7
617 HWAHAK KONGHAK Vol. 41, No. 5, October, 2003, pp. 617-623 Sol-Gel Titania * * 305-764 220 * 320-711 26 (2003 3 27 , 2003 7 8 ) Preparation of Nano Size Titania Powders with Monomodal Pore Distribution by the Sol-Gel Method and Hydrothermal Treatment Hyun-Tae Kim, Sang-Il Shin*, Ki-Chang Song* and Yong Kang School of Chemical Engineering, Institute of Nano-Technology and Advanced Materials, Chungnam National University, 220 Gung-dong, Yuseong-gu, Daejeon 305-764, Korea *Department of Chemical Engineering, Konyang University, 26 Nae-dong, Nonsan, Chungnam 320-711, Korea (Received 27 March 2003; accepted 8 July 2003) Sol-gel TTIP(titanium tetra-isopropoxide) titania , autoclave !. "#$ % &% ’()* + ,-, .’/ 01 2 ’/3!. Sol-gel 4 5 400 o C 2 "#$ titania % 1 6 789 )*(intra- particle pores) : 2 6 789 )*(inter-aggregated pores) *;< bimodal )*= >< ?@, 200 o C 4 % 1 6 789 )*A ;B< monomodal )*= ’/C-, D)E FG H.I(40-50 nm), JK@L MN(50-100%) O PQE RS(30-40%) T UVW A4 X2 NYZ!. Abstract - Titania powders were prepared from titanium tetra-isopropoxide (TTIP) by a sequence of sol-gel method and hydrothermal treatment. The powders made by sol-gel method followed by hydrothermal treatment exhibited an anatase crys- talline phase with numerous nano-size pores. The pore size distribution of the powders prepared by sol-gel method and calci- nation above 400 o C was bimodal with fine intra-particle pores (space between primary particles) and larger inter-aggregated pores (space between secondary particles). The powders by the hydrothermal treatment at 200 o C showed a monomodal pore size distribution with only intra-particle pores. The properties of titania powders could be improved by means of hydrothermal treatment considerably; the size could be reduced to 40-50 nm, specific surface area could be increased by 50-100% and the ratio of agglomeration could be reduced by 30-40%. Key words: Nano Size Titania Powder, Sol-Gel Method, Hydrothermal Treatment, Pore Size Distribution 1. titania ! "#$% &, ’( & ) *+ ,-./0 12[1-5]. Titania 3-4,56(brookite), -76(rutile), 89:6(anatase) % ; 3 / << 2= >+? @ AB /0 1C[5], 3-4,56 DE FGHI, 0JK L MBNO H .PQ RS T :U, V0, -76 W XY% Z GB [ RS \]G^_‘^,8 ab KL Xc0 12. $, 89:6 -76d2 e W fgh /0 1 RS i(@ j>M kl, e 0, m) no ) pD qjLr Xc0 12[6-8]. st N uBv i(@ ,H pD >w, >( &, "#$% ; ! AB xHyL titania pDzB /{H |}) }qZ , ~) AB w } 1C, ,~) B ! : ? % | J‘, o, B", % [ ?KLr H2. :Z w MBZ sol-gel N 0‘ B n +6’( t 1/[9-11], , N wJ :?v ! "™ !,yL >w N H qH % 1 ’( KL Z) "#$ q@ ; B™  N ¡2[10-11]. sol-gel N MB To whom correspondence should be addressed. E-mail: [email protected]

Sol-Gel Titania - CHERIC · Fig. 6. Nitrogen adsorption isotherms of sol-gel derived titania powders with hydrothermal treatment. The powders were dried at 100oC for 24 hr. R5 R20

Embed Size (px)

Citation preview

HWAHAK KONGHAK Vol. 41, No. 5, October, 2003, pp. 617-623

Sol-Gel�� ����� � � � ��� �� Titania �� �� ��

�������*��*�� �†

����� �����305-764 � �� �� 220

*����� �����320-711 �� �� �� 26

(2003� 3� 27� ��, 2003� 7� 8� ��)

