19
Review Social cognition and the cerebellum: A meta-analysis of over 350 fMRI studies Frank Van Overwalle a, , Kris Baetens a , Peter Mariën b,c , Marie Vandekerckhove a a Faculty of Psychology and Educational Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium b Faculty of Arts, Department of Clinical and Experimental Neurolinguistics, CLIN, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium c Department of Neurology and Memory Clinic, ZNA Middelheim Hospital, Lindendreef 1, B-2020 Antwerp, Belgium abstract article info Article history: Accepted 12 September 2013 Available online 27 September 2013 Keywords: Social cognition Cerebellum Functional neuroimaging Review Meta-analysis This meta-analysis explores the role of the cerebellum in social cognition. Recent meta-analyses of neuroimaging studies since 2008 demonstrate that the cerebellum is only marginally involved in social cognition and emotion- ality, with a few meta-analyses pointing to an involvement of at most 54% of the individual studies. In this study, novel meta-analyses of over 350 fMRI studies, dividing up the domain of social cognition in homogeneous subdomains, conrmed this low involvement of the cerebellum in conditions that trigger the mirror network (e.g., when familiar movements of body parts are observed) and the mentalizing network (when no moving body parts or unfamiliar movements are present). There is, however, one set of mentalizing conditions that strongly involve the cerebellum in 50100% of the individual studies. In particular, when the level of abstraction is high, such as when behaviors are described in terms of traits or permanent characteristics, in terms of groups rather than individuals, in terms of the past (episodic autobiographic memory) or the future rather than the present, or in terms of hypothetical events that may happen. An activation likelihood estimation (ALE) meta- analysis conducted in this study reveals that the cerebellum is critically implicated in social cognition and that the areas of the cerebellum which are consistently involved in social cognitive processes show extensive overlap with the areas involved in sensorimotor (during mirror and self-judgments tasks) as well as in executive func- tioning (across all tasks). We discuss the role of the cerebellum in social cognition in general and in higher ab- straction mentalizing in particular. We also point out a number of methodological limitations of some available studies on the social brain that hamper the detection of cerebellar activity. © 2013 Elsevier Inc. All rights reserved. Contents Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 555 Functional networks in social cognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 555 Function and anatomy of the cerebellum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 555 A review of recent neuroimaging meta-analyses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 557 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 559 Selection of studies and coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 559 ALE meta-analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 560 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 560 Mirroring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 561 Event mentalizing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 561 Person mentalizing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 563 Abstraction in mentalizing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 563 General discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 563 What is the role of the cerebellum in social cognition? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 563 What are the practical implications? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 564 Limitations and suggestions for research on social cognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 564 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 564 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 564 NeuroImage 86 (2014) 554572 This research was funded by a Strategic Research Program (SPR15) awarded by the Vrije Universiteit Brussel, Belgium. Corresponding author at: Department of Psychology, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium. E-mail address: [email protected] (F. Van Overwalle). 1053-8119/$ see front matter © 2013 Elsevier Inc. All rights reserved. http://dx.doi.org/10.1016/j.neuroimage.2013.09.033 Contents lists available at ScienceDirect NeuroImage journal homepage: www.elsevier.com/locate/ynimg

Social cognition and the cerebellum: A meta-analysis of ...brainmap.org/pubs/VanOverwalleNI14.pdfNevertheless, social cognition and social functioning are only marginally dealt with

  • Upload
    others

  • View
    15

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Social cognition and the cerebellum: A meta-analysis of ...brainmap.org/pubs/VanOverwalleNI14.pdfNevertheless, social cognition and social functioning are only marginally dealt with

NeuroImage 86 (2014) 554–572

Contents lists available at ScienceDirect

NeuroImage

j ourna l homepage: www.e lsev ie r .com/ locate /yn img

Review

Social cognition and the cerebellum: A meta-analysis of over 350fMRI studies☆

Frank Van Overwalle a,⁎, Kris Baetens a, Peter Mariën b,c, Marie Vandekerckhove a

a Faculty of Psychology and Educational Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgiumb Faculty of Arts, Department of Clinical and Experimental Neurolinguistics, CLIN, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgiumc Department of Neurology and Memory Clinic, ZNA Middelheim Hospital, Lindendreef 1, B-2020 Antwerp, Belgium

