

    dx

    2x2y

    dy

    dx

    y2 =0

    x2

    dy

    dx

    2x2y

    dy

    dx

    =y22xy

    x22x2y

    dy

    dx=y22xy

    dy

    dx=

    y22xyx22x2y

    m= y22xyx22x2y

    =1212

    =1

    1 =1

    8.

    sin (xy) =y

    d

    dx[sin (xy)] =

    d

    dx[y]

    cos (xy)

    y

    d

    dx[x]x d

    dx[y]

    =

    dy

    dx

    cos (xy)

    y (1)x dydx

    =

    dy

    dx

    y cos (xy)x cosx dydx

    =dy

    dx

    y cos (xy) =dy

    dxx cosx dy

    dx

    y cos (xy) =dy

    dx(1x cosx)

    y cos (xy)

    1x cosx =dy

    dx

    60

    http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/
  • 8/10/2019 Solution Key_CK-12 Calculus Flexbook

    66/286

    www.ck12.org Chapter 2. Derivatives, Solution Key

    m= y cos (xy)

    1x cosx=

    1cos (1)1cos

    =1 (1)

    1 += 1

    1 +

    9.

    x3y3 =5

    d

    dx

    x3y3

    =

    d

    dx[5]

    y3

    d

    dx x3

    +x3

    d

    dx y3

    =0

    y3

    3x2

    +x3

    3y2 dydx

    =0

    3x2y3 + 3x3y2dy

    dx=0

    3x3y2dy

    dx= 3x2y3

    dy

    dx=3x2y3

    3x3y2

    dy

    dx= y

    x

    d2y

    dx2=

    d

    dx

    y

    x

    = xddx

    [y]y ddx

    [x]

    x2

    = xdydxy (1)x2

    = xdydxy

    x2

    = x

    dydx

    y

    x2

    = xy

    x

    yx2

    = yyx2

    = 2yx2

    =2y

    x2

    61

    http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/
  • 8/10/2019 Solution Key_CK-12 Calculus Flexbook

    67/286

    2.6. Implicit Differentiation www.ck12.org

    10.

    y2 =kx

    2ydy

    dx=k

    dy

    dx=

    k

    2y

    Then slopem= k2y0

    at(x0,y0). Note that y20=kx0.

    The equation of the tangent line is

    yy0=m (xx0)yy0= k

    2y0(xx0)

    2y0y2y20=k(xx0)2y0y

    2kx0=kx

    kx0

    2y0y=kx kx0+ 2kx02y0y=kx + kx0

    2y0y=k(x +x0)

    y0y=1

    2k(x +x0)

    62

    http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/
  • 8/10/2019 Solution Key_CK-12 Calculus Flexbook

    68/286

    www.ck12.org Chapter 2. Derivatives, Solution Key

    2.7 Linearization and Newtons Method

    1. First, find f (x).

    f (x) = d

    dx

    x2 + 1

    x

    =x (2x) x2 + 11

    x2

    =2x2x21

    x2

    =x21

    x2

    f (a) = f (1) = 12

    112 =0 and f(1) = 12

    +11 =2.

    Then the linearization of f(x)at a=1 is:

    f(x) f(a) +f (a) (xa) f(1) +f (1) (x1) 2 + 0 2

    2.

    f (x) =sec2x

    f () =sec2 =1f() =tan =0

    Then

    f(x) f(a) +f (a) (xa)

    f() +f () (x

    )

    0 + 1 (x)x

    3.

    f(x) = (1 +x)n

    f (x) =n (1 +x)n1

    Then

    63

    http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/
  • 8/10/2019 Solution Key_CK-12 Calculus Flexbook

    69/286

    2.7. Linearization and Newtons Method www.ck12.org

    f(x) f(a) +f (a) (xa) (1 + a)n + n (1 + a)n1 (xa) (1 + a)n + n (1 + a)n1xn (1 + a)n1 a

    Sincea is much less than 1, we can leta=0. Then

    f(x) 1n + n (1)n1x 1 + nx

    4. a. (1 +x)n 1 + nxtells us that(1x)4 1 + 4 (x) =14x.b.

    1x= (1x) 12 1 + 12(x) =1 1

    2x.

    c. 51 +x

    5 (1 +x) 12 =51 12x =5 52xd.