Preparation of Nano Size Titania Powders with Monomodal Pore Distribution by theSol-Gel Method and Hydrothermal Treatment

Hyun-Tae Kim, Sang-Il Shin*, Ki-Chang Song* and Yong Kang†

School of Chemical Engineering, Institute of Nano-Technology and Advanced Materials, Chungnam National University,220 Gung-dong, Yuseong-gu, Daejeon 305-764, Korea

*Department of Chemical Engineering, Konyang University, 26 Nae-dong, Nonsan, Chungnam 320-711, Korea(Received 27 March 2003; accepted 8 July 2003)

� �

Sol-gel�� �� ���� TTIP(titanium tetra-isopropoxide) �� � titania ��� �� ���, � ��� autoclave

�� ���� � � ��� � �!. ����� �� "#$ ��% &% '()*� +� ,-��, .'/�� 01

2� '/3!. Sol-gel�� �� ��4 5 400oC �2�� ��� � "#$ titania ��% 16 789 ��� )*(intra-

particle pores): 26 789 ��� )*(inter-aggregated pores)� *; < bimodal� )*�= >�< ?@, 200oC��

����4 ��% 16 789 ��� )*A ;B < monomodal� )*�= '/C-��, D)E FG H.I�(40-50 nm),

JK@L� MN(50-100%)O ��� PQE RS(30-40%)T ��� UVW A4 X2� NYZ!.

Abstract − Titania powders were prepared from titanium tetra-isopropoxide (TTIP) by a sequence of sol-gel method andhydrothermal treatment. The powders made by sol-gel method followed by hydrothermal treatment exhibited an anatase crys-

talline phase with numerous nano-size pores. The pore size distribution of the powders prepared by sol-gel method and calci-

nation above 400oC was bimodal with fine intra-particle pores (space between primary particles) and larger inter-aggregated

pores (space between secondary particles). The powders by the hydrothermal treatment at 200oC showed a monomodal poresize distribution with only intra-particle pores. The properties of titania powders could be improved by means of hydrothermal

treatment considerably; the size could be reduced to 40-50 nm, specific surface area could be increased by 50-100% and the

ratio of agglomeration could be reduced by 30-40%.

Key words: Nano Size Titania Powder, Sol-Gel Method, Hydrothermal Treatment, Pore Size Distribution

1. � �

�� titania� �� ��� ��� � ��� ���� ��

��� ��� ��� �� !� "#$�% � &�, '(� &��

�) � *+� ,-./0 12[1-5]. Titania� 3-4,56(brookite),

-76(rutile), �89:6(anatase)% ;� 3�/� << 2= >+?

@ AB� �/0 1�C[5], 3-4,56� DE FGHI, 0JK

L MBNO H� .PQ RS� T��� :U, �V0, -76� W

� �XY% ���Z GB [ RS� \]G _̂̀ ^�,8 �ab

KL X�c0 12. �$, �89:6� -76d2 e W� fgh�

�/0 1� RS� i(@ j>M kl, e �0, m) n�o� �)

�pD qjLr X�c0 12[6-8]. �st� �N uBv i(@

� ,�H� �pD ��� >w, >( &�, "#$�% ;� !

� AB� �xHyL titania� �pDzB� /{H� |}) }qZ ,

~) AB�� �w�� �}� 1�C, ,~) �B� ��� ! :

? % | J`, �o, B ", ��� % [� ?��KLr ��H2.