⁎ Corresponding author at: Department of Psychology,E-mail address: [email protected] (F. Va

1053-8119/$ – see front matter © 2013 Elsevier Inc. All rihttp://dx.doi.org/10.1016/j.neuroimage.2013.09.033

a b s t r a c t

a r t i c l e i n f o

Article history:Accepted 12 September 2013Available online 27 September 2013

Keywords:Social cognitionCerebellumFunctional neuroimagingReviewMeta-analysis

Thismeta-analysis explores the role of the cerebellum in social cognition. Recentmeta-analyses of neuroimagingstudies since 2008 demonstrate that the cerebellum is only marginally involved in social cognition and emotion-ality, with a fewmeta-analyses pointing to an involvement of at most 54% of the individual studies. In this study,novel meta-analyses of over 350 fMRI studies, dividing up the domain of social cognition in homogeneoussubdomains, confirmed this low involvement of the cerebellum in conditions that trigger the mirror network(e.g., when familiar movements of body parts are observed) and the mentalizing network (when no movingbody parts or unfamiliar movements are present). There is, however, one set of mentalizing conditions thatstrongly involve the cerebellum in 50–100% of the individual studies. In particular, when the level of abstractionis high, such as when behaviors are described in terms of traits or permanent characteristics, in terms of groupsrather than individuals, in terms of the past (episodic autobiographic memory) or the future rather than thepresent, or in terms of hypothetical events that may happen. An activation likelihood estimation (ALE) meta-analysis conducted in this study reveals that the cerebellum is critically implicated in social cognition and thatthe areas of the cerebellumwhich are consistently involved in social cognitive processes show extensive overlapwith the areas involved in sensorimotor (during mirror and self-judgments tasks) as well as in executive func-tioning (across all tasks). We discuss the role of the cerebellum in social cognition in general and in higher ab-straction mentalizing in particular. We also point out a number of methodological limitations of some availablestudies on the social brain that hamper the detection of cerebellar activity.

© 2013 Elsevier Inc. All rights reserved.

Contents

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 555Functional networks in social cognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 555Function and anatomy of the cerebellum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 555A review of recent neuroimaging meta-analyses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 557

Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 559Selection of studies and coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 559ALE meta-analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 560

Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 560Mirroring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 561Event mentalizing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 561Person mentalizing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 563Abstraction in mentalizing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 563

General discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 563What is the role of the cerebellum in social cognition? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 563What are the practical implications? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 564Limitations and suggestions for research on social cognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 564

Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 564References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 564

☆ This research was funded by a Strategic Research Program (SPR15) awarded by the Vrije Universiteit Brussel, Belgium.

Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium.n Overwalle).

ghts reserved.

Page 2: Social cognition and the cerebellum: A meta-analysis of ...brainmap.org/pubs/VanOverwalleNI14.pdfNevertheless, social cognition and social functioning are only marginally dealt with

555F. Van Overwalle et al. / NeuroImage 86 (2014) 554–572

Introduction

A 38-year-old woman who had a tumor removed from the fourthventricle via a surgical incision of 3 mm in the cerebellum, was vividlydescribed by Mariën et al. (2013b) as having an intriguing disorderexhibiting severe disturbances in social behavior:

On the third day after surgery, the clinical neurological examinationrevealed an alert and cooperative patient…Mood and affect were notappropriate. She remained unconcerned about her medical conditionand acted in a rather euphoric way. She often responded to externalstimuli in a frontal-like, disinhibited manner and presented withinappropriate behaviour, over-familiarity or flamboyant and impulsiveactions… Thirty-one days after tumor surgery, the patient evolved to astate of complete mutism. … After 12 days of akinetic mutism theclinical condition started to change….At the affective and behaviorallevel, the patient often responded with drama and outbursts of intenseand uncontrollable pseudo-bulbar-like crying and laughter (pp. 285–289).