    3

    1 3

    (x1)2

    =

    1 3

    (x1) 2

    3

    =

    1 +

    3

    (1x) 2

    3

    =

    1 + 3 (1x)1 2

    3

    1 + 3 (1x)1 2

    3 (1 + 3 (1 +x)) 23 = (4 + 3x) 23 =

    4

    1 +

    3

    4x

    23

    =423

    1 +

    3

    4x

    23

    =423

    1 +

    2

    3 3

    4x

    =4

    23

    1 +

    1

    2x

    e. (1.003)99 = (1 + 0.003)99 1 + 99 (0.003) =1.2975. Graph the function first.

    f(x) =x3 + 33

    f (x) =3x2

    64

    http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/
  • 8/10/2019 Solution Key_CK-12 Calculus Flexbook

    70/286

    www.ck12.org Chapter 2. Derivatives, Solution Key

    Looking at the graph, set x1= 1.5. By Newtons Method,

    xn+1=xn f(xn)f (xn)

    =xn x3 + 3

    3x2

    Then

    x2= 1.5 (1.5)3 + 3

    3 (1.5)2 = 1.444

    x3= 1.44 (1.44)3 + 3

    3 (1.44)2 = 1.442

    Thus,x 1.442.6. Graph the function first.

    f(x) = x + 31 +xf (x) = 1 +3

    2(1 +x) 12 (1)

    = 1 + 321 +x

    First zero: Looking at the graph, setx1=1.1. By Newtons Method,

    xn+1=xn f(xn)f (xn)

    =xn x + 31 +x

    1 + 321+x

    Thenx2=1.1 1.1 + 31 + 1.1

    1 + 321+1.1

    =1.1404

    x3=1.1404 1.1404 + 31 + 1.1404

    1 + 321+1.1404

    =1.146

    65

    http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/
  • 8/10/2019 Solution Key_CK-12 Calculus Flexbook

    71/286

    2.7. Linearization and Newtons Method www.ck12.org

    Thus,x 1.146.Second zero:

    Looking at the graph, set x1=8. By Newtons Method,

    xn+1=xn

    f(xn)

    f (xn)=xn x + 3

    1 +x1 + 3

    21+x

    Thenx2=8 8 + 31 + 8

    1 + 321+8

    =7.9201

    x3=7.9201 7.9201 + 31 + 7.9201

    1 + 321+7.9201

    =7.854

    Thus,x 7.854.

    66

    http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/
  • 8/10/2019 Solution Key_CK-12 Calculus Flexbook

    72/286

    www.ck12.org Chapter 3. Applications of Derivatives, Solution Key

    CHAPTER 3 Applications of Derivatives,Solution Key

    Chapter Outline

    3.1 RELATED RATES

    3.2 EXTREMA AND THE MEA NVALUET HEOREM

    3.3 THE F IRST DERIVATIVE T EST

    3.4 THE S ECONDDERIVATIVE T EST

    3.5 LIMITS AT INFINITY

    3.6 ANALYZING THE GRAPH OF AF UNCTION

    3.7 OPTIMIZATION

    3.8 APPROXIMATION ERRORS

    67

    http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/
  • 8/10/2019 Solution Key_CK-12 Calculus Flexbook

    73/286

    3.1. Related Rates www.ck12.org

    3.1 Related Rates

    1. a. Answers will vary.

    b. Answers will vary.2.

    4x2 + 16y2 =32

    4

    2x

    dx

    dt

    + 16

    2y

    dy

    dt

    =0

    8xdx

    dt+ 32y

    dy

    dt=0

    Substitute(2,1)and

    dx

    dt =3 into the last equation and solve for

    dy

    dx .

    8xdx

    dt+ 32y

    dy

    dt=0

    16 (1) (3) + 32dy

    dt=0

    48 + 32dy

    dt=0

    32dy

    dt= 48

    dy

    dt=48

    32 =

    3 ft

    2 sec

    3. Draw a diagram of the situation. The runner is 23(60) =40 ft from first base. The players rate is dx

    dt = 18ft

    sec .

    The variabley represents the distance between the runner and home plate. The variablex represents the distance

    traveled by the runner. The rate at which the distance between the runner and home plate is changing is dydt

    . The

    runner is 23(60) = 40 ft from first base. The players rate of change is

    dxdt

    = 18ftsec . The diagram shows that a righttriangle is formed with x, the side of the diamond, and y. Use the Pythagorean Theorem to solve for y.