�:�Z �w MB�Z sol-gel�� �N�� 0�`� ��� ��

B� �� � n� +6'(� �� t 1/�[9-11], , ��� �N

wJ�� :?v !� "�� !,yL >w� �� �N H

qH� %�� 1� '(� ��KL Z) "#$�� �q@ ;� �

�� B�� ��� � N ¡2[10-11]. ��� sol-gel�� �N MB†To whom correspondence should be addressed.E-mail: [email protected]

617

618 ����������� �

v titania !� d2 �:�,I ¢%�Z >� %� £�, �

t�KL }¤v2. ��� 0J0�� H2O� ��� ¥¦H� t��

�� ,�) *+�, §¨c.¡2. ©, Ougri [[12]� titanium

tetraethoxide� ª���LH¦ autoclave@ reflux� ,�H¦ J`@

���«� �= '(� AB� "¬H­KI, Cheng [[13]� titanium

tetrachloride� ª���LH¦ pH, J`, ���«, ��:� ���®

'(� 6¯@ &�AB� *+H­0, Kondo [[14]� titanium

tetraethoxide� ª���LH¦ �N-°i�±� >Ba,²� :�

H­2. Yanagisawa [[15]� titanium tetraethoxide� ª���LH¦

�� ³� �w� �L "�� titania� :?H­KI, t���%

�� >w� Ba� ´= 0w �� Ba, �.8� �µ@ �N-°

¶� �) ·¸ >Ba �µL + H­2. ¹) Wang% Ying[16]�

titanium isopropoxide� ª���LH¦ º»¼½X,g@ �� ¾"

([Ti]/[H 20]=3-170)� �� sol-gel�� ,�H¦ �t N) ¿ "��

t��� Hq8 pH� ���® t���(T=80-240oC)H¦ �� '(

� &�@ >w� *+H­2. À~8 ,� *+��� t���� Á

) uB'(� >&�, >w, "#$�, ��AB� �) *+� �

� ,-0 12. '(� ���_��� B�� &à ��� �� �

Ä� �) *+� Ås) T,2. ��� Æ *+��� "¬�

� J`�� "� titania !� >�HI, >� %�� ,�

!� �B� �w�� t 1� t������ X�H¦ sol-gel��

�N MBv !� >�H­KI >�v !� ��� AB� 2

= q>��� �N >�v titania !� AB% "¬, ÈÉH­2.

2. � �

2-1. Sol-gel� � ����� � titania � � ��

Æ TÊ��� ª���L� TTIP(titanium tetra-isopropoxide, Adlrich,

97%)@ �DL� ethanol(Dongyang Chemical, 99.5%)� X�H­2.

Æ TÊ� �Ë�Z TÊ%� Fig. 1� 89ÌÍ2. TTIP@ �%�

��B� ?�H� �H¦ TTIP� ÎÏ � ¾t� ethanol(C2H5OH/

TTIP ¾" 5)� �N) ¿ (Ð ¬��� X�H¦ 30 ÑG ÒMH

­2. , ÒM��� ¾"� ?�v(R=H2O/TTIP=5, 20, 100, 200) ÓÂ

t� Ô�H¦ 30 ÑG �t N ��� wJ�� §¨H­2. ,ÕÃ

�.§ °i�� autoclave�� 6oC/min� ÖJ »`L 200oC×/ �

�) ¿ 50 rpmKL 3�« ÑG ��� §¨H� t���� H­2. t

���� ØÙ ¿ °i�� ÚÛ ��� X�H¦ !� tÜ) ¿ Ý

?Þß�� 100oCL 24�« Ý?) ¿ àH¦ Å !� H­2.

2-2. ���� � �� ��

uBv !� � N % á |â�q� ãH� �H¦ � Ð

aä(TA Instrument, SDT2960)� X�H¦ wJ�� 1,000oC×/ 5oC/min

� ÖJ »`L ��H¦ ãH­2. :?v !� +? Ð� �N

�� 400-4,000 cm−1� å��� FT-IR � Ð�(FTS 155, Bio-Rad)�

X�H­2. !� 6w� �Xi(�Å�(SEM, XL30SFEG, Philips)

� ,�H¦ æçH­KI, :?v titania !� >w Ð% è�

>'`� Xé ê� Ð�(XRD, Siemens D5000, Germany)� X�

H¦ ÐH­2. >w Ð� �E, ëa 1.5406ì� CuKα target,

45 kV, 40 mA� ?Ý�� ê�< 20-60o å�×/ ÐH­0, è� >

'`� ã� �N �89:w� �í&(101)� �<î� ãH¦

Scherrerï� �'H¦ µnH­2[17]. !� "#$�% �AB

� Brunauer - Emmett - Teller(BET, Micromeritics, ASAP 2400)� �q

sð�� ,�H¦ ãH­KI, , "#$�KLñò !, +6,

�� � H� 2ó� ï� X�H¦ !� è�'`� µnH­2.