The dysfunctions described in this adult patient provide evidence ofsevere social and emotional impairment in patientswith cerebellar dam-age. This is surprising, because after a decade of social neuroscientific re-search using functional magnetic resonance imaging (fMRI) one wouldhave hardly predicted such a dramatic impact of cerebellar pathologyon social functions that very much resembles “frontal-like” behaviorand affective symptoms, including disinhibited and inappropriate behav-ior, gradually evolving towardsmutism and uncontrollable emotionality.And yet, it is a typical description of a complex of behavioral and affectivedisorders following cerebellar damage (Mariën et al., 2013a, 2013b). Theseverity of the social impairments stands in sharp contrast to themargin-al role that social neuroimaging reports have attributed to the cerebel-lum. Current social neuroscientific research is mainly focused on howwe interpret actions of other humans and how we interact with them,with the underlying idea that dysfunctions in human social behavioras described above (or other disorders, e.g., autism, paranoia), mightoften begin with misunderstanding the behaviors of others and theself.

What is the role of the cerebellum in social neuroscience? Tradition-ally, the cerebellum is conceived as a modulator of motor functions(including tonus, balance and coordination), and motor speech produc-tion. However, during the past three decades neuroanatomical, neuroim-aging and clinical studies have provided evidence that the cerebellum isalso involved in the modulation of cognitive and affective processing(Andreasen and Pierson, 2008; Baillieux et al., 2008). New evidencerecently compiled and summarized by Stoodley, Schmahmann and col-leagues (Stoodley and Schmahmann, 2009, 2010; Stoodley et al., 2012,2013) and Mariën and colleagues (De Smet et al., 2013; Mariën et al.,2013a, 2013b) provides converging evidence in support of a crucialrole of the cerebellum inmany higher-order cognitive and affective func-tions, such as spatial, motor and executive processing, workingmemory,language, somatosensory and emotional processing. Nevertheless, socialcognition and social functioning are only marginally dealt with in theserecent reviews.

The aim of this article is to review the available data in the fMRIliterature, and to look for evidence for a possible role of the cerebellumin social cognition. Social cognition is the process of perceiving andinterpreting the behavior and state of mind of people, including theself, given non-verbal or verbal input (Amodio and Frith, 2006; VanOverwalle, 2009; Van Overwalle and Baetens, 2009). Interpretinganother person's mind is also often termed mentalizing. Distortions insocial cognition are often considered as the underlying dysfunctioncausing severe anomalies in social and affective functioning, such as inautism, schizophrenia, paranoia and prefrontal syndromes. The criticalquestion addressed in this study is: has neuroscience overlooked therole of the cerebellum in social behavior and social cognition?

Functional networks in social cognition

To understand which role the cerebellum might play in social per-ception, it is necessary to briefly discuss the functional networkssubserving social cognition (Van Overwalle, 2009; Van Overwalle andBaetens, 2009) and to summarize the functional neuroanatomy of thecerebellum (Stoodley and Schmahmann, 2010). Based on these insightsa number of potential parallels might be uncovered to unravel themechanisms of cerebellar involvement in social cognition.

In social cognition, two major networks are typically distinguished:the mirror network and the mentalizing network (Van Overwalle,2009; Van Overwalle and Baetens, 2009). The function of each networkiswell understood, although researchers disagree on specific details andprocesses. In addition, recent developments in behavioral and imagingresearch on social cognition have pointed to a specific class of socialmentalizing that requires a high level of abstraction. This process of ab-straction is often framed in terms of construal level theory (Trope andLiberman, 2010). Hence, three sets of categories of social judgmentscan be distinguished:

• Themirror network allows the reading of other persons' body, that is,their non-verbal behaviors andmovements. Specifically, this networkrecognizes the goal of a perceived action bymatching it to a represen-tation in our memory of our own actions. When observing an actionexecuted by other persons, we rapidly sense the parallels with ownactions represented in our behavioral repertoire, and from this thegoals of the other person are intuitively inferred (Gallese et al.,2004; Keysers and Gazzola, 2007; Keysers and Perrett, 2004; Uddinet al., 2007).

• The mentalizing network, supporting social mentalizing or theory ofmind (ToM), enables to read other persons' mind from informationthat is often based on verbal descriptions (Amodio and Frith, 2006).This sets thementalizing network apart as a relatively high-level cog-nitive process. Van Overwalle (2009) proposed a major distinction inthe functionality and anatomy of mentalizing processes involving ei-ther temporary events and actions or more permanent characteristicsof people such as their traits.