    68

    http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/
  • 8/10/2019 Solution Key_CK-12 Calculus Flexbook

    74/286

    www.ck12.org Chapter 3. Applications of Derivatives, Solution Key

    602 + 402 =y2

    3600 + 1600=y2

    5200=y25200=y

    Now, differentiate 602 +x2 =y2 with respect to timetand substitute the known values to find dydt

    .

    602 +x2 =y2

    0 + 2xdx

    dt=2y

    dy

    dt

    2xdx

    dt=2y

    dy

    dt

    2 (40)18 ft

    sec =2

    5200

    dydt

    1440 ft

    sec =25200 dydt

    1440 ft

    2

    5200

    sec=

    dy

    dt

    720 ft5200sec

    =dy

    dt

    9.98 ft

    sec dy

    dt

    4. Draw a diagram of the situation. The balloon was 300 ft from the ground. The balloons rate of change wasdxdt

    = 20ftsec .

    The variabley represents the distance between Mr. Smiths place and the balloons place. The variable x represents

    the height of the balloon. The rate at which the distance between Mr. Smiths place and the balloons place was

    changing is dydt

    .The diagram shows that a right triangle is formed with x, the height of the balloon, and y. Use thePythagorean Theorem to solve fory.

    69

    http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/
  • 8/10/2019 Solution Key_CK-12 Calculus Flexbook

    75/286

    3.1. Related Rates www.ck12.org

    3002 + 1002 =y2

    90,000 + 10,000=y2

    100,000=y2

    100,000=y

    Now, differentiate 1002 +x2 =y2 with respect to timetand substitute the known values to find dydt

    .

    1002 +x2 =y2

    0 + 2xdx

    dt=2y

    dy

    dt

    2xdx

    dt=2y

    dy

    dt

    2 (300)20 ft

    sec =2

    100,000

    dydt

    12,000 ft

    sec =2

    100,000 dy

    dt12,000 ft

    2

    100,000

    sec=

    dy

    dt

    6,000 ft100,000sec

    =dy

    dt

    18.97 ft

    sec dy

    dt

    5. Draw a diagram of the situation. Let x represent the distance traveled by the first train. The rate of change of the

    first train was dxdt

    = 65mihr

    . Letyrepresent the distance traveled by the second train. The rate of change of the second

    train was dy

    dt

    = 75mi

    hr . At 3 PM, the distancey =130 mi and the distance x =120 mi. Let s represent the distance

    between the two trains.

    70

    http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/
  • 8/10/2019 Solution Key_CK-12 Calculus Flexbook

    76/286

    www.ck12.org Chapter 3. Applications of Derivatives, Solution Key

    Use the Pythagorean Theorem to solve fors.

    1202 + 1302 =s2

    14,400 + 16,900=s2

    31,300=s2

    31,300=s

    Now, differentiatey2 +x2 =s2 with respect to timetand substitute the known values to find dsdt

    .

    y2 +x2 =s2

    2ydy

    dt+ 2x

    dx

    dt=2s

    ds

    dt

    ydy

    dt+x

    dx

    dt=s

    ds

    dt

    (130)75 mi

    hr + (120)

    65 mi

    hr = 31,300 ds

    dt9,750 mi

    hr +

    7,800 mi

    hr =

    31,300

    ds

    dt17,750 mi

    31,300 hr=

    ds

    dt

    99.20 mi

    hr ds

    dt

    6. Draw a diagram of the situation. Let x represent the distance on the ground between the bottom of the ladder and

    the wall. Let y represent the height of the ladder against the wall. The rate of change of the ladder is dydt

    = 6ftsec.The distance between the bottom of the ladder and the wall is 17 ft.

    Use the Pythagorean Theorem to solve forx wheny=8.

    x2 + 82 =172

    x2 + 64=289

    x2 =225

    x=15

    Now, differentiate 172 +x2 =y2 with respect to timetand substitute the known values to find dxdt

    .