(1)

¦�� D� !� è�'(&�(nm), S� "#$�(nm2/g),0, ρ�titania !� ô`(�89:w: 3.84õ10−21 g/nm3)I, 6� '(� +6

,�0 �ö� R �� shape factor÷,2. !� ��w¯� BET

@ XRDL << µn) !'`@ >'`� "(DBET/DXRD)L 89

ÌÍ2.

3. �� �

3-1. � ��

Sol-gel�� �N !MB� ª���Z TTIP� �t N� �N Ô

�c� �� ¾t� "� ���® :?) ¿ autoclave�� t���

D 6S ρ⋅---------=

Fig. 1. Flow chart for preparation of sol-gel derived titania powders withhydrothermal treatment.

Fig. 2. XRD patterns of the sol-gel derived powders with hydrothermaltreatment. The powders were dried at 100oC for 24 hr.

R5 R20 R100 R200Ratio of H2O/TTIP: 5 20 100 200

���� �41� �5� 2003� 10�

���� Titania �� �� 619

� Üø �.§ !� XRD Ð >%� Fig. 2� 89ÌÍ2. Fig. 2�

� ù t 1ú, >w� �t N� Ô�v �â� ��� wæû,

Ñ�) ³w� d­2. ©, 200oC�� 3�« ÑG t���� �N�

:?v titania !�� �ü �89:� >w, dý� ¼ t 1Í

2. ,� t��� |� TTIP� �t N� �N �.§ "�w, �

89:wKL� w��� �.þó� �Å)2.

Fig. 3� H2O/TTIP� "� 100� R sol-gel�� �N TTIP� �t

N �ÿ ¿ 100oC�� 24�« ÑG Ý?�ÿ titania !% ,� 400oC

�� 1�« ÑG ����® �.§ !�� XRD Ð >%,2. Fig.

3�� ù t 1ú, 100oC�� Ý?v !� "�w� 89Ì8,

400oCL ���v !� �89:w� 89�� ¼ t 12.

Fig. 4� TTIP� �t N % | �â� ���®(R=5, 20, 100,

200) :?) ¿ 200oC�� 3�« ÑG t���H¦ �.§ !��

FT-IR Ð >%,2. Fig. 4�� ù t 1ú, ëa, 3,380 cm−1 ñ�

�� H-OH@ Ti-OH >M� OH� �) ��§Ñ, 1,630 cm−1 ñ��

� H-O-H@ Ti-OH >M� OH� �) ��§Ñ% 530 cm−1 ñ���

� Ti-O >M� �) �<§Ñ [, 89�� ¼ t 12[5]. ¹), �

89:6 TiO2 tn��� ��5�, 1,415 cm−1 ñ��� æçcÍ

2[18]. ëa, 3,380 cm−1� �� stí&@ 1,630 cm−1 ñ�� st

fg� tq>M� H0 1� � (@ >M) Ti-OH >M� OH ��

§Ñ% *æc� KL �t N % | �, , Ô� t� fg

� � � ¼ t 12.

Fig. 5� H2O/TTIP� "� 100Z � ?ÝKL �t N v ¿ ¦

~ J`�� ���v sol-gel !�% �t N v !� t���H

¦ �.§ !� TG Ð >%,2. Fig. 5�� ù t 1ú, sol-gel

�� �N :?v ¿ 100oC�� Ý?v !� U 12%� |â�q�

d¦ ! |� �� [, , � c. 1ó� ¼ t 12[11]. �

$� sol-gel�� �N :?v ¿ 200oC�� t���� �) !,8

400oC�� ���v !�� |â �qâ` 4-5%L �� � ¼ t

1. ! |� ��� [� � â, �� � ¼ t 12.