• Abstract judgments such as traits are essential for appropriate socialcognition and interaction. High abstraction is observedwhen a behav-ior is moved away from the concrete here-and-now and described interms of increasing psychological distance and generality. For in-stance, abstraction increases when social behavior is characterizedin terms of personality traits away from concrete situations (Baetenset al., in press; Meyer et al., 2012; Spunt and Lieberman, 2012;Spunt et al., 2010), in a past or future context away from the present(Martinelli et al., 2012; Spreng et al., 2008; Svoboda et al., 2006), ashypothetical rather than as a concrete fact (Van Hoeck et al., 2013)or in terms of social groups rather than as individuals (Van derCruyssen et al., submitted for publication).

Function and anatomy of the cerebellum

Fig. 1, taken from Stoodley and Schmahmann (2010), shows a three-dimensional view of the cerebellum from the anterior and the posteriorside. The cerebellum is organized into 10 lobules. The anterior lobules(I–V) are separated from theposterior lobules (VI–X) by the primaryfis-sure (in red). The lateral hemispheres expanded during evolution, andthis expansion comprises mainly lobules VI and VII, including Crus Iand II (Andreasen and Pierson, 2008; Stoodley and Schmahmann,2010). Hence, we might expect that, if there exists a strong functionalconnection between the cerebellum and the more recently evolved so-cial capacities in humans (Dunbar, 1998), these social functions mightbe mediated by the most recently developed cerebellar lobules VI andVII.

Fig. 2 shows the results of two recent meta-analyses on a number offunctional contributions of the cerebellum to higher cognition (E et al.,

Page 3: Social cognition and the cerebellum: A meta-analysis of ...brainmap.org/pubs/VanOverwalleNI14.pdfNevertheless, social cognition and social functioning are only marginally dealt with

Fig. 1. Anterior [A] and posterior [B] views of the external surfaces of the cerebellum with the fissures that demarcate the lobules identified in the table [C].With permission from Stoodley & Schmahmann (2010, Fig. 1).

556 F. Van Overwalle et al. / NeuroImage 86 (2014) 554–572

in press; Stoodley and Schmahmann, 2009). It is apparent that severallobules of the cerebellum are not only involved in sensorimotorfunctions, but also in non-motor functions such as central-executiveand linguistic processes. Neuroanatomical studies have identified severalreciprocal loops connecting the cerebellum to different parts of thecerebrum, including the prefrontal cortex, the hippocampus, the limbiccortex, the superior temporal cortex and the parietal cortex (Baillieuxet al., 2008), areaswhich all play a crucial role in social cognition, emotionregulation and a variety of other higher cognitive functions (Andreasenand Pierson, 2008; Baillieux et al., 2008; Stoodley and Schmahmann,2010). Studies on intrinsic connectivity identified distinct networks in-volved in sensorimotor, executive and default mode (related tomentalizing) processing encompassing both the cerebellum and cortex(Habas et al., 2009). Therefore, the cerebellummight contribute to func-tions that may form the building blocks of social cognition.

The growing amount of evidence indicating that the cerebellum isrecruited in higher cognition has led to the development of diverse the-ories that attempt to explain this involvement. One theory developed bySchmahmann and co-workers relates to the breakdown of functionsafter cerebellar lesions and includes, as noted earlier, various compo-nents of motor, cognitive and affective processes (Schmahmann andSherman, 1998; Stoodley et al., 2013). Because of its essential uniformand regular anatomy, Schmahmann and co-workers view the cerebel-lum as an oscillation dampener, modulating behavior automaticallyaround a homeostatic baseline. Disruption of this “universal cerebellartransform”may result in dysmetria of movement, thought and emotionincluding domain-specific deficiencies in executive functioning, spatialcognition, language, affect and personality. Another set of theoriesviews the cerebellum as a domain-general modulator of cognitive pro-cesses. Its function is to detect errors in patterns of information, and toupdate the information by error-driven mechanisms and to sendadaptive feedback to the cerebral cortex (e.g., Andreasen and Pierson,2008; Bower, 1997). Bower (1997), for instance, argues that the

cerebellum itself is not the seat of any particular function, but rather fa-cilitates the efficiency by which other brain structures perform theirown processes. According to this view, the cerebellum is useful butnot strictly necessary for many different kinds of brain processes. Inter-estingly, this theory predicts that cerebellar involvement increases asthe number and complexity of motor, cognitive, and emotional tasksincreases. In support of this, recent evidence shows that the cerebellumismore strongly activatedwhen task difficulty raises (Salmi et al., 2010;Xiang et al., 2003).