    71

    http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/
  • 8/10/2019 Solution Key_CK-12 Calculus Flexbook

    77/286

    3.1. Related Rates www.ck12.org

    x2 +y2 =172

    2xdx

    dt+ 2y

    dx

    dt=0

    xdx

    dt+y

    dx

    dt=0

    (15)dx

    dt+ (8)

    6 ftsec

    =0

    (15)dx

    dt 48 ft

    sec =0

    (15)dx

    dt=

    48 ft

    secdx

    dt=

    48 ft

    (15) sec

    dx

    dt 16 ft

    5 sec

    7. A= l wwhere represents the length of the rectangle, w represents the width, and A represents the area of therectangle. Then dl

    dt= 6 ftmin and

    dwdt

    = 2 ftmin . Differentiate the equationA=lwwith respect to timet.

    A=lw

    dA

    dt=

    dl

    dtw + l

    dw

    dt

    = 6 ft

    min(15) + (25)

    2 ft

    min

    =90 ft

    min +50 ft

    min

    =140 ft

    min

    8. When d pdt

    = 10week, find dx

    dt.

    9. Lets=length of one side of the cube. Then volume V=s3.

    V=s3

    dV

    dt=3s2

    ds

    dtdV

    dt=3 (6 in.)2

    1 in.

    4 min

    =27 in.3

    4 min

    10. a. A= r2

    Solve forrwhenA=36 in.2

    72

    http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/
  • 8/10/2019 Solution Key_CK-12 Calculus Flexbook

    78/286

    www.ck12.org Chapter 3. Applications of Derivatives, Solution Key

    36 = r2

    36=r2

    6=r

    A= r2

    dAdt

    =2rdrdt

    24 in.

    min =2(6)

    dr

    dt24 in.

    (12) min=

    dr

    dt

    2 in.

    min=

    dr

    dt

    b.

    C=2r

    dC

    dt=2

    dr

    dt

    =2

    2 in.

    min

    =4 in.

    min

    73

    http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/
  • 8/10/2019 Solution Key_CK-12 Calculus Flexbook

    79/286

    3.2. Extrema and the Mean Value Theorem www.ck12.org

    3.2 Extrema and the Mean Value Theorem

    1. The absolute maximum is at x=7. The absolute minimum is at x=4. There is a relative maximum at x=2. Theextreme values of f are f(7) =7 and f(4) =

    1.

    2. The absolute maximum is at x=7. The absolute minimum is atx=9. There is a relative minimum at x=3. Theextreme values of f are f(7) =9 and f(9) =0.

    3. The absolute minimum is at x =0. There is no maximum because the function is not continuous on the closedinterval. The extreme value of f is f(0) =1.

    74

    http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/
  • 8/10/2019 Solution Key_CK-12 Calculus Flexbook

    80/286

    www.ck12.org Chapter 3. Applications of Derivatives, Solution Key

    4.

    f(x) = x26x + 4f (x) = 2x6

    Find the critical values of f.

    Solve f (x) =0.

    2x6=02x=6

    x= 3f(3) = (3)26 (3) + 4= 9 + 18 + 4=13

    Check the endpoints:

    x= 4f(4) = 426 (4) + 4=12

    x=1

    f(1) = 126 (1) + 4= 3

    Compare function values to find the maximum and minimum. The absolute maximum is atx = 3 because f(3)is the greatest value. The absolute minimum is at x= 1 because f(1) is the smallest value. The extrema aref(13) =13 and f(1) = 3.

    5.

    f(x) =x3x4f (x) =3x24x3

    75

    http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/
  • 8/10/2019 Solution Key_CK-12 Calculus Flexbook

    81/286

    3.2. Extrema and the Mean Value Theorem www.ck12.org

    Find the critical values of f.

    Solve f (x) =0.

    3x24x3 =0x2 (34x) =0

    x2 =0 or 34x=0x=0 or 4x= 3x=0 or x=

    3

    4

    Find the function values: f(0) =0 and f

    34

    =

    34

    3 34

    4= 2764 81256= 108256 81256= 27256 0.1055.

    Find function values of the endpoints:

    0 is one endpoint and was already checked.

    f(2) =816= 8

    The absolute maximum atx= 34 . The absolute minimum atx=2. The extrema are f

    34

    0.1055 and f(2) = 8.

    6.

    f(x) = x2 + 4x2

    = x2 + 4x2

    f (x) = 2x8x3 = 2x 8x3

    76

    http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/
  • 8/10/2019 Solution Key_CK-12 Calculus Flexbook

    82/286

    www.ck12.org Chapter 3. Applications of Derivatives, Solution Key

    Find the critical values of f.

    Solve f (x) =0.