3-2. ����� �� ��

Fig. 6� TTIP� �t N�� H2O/TTIP� "(R)� ���® :?)

¿ 200oC�� 3�« ÑG t���H¦ �.§ !�� �q s�ð

[Jé� 89� ,2. Fig. 6�� dú, �� R÷� �E� �N

BDDT� Â) 5�/� �#�Z sð[Jé| mesopore(2 nm

< diameter < 50 nm) AB� 89Ì� type IV� sð[Jé, 89þ

ó� ¼ t 12. H/� Ç� �o��� U) sð�é� 89Ì. i

6�Z type IV@� 2q 2= 6¯� 89ÌÍ2. ,� MBv '(�

, �� t� micropore� �0 1� RSKL N� t 12[18]. Fig. 6

�� R5@ R20� ?Ý% ;� �t N | Ô�v �� ³, �� ?

Ý�é de Boer� Â) �#�Z 5�/� hysteresis� 6 ̄| type A

Fig. 3. XRD patterns of titania powders made by sol-gel method.A: Powder calcined at 400oC for 1 hr, B: Powder dried at 100oC for24 hr.

Fig. 4. FT-IR spectra of sol-gel derived powders with hydrothermaltreatment. The powders were dried at 100oC for 24 hr.

Fig. 5. TG curves of titania powders made by sol-gel method and hydrother-mal treatment (R100).A: Sol-gel method, dried at 100oC for 24 hB: Sol-gel method, calcined at 400oC for 1 hrC: Sol-gel method, hydrothermal treatment at 200oC for 3 hr

HWAHAK KONGHAK Vol. 41, No. 5, October, 2003

620 ����������� �

L "¬� � '(�� ��� �N u�� �¸ T¸e �³� �,

uBv � ¼ t 1KI, ¹) R100, R200� �E�� �t N |

Ô�c� �� ³, � ?Ý�� uBv !� type EL "¬� �

� '(�� äô) �§� �) «,8 9Ú� �$� �N� uB

c� �&� �³� �� 89�2[19]. A� R200� �E�� �ð

é, �ëVà 898� � � ñ � ��, ��Hà ÄH0 1

ó� 89�2.

Fig. 7� sol-gel�� �N R100� ?ÝKL :?v ¿ 400oC��

Fig. 6. Nitrogen adsorption isotherms of sol-gel derived titania powders with hydrothermal treatment. The powders were dried at 100oC for 24 hr.R5 R20 R100 R200

Ratio of H2O/TTIP: 5 20 100 200

Fig. 7. Nitrogen adsorption isotherms of titania powders made by sol-gel method (R100) and calcined at 400oC for 1 hr.

Fig. 8. Pore size distribution curves of sol-gel derived titania powderswith hydrothermal treatment. The powders were dried at 100oCfor 24 hr.

���� �41� �5� 2003� 10�

���� Titania �� �� 621

1 hr ÑG ���v !� �q sð[JéKL type IV� 6¯� 8

9�� ¼ t 12. ¹) hysteresis 6¯��� t���� �N :?v

!� type E� 89� �$ sol-gel�� �N :?c. 400oC��

Hqv !� �&� �³% �¸ T¸e6 �, xjH� type B

� 89�� ¼ t 12[19].

TTIP� �t N % | <� �â� ��H¦ :?v ¿ t���

v !�� pore size distribution� Fig. 8� 89ÌÍ2. Fig. 8�� ù

t 1ú, �� !�, 6-10 nm� è��� �� mesopore� 8

9�� ¼ t 12. ¹) �� Ô�â, �a �� R5?Ý�� :?v

!� è� �, 12 nmL �a �� ¼ t 12. ,� �� sol-gel

MB�µ�� Ô�c� �� ³, �� �E �uB »`� DE ·¸

�$ '(Ba� z�� �.8� RS� >&�� Ó�H¦ è��

` Ó�H� ,I, e�, t���%��` �� ³, �ñH/

HyL �N-°i�w, �à �.8 �, &à 6Bc� RS,�

0 � t 12.