Regardless of whether the cerebellum is considered having severaldistinct functions or a domain-general regulatory function, neuroscien-tific evidence points to the involvement of distinct cerebellar lobules invarious cognitive and affective processes. The following cerebellar pro-cesses described in recent functional meta-analyses (E et al., in press;Stoodley and Schmahmann, 2009) seem to share functional communal-ities with social cognition:

• Motor regulation is, as noted earlier, one of the core functions of thecerebellum. In social cognition, comprehension of non-verbal move-ments and behavior by others often depends on the mirror network(Van Overwalle and Baetens, 2009). This network allows to recognizethe goal of a perceived action bymatching it to a representation in ourmemory of similar actions executed by ourselves (Gallese et al., 2004;Keysers and Gazzola, 2007; Keysers and Perrett, 2004; Uddin et al.,2007). The mirror network is sometimes extended to somatosensoryand affective processes to facilitate the understanding of anotherperson's state of mind and emotions (Keysers et al., 2010). Perhapsthis sensorimotor aspect of reading others' non-verbal behaviors isalso shared in the cerebellum.

• Executive functions consist of a variety of cognitive abilities to plan anddirect goal-oriented behavior and decision-making. As social men-talizing involves the interpretation of goal-directed actions by othersand extracting from this interpretation permanent characteristics

Page 4: Social cognition and the cerebellum: A meta-analysis of ...brainmap.org/pubs/VanOverwalleNI14.pdfNevertheless, social cognition and social functioning are only marginally dealt with

Fig. 2.ALE activationmaps from themeta-analyses of Stoodley and Schmahmann (2009) and E et al. (in press) for several domains (left cerebellar hemisphere is shown on the left). At thetop right are corresponding coronal sections from the MRI Atlas (Schmahmann et al., 2000) with the cerebellar fissures and lobules demarcated and labeled.Adapted with permission from Stoodley and Schmahmann (2009) and E et al. (in press).

557F. Van Overwalle et al. / NeuroImage 86 (2014) 554–572

such as others' traits, some executive processes relating to socialmentalizing may be shared with the cerebellum.

• Closely related to executive functionality is working memory, as thiscognitive skill may aid to perform some executive tasks that are verycomplex and demanding. Hence we may expect the involvement ofworking memory in the most complex and abstract social judgmentsthat require holding in mind several pieces of socially-relevant infor-mation.

• Language and especially semantic understanding of the meaning ofwords, sentences and narratives are inherently involved in social cog-nition. To grasp themeaning of a story or sentence, the comprehensionof goals, behaviors and mind of agents is often a prerequisite, so thatsemantics and pragmatics shares a lot of commonalities with socialmentalizing (Mar, 2011). It seems plausible that in addition to a rangeof the known linguistic functions (De Smet et al., 2013; Mariën et al.,2013a, 2013b), the cerebellum alsomediates semantics and pragmaticsof language.

• Emotions are closely related to social cognition, because adequate andsubtle social interaction requires the understanding of others' emo-tions, including reading facial expressions. Emotions show a large over-lap with social mentalizing (Van Overwalle, 2009), which may also bemediated by the cerebellum.

• Spatial processing involves navigation in space and places. Spatialnavigation shares some core areas with social mentalizing in the cortex(Spreng et al., 2008). Hence, it is possible that some of this shared func-tionality exists also in the cerebellum, perhaps for regulating and fine-tuning spatial recognition in the perception of goal-directed behavior,or for the understanding of the mental state and attitude of otherpeople.