    2x 8x3

    =0

    2x4

    8=0

    x44=0x2

    4

    x2 +

    4

    =0x22x2 + 2 =0

    x22=0x

    2=0 or x +

    2=0

    x= 2 or x= 2x2 + 2=0

    x2 = 2

    There are no real number solutions forx2 + 2=0.

    Since the variable is in the denominator of one term of f (x), set that denominator equal to 0.

    x3 =0

    x=0

    f (x)is undefined for x=0. This is another critical value.

    Find the function values of the critical values in the interval [2,0]and of the endpoints.

    f

    2

    = 2 +42

    = 2 + 2=0

    f(0)is undefined.

    Find function values of the endpoints:

    0 is one endpoint and f(0)was already found to be undefined.

    f(2) = 4 +44

    = 3.

    The absolute minimum is at x=

    2. The extrema is f

    2

    = 0. There is no absolute maximum as f(x)

    approachesas x approaches 0.

    77

    http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/
  • 8/10/2019 Solution Key_CK-12 Calculus Flexbook

    83/286

    3.2. Extrema and the Mean Value Theorem www.ck12.org

    7. f(x) =3x212xis continuous and differentiable because it is a polynomial.Solve 3x312x=0:

    3x312x=03xx24 =0

    3x=0 orx24=0x=0 orx=2 orx= 2

    On[2,0] ,f(2) = f(0) =0. On[0,2] ,f(0) = f(2) =0

    f (x) =9x212

    Set f (x) =0 and solve for the critical values.

    9x212=033x2

    4 =03x24=0

    x= 2

    3=

    2

    3

    3 or x= 2

    3= 2

    3

    3

    By Rolles Theorem, there is at least one critical value in(2,0). That value is c = 2

    33

    . There is at least one

    critical value in(0,2). That value is c= 2

    33

    .

    78

    http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/
  • 8/10/2019 Solution Key_CK-12 Calculus Flexbook

    84/286

    www.ck12.org Chapter 3. Applications of Derivatives, Solution Key

    8.

    f(x) =x2 2x1 =x

    22 (x1)1

    f (x) =2x + 2 (x1)2 =2x 2(x1)2

    On the interval[1,0] ,f(1) =1 2

    2 = 2 and f(0) =2. By Rolles Theorem, there is a critical value in (1,0).Solve

    f (x) =0

    2x 2(x1)2 =

    0

    2x (x1)22=02xx22x + 12=0

    xx22x + 11=0x32x2 +x1=0[I cannot continue to solve the problem algebraically as written.]

    9. f(x)is continuous on[1,2].

    f (x) = x(1)(x+2)1x2

    = x(x+2)x2

    = xx2x2

    = 2x2

    has the interval(1,2)in its domain.

    There is a numberc such that f(2) f(1) = (21)f (c).

    f(2) =4

    2

    =2

    f(1) =3

    1=3

    f(2) f(1) = (21)f (c)23=1f (c)1= f (c)

    Solve forc.

    2

    c2

    =

    1

    2= c22=c2

    2=c

    The value ofc is

    2.

    10. On[0,r] ,f(0) =0. Also, f(r) =0 becauseris a root of f. Note that f (x) =3x2 + 2a1x + a2is the derivativeof f(x). Then by Rolles Theorem, f (x) = 3x2 + 2a1x + a2 has a root in the interval (0,r). Thus, f (x) = 3x2 +2a1x + a2has a positive root that is less than rbecause there is a root in (0, r).

    79

    http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/
  • 8/10/2019 Solution Key_CK-12 Calculus Flexbook

    85/286

    3.3. The First Derivative Test www.ck12.org

    3.3 The First Derivative Test

    1. The function is increasing on(0,3). The function is decreasing on(3,6). The function is constant on(6,+).

    2. The function is increasing on(,0)and(3,7). The function is decreasing on(0,3).3. a. Draw tangent lines to the graph to help you solve these problems.

    f (3)is positive. f (3)>0.b. f (1)is negative. f (1)0.

    4.

    f(x) =x2 1x

    =2xx1

    f (x) =2x +x2 =2x + 1

    x2

    Find the critical values.

    2x + 1

    x2=0

    2x3 + 1

    x2 =0

    2x3 + 1=0

    2x3 = 1x3 = 1

    2

    x= 30.5= 3

    0.5= 0.79

    f 3

    0.5

    =1.89

    f (x)is undefined for x=0.