Fig. 9��� R100� ?ÝKL sol-gel�� �N MBv ¿ 400oC�

� 1�« ÑG ���v !% 200oC�� 3�« ÑG t��� v

!�� pore size distribution� "¬H¦ 89ÌÍ2. Fig. 9�� ù t

1ú, sol-gel�� �N MBv ¿ 400oC�� ���) !� è��

, 3 nmZ 1� '(� X,� �(intra-particle pore)% �,

60 nmZ 2� '(� X,� �(inter-aggregated pore), xH�

bimodal pore size distribution[9-11]� 89� �$, 200oC�� t�

��� �N :?v !� 7 nmñ�� è� �� �� 1� '(�

X,� �(intra-particle pore)�, xjH� monomodal pore size

distribution� d¦�Í2. , �w� �N-°i �±� �N, t���

� �� �uB� �»��!I, ,� �N 2� '(�, �Nc$� 2

� '(� X,� �, û./� KL "#� t 12[14]. ¦��

1� '(� �, uBv ¿ Ba) ��'(� 89ÌI, 2� '(� 1

� '(�� ��� �N uBv '(�� 89�2[20, 21]. ,@ ;�

�w� :?v !� 6w� 89� Fig. 10� SEM >%��` k

Z� t 12. Fig. 10�� d� $@ ;, sol-gel�� �N :?v ¿

Fig. 9. Pore size distribution curves of titania powders made by sol-gelmethod and hydrothermal treatment (R100).-�- Sol-gel method, calcined, at 400oC for 1 hr-����- Sol-gel method, hydrothermal treatment at 200oC for 3 hr

Fig. 10. Comparison of SEM images of sol-gel derived titania powdersbetween calcination and hydrothermal treatment (R100).(a) Sol-gel method, calcined, at 400oC for 1 hr(b) sol-gel method, hydrothermal treatment at 200oC for 3 hr

Fig. 11. Specific surface area of titania powders made by sol-gel methodand hydrothermal treatment.-�- Sol-gel method, hydrothermal treatment at 200oC for 3 hr-�- Sol-gel method, calcined, at 400oC for 1 hr-�- Sol-gel method, calcined, at 500oC for 1 hr-�- Sol-gel method, calcined, at 600 oC for 1 hr

HWAHAK KONGHAK Vol. 41, No. 5, October, 2003

622 ����������� �

in

ruc-

he

aces

-

ed

ce

nal

ish-

re of

400oC�� ���v titania !� 1� '(� �L ��H¦ �Ë 200-

300 nm &�� 2� '(� 6BH� Å%+?� 89Ì� �$, sol-gel

�� �N :`v ¿ 200oC�� t� ��v titania !� �N-°i

%� ÁN 2� '(�� ��, û./0 Å%+? �� &�`

40-50 nm `L �qH­2.

Fig. 11��� sol-gel�� �N :?v titania !� 200oC�� 3�

« ÑG t���� �N :?v !�% sol-gel�� �N :?v ¿

d2 W� J`�� ���v !�� "#$�� "¬H­2. Fig. 11

�� ù t 1ú, t���� �N :?v !�, sol-gel�� �N

:?v ¿ d2 W� J`L ���v !�� "N �� R÷(H2O/

TTIP ratio)�� "#$�, 50-100% ,w &à 89�� ¼ t 12.