Cerebellar involvement in this range of functions is shown in Fig. 2.The lobules prominently involved in sensorimotor processes are locatedin the right anterior lobe of the cerebellum, while non-motor processesare located in the posterior lobe of both cerebellar hemispheres. Takentogether and given the parallels in processes and tasks between socialcognition and the cerebellum, there is good reason to believe that thecerebellum might play an important and direct role in social cognition.

A review of recent neuroimaging meta-analyses

To further investigate the hypothesis of intrinsic involvement of thecerebellum in social cognition, we explored a number of neuroimagingmeta-analyses that were published since 2008 and cover the literaturetill 2011 in the domain of social cognition (on themirror andmentalizing

Page 5: Social cognition and the cerebellum: A meta-analysis of ...brainmap.org/pubs/VanOverwalleNI14.pdfNevertheless, social cognition and social functioning are only marginally dealt with

558 F. Van Overwalle et al. / NeuroImage 86 (2014) 554–572

networks) and related areas of social thinking involved in episodic auto-biographic memory and construal level, emotion and emotion regula-tion. We included only meta-analyses that (a) investigated the whole-brain (ormost parts of it), (b) used amethodology that allowed to detectactivity in the cerebellum (this excludes the use of a priori regions of in-terest), and that (c) did not include anymotor activity of the participants(e.g., tasks involving imitation and judgment of self-agency) so that onlythe effect of pure perception or observation could be examined.

As shown in Table 1, the purported role of the cerebellum seems quitelimited. The majority of meta-analyses report no direct involvement ofthe cerebellum at all, while some of them report a substantial role (upto 54% of the studies). Moreover, the incidence of cerebellar activity inemotion perception and regulation is very limited, not surpassing 15%of the studies reported in the meta-analyses. This variety and low inci-dence of the cerebellum in social tasks is disconcerting. Perhaps, it isdue to the fact that none of the meta-analyses (with the exception of Eet al., in press; Stoodley and Schmahmann, 2009), focused on the cerebel-lum so that not thewhole cerebellumwas scanned and cerebellar activityremains underreported. By contrast, Stoodley and Schmahmann (2009)selected only “a small subset of articles reporting cerebellar activation”(p. 493) just like E et al. (in press), and so ended upwith amuch favorableview on cerebellar involvement.

Table 1Published meta-analyses of social cognition and emotionality exploring the whole brain.

Study (2008–2012) Year Enda Method Refer

Mirror network (visible motions of body parts)Molenberghs et al. 2012 1/2011 ALE Yes

Mentalizing network (no visible motions of body parts)Bzdok et al. 2012 12/2010 ALE No

Denny et al. 2012 2/2008 MKDA Yes

Martinelli et al. 2012 3/2011 ALE YesSchilbach et al. 2012 – ALE NoShkurko et al. 2012 – ALE YesQin et al. 2012 8/2009 MKDA YesLombardo et al. 2011 – ALE YesMar 2011 – ALE Yes

van der Meer et al. 2010 11/2008 PVM YesCarrington & Bailey 2009 – List YesSpreng, Mar & Kim 2008 6/2007 ALE Yes

Abstraction in mentalizingMartinelli et al. 2012 3/2011 ALE YesSpreng et al. 2008 6/2007 ALE YesSvoboda et al. 2006 1/2004 Other Yes

EmotionsLee & Siegle 2012 12/2006 ALE YesLindquist et al. 2012 12/2007 MKDA Yes

Schilbach et al. 2012 – ALE NoFusar-Poli et al. 2009 5/2008 ALE Yes

Stoodley & Schmahmann 2009 – ALE YesKober et al. 2008 12/2005 MKDA Yes

Emotion regulation and meditationTomasino et al. 2013 – ALE YesOchsner & Gross 2008 – List Yes

– = not reported; MKDA = Multilevel Kernel Density Analysis, Wager et al. (2007); PVM =a End of search period.b References of included studies.c % of studies with cerebellum activation.d Published references included in the present meta-analytic search.

However, a more detailed analysis of the individual studies includedin these meta-analyses reveals that there is a great heterogeneity in thedefinition, tasks and themes in the studies. By pooling such a diversity oftasks together, conditions that do trigger the cerebellummay have beenovershadowed by other conditions that do not involve the cerebellum.Amore fine grained parcellation and careful delineation of the differentconditions and tasks might reveal a more reliable contribution