    Set up the intervals and make a table. Find test points to substitute into the derivative and check the sign of thederivative.

    Interval, 3

    0.5

    3

    0.5,0

    (0,+)

    Test pointx=c c= 1 c= 0.1 c=1f (c) 2 + 1= 2 0.2 + 1

    (0.1)2 =99.8 2 + 1=3

    sign of fx f (x)0 f (x)>0

    80

    http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/
  • 8/10/2019 Solution Key_CK-12 Calculus Flexbook

    86/286

    www.ck12.org Chapter 3. Applications of Derivatives, Solution Key

    By the First Derivative Test, fchanges from negative to positive atx = 3

    0.5. The critical value ofx = 3

    0.5 is a

    local minimum. The function decreases on, 3

    0.5

    and on(0,+). The function increases on

    3

    0.5,0

    .

    5.

    f(x) =x215

    f (x) =5x214 (2x)

    Find the critical values.

    5x214 (2x) =0

    x214 =0 or 2x=0x21=0 orx=0x=1 orx= 1 or x=0f(1) =0

    f(1) =0f(0) = 1

    Interval (,1) (1,0)Test pointx=c c= 2 c= 0.5f (x) =5

    x214 (2x) 5(2)214 (2 (2)) 5(0.5)214 (2 (0.5))

    f (c) =5 (3)4 (4) =5 (0.251)4 (1)Sign of f (x) f (x)

  • 8/10/2019 Solution Key_CK-12 Calculus Flexbook

    87/286

    3.3. The First Derivative Test www.ck12.org

    Interval (0,1) (1,+)

    Test pointx=c c=0.5 c=2

    f (x) =5x214 (2x) 5(0.5)214 (2 (0.5)) 52214 (22)

    f (c) =5 (0.25

    1)4 (1) =5 (4

    1)4 (4)

    Sign of f (x) f (x)>0

    By the First Derivative Test, there is an absolute minimum at x=0. The function is decreasing on(,1)and on(1,0). The function is increasing on(0,1)and on(1,+).

    6.

    f(x) =x214

    f (x) =4x213 (2x)

    Find the critical values.

    4x21

    3(2x) =0

    x213 =0 or 2x=0x21=0 orx=0

    x=1 orx= 1 orx=0

    f(1) =0

    f(1) =0f(0) =1

    82

    http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/
  • 8/10/2019 Solution Key_CK-12 Calculus Flexbook

    88/286

    www.ck12.org Chapter 3. Applications of Derivatives, Solution Key

    Interval (,1) (1,0)Test pointx=c c= 2 c= 0.5f (x) =4

    x213 (2x) 4(2)213 (2 (2)) 4(0.5)213 (2 (0.5))

    f (c) =4 (3)3 (4) =4 (1.25)3 (1)Sign of f (x) f (x)

  • 8/10/2019 Solution Key_CK-12 Calculus Flexbook

    89/286

    3.3. The First Derivative Test www.ck12.org

    Interval (,2) (2,+)Test pointx=c c= 3 c=0f (x) = 2x4 2 (3)4 2 (0)4f (c) =64=2 =04= 4Sign of f (x) f (x)>0 f (x)

  • 8/10/2019 Solution Key_CK-12 Calculus Flexbook

    90/286

    www.ck12.org Chapter 3. Applications of Derivatives, Solution Key

    Interval (,3) (3,1) (1,+)Test pointx=c c= 4 c=0 c=3f (x) =3x2 + 3x9 3 (4)2 + 3 (4)9 3 (0)2 + 3 (0)9 3 (3)2 + 3 (3)9f (c) =48 + 12

    9=51 =

    9 =27 + 9

    9=27

    Sign of f (x) f (x)>0 f (x)0

    The function is increasing on(,3)and on(3,+). The function is decreasing on(3,1).b. There is a relative maximum at x= 3 with f(3) =28. There is a relative minimum at x=1 with f(1) = 4.c.

    9.

    f(x) =x23 (x5) =x 53 5x 23

    f (x) =5

    3x

    23 10

    3x

    13

    Find the critical values.

    85

    http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/http://www.ck12.org/
  • 8/10/2019 Solution Key_CK-12 Calculus Flexbook

    91/286

  • 8/10/2019 Solution Key_CK-12 Calculus Flexbook

    92/286

    www.ck12