Fig. 12��� sol-gel�� �N :?v titania !� ¦~ J`��

���) �% t��� ) !�� ��w¯� BET@ XRDL <

< µn) !&�@ >'`� ", DBET/DXRDL 89ÌÍ2. ���

KL DBET/DXRD, ÷, &$ !�� ��, ÛHà �.�� �Å)

2[22]. BETL ã) titania !� '`� XRDL ãv >'`

@ �,� d,� � ã ��� �,�� �ZH� KL X^v

2. ©, XRDL ãv >'`� Xé ê� í&� �<îKLñò

ãc� �$, BETL ãv !'`� �q sð�� �N ãv

!� "#$�KLñò µnc� RS,2. Fig. 12�� d� $@

;, sol-gel�� �N :?v ¿ d2 W� J`�� ���) !�

� ��`� t���� �N :?v !�� "N 30-40%,w &Ã

89�� ¼ t 1KI, ,� Fig. 10� SEM >%@` & �äH0

12.

4. � �

TTIP� ª���LH¦ sol-gel�� �N :?v !� autoclave�

� t� ���® �� !� AB� �N 2ó% ;� >²� ��

t 1Í2.

(1) Sol-gel�� �N :?c. 100oC�� Ý?v !� "�w�

dZ�$ 200oC�� t���� �N :?v !� � 8' �

� �0 1ÍKI �89: >w� d­2.

(2) Sol-gel�� �N :?v ¿ 400oC,w� J`�� ���H¦ >

�) �E uBv titania '(� &�� 200-300 nm `,ÍK8

200oC�� t��� ) �E�� titania '(� &�� 40-50 nm `

L &Ã �qH­2.

(3) Sol-gel�� �N :?c. 400oC�� ���v titania !� 1

�'(�X,� �(intra-particle pore)% 2� '(�X,� �(inter-

aggregated pore), xH� bimodal� � � 89� �$, 200oC

�� t���� �N �� !� 1� '(�X,� ��� ��

monomodal� 8' � � 89(KI, H2O/TTIP� "Y, 5-200 nm

� å��� , "Y, Ó��� �� è� �� &�� 6 nm×/ �

qH­2.

(4) Sol-gel�� �N :?v ¿ 400oC,w�� ���v !d2

200oC t� ��) titania !� "#$�� 50-100%×/ Ó���

t 1ÍKI, !� ��`� 30-40% ,w �q�� t 1Í2.

� ��

D : particle size [nm]

R : molar ratio of H20 to TTIP

S : specific suface area [nm2/g]

���� !

ρ : density [g/nm3]

���

1. Akhtar, M. K., Pratsinis, S. E. and Mastargelo, S. V. R., “Dopants

Vapor-Phase Synthesis of Titania Powders,”J. Am. Ceram. Soc., 75,

3408-3416(1992).

2. Gesenhues, U. and Rentscher, T., “Crystal Growth and Defect St

ture of Al3+-Doped Rutile,”J. Solid State Chem., 143(2), 210-218

(1999).

3. Bischoff, B. L. and Anderson, M. A., “Peptization Process in t

Sol-Gel Preparation of Porous Anatase (TiO2),” Chem. Mater., 7(10),

1772-1778(1995).

4. Morishige, K., Kanno, F., Ogawara, S. and Sasaki, S., “Hydrated Surf

of Particulate Titanium Dioxide Prepared by Pyrolysis of Alkox

ide,” J. Phys. Chem., 89(20), 4404-4408(1985).

5. Jean, J. H. and Ring. T. A., “Nucleation and Growth of Monosiz

Titania Powders from Alcohol Solution,” Langmuir., 2(2), 251-255(1986).

6. Fujishima, A., Hashimoto, K. and Watanabe, T., TiO2 Photocataly-

sis Fundamentals and Applications, BKC. Inc., 124-126(1999).

7. Augugliaro, V., Loddo, V., Palmisano, L. and Schiavello, M., “Performan

of Heterogeneous Photocatalytic Systems: Influence of Operatio

Variables on Photoactivity of Aqueous Suspension of TiO2,” J. Catal.,

153(1), 32-40(1995).

8. Sopyan, I., Watanabe, M., Marasawa, S., Hashimoto, K. and Fuj

ima, A., “Highly Efficient TiO2 Film Photocatalyst. Degradation of

Gaseous Acetaldehyde,”Chem. Lett., 4, 723-726(1994).

9. Song, K. C. and Pratsinis, S. E., “Control of Phase and Pore Structu

Fig. 12. Agglomeration ratio of titania powders made by sol-gel methodand hydrothermal treatment.-� - Hydrothermal treatment, synthesized at 200oC for 3 hr-�- Sol-gel method, calcined, at 400oC for 1 hr-�- Sol-gel method, calcined, at 500oC for 1 hr-�- Sol-gel method, calcined, at 600oC for 1 hr

���� �41� �5� 2003� 10�

���� Titania �� �� 623

al

er-

-

s

uc-

sis

ss

Titania Powders Using HCl and NH4OH Catalysts,”J. Am. Ceram.

Soc., 84(1), 92-98(2001).

10. Song, K. C. and Pratsinis, S. E., “The Effect of Alcohol Solvents on

the Porosity and Phase Composition of Titania,”J. Colloid. Inter-

face. Sic., 231(2), 289-298(2000).

11. Song, K. C. and Pratsinis, S. E., “Synthesis of Bimodally Porous Tita-

nia Powders by Hydrolysis of Titanium Tetraisopropoxide,”J. Mater.

Res., 15(11), 2322-2329(2000).

12. Oguri, Y., Riman, R. E. and Bowen, H. K., “Processing of Anatase Pre-

pared from Hydrothermally Treated Allkoxy-derived Hydrous Titania,” J.

Mater. Sci., 23, 2897-2904(1988).

13. Cheng, H., Ma, J., Zhao, Z. and Qi, L., “Hydrothermal Preparation of

Uniform Nanosize Rutile and Anatase Particles,” Chem. Mater., 7(4),

663-671(1995).

14. Kondo, M., Shinozaki, K., Ooki, R. and Mizutani, N., “Crystalliza-

tion Behavior and Microstructure of Hydrothermally Treated Mono-

dispersed Titanium Dioxide Particles,”J. Ceram. Soc. Jpn., 102(8),

742-746(1994).

15. Yanagisawa, K., Yamamoto, Y., Feng, Q. and Yamasak, N., “Formation

Mechanism of Fine Anatase Crystals from Amorphous Titania under

Hydrothermal Conditions,” J Mater. Res., 13(4), 825-829(1998).

16. Wang, C. C. and Ying, T. Y., “Sol-Gel Synthesis and Hydrotherm

Processing of Anatase and Rutile Titania Nanocrystals,” Chem. Mater.,

11(11), 3113-3120(1999).

17. Cullity, B. D., Elements of X-ray Diffraction, Addision-wesley, Read-

ing, MA, 100-102(1978).

18. Lee, B. M., Shin, D. Y., Han, S. M., “Synthesis of Hydrous TiO2

Powder by Dropping Precipitant Method and Photocatalytic Prop

ties,” J. Kor. Ceram. Soc., 37(4), 308-313(2000).

19. Gragg, S. J. and Sing, K. S. W., Adsorption, Suface Area and Poros

ity, Academic Press, 111-194(1982).

20. Liu, K. C. and Anderson, M. A., “Porous Nickel Oxide/Nickel Film

for Electrochemical Capacitors,” J. Electrochem. Soc., 143(1), 124-130

(1996).

21. Kumar, K. N. and Keizer, K.,� “Effect of Peptization on Densification

and Phase-Transformation Behavior of Sol-Gel-Derived Nanostr

tured Titania,” J. Am. Ceram. Soc., 77, 1396-1340(1994).

22. Kim, S. Y., Yu, J. H., Lee, J. S., Kim, J. R. and Kim, B. K., “Synthe

of Nanosized TiO2 Powder by Chemical Vapor Condensation Proce

(1),” J. Kor. Ceram. Soc., 36(7), 742-750(1999).

HWAHAK KONGHAK Vol. 41, No. 5, October, 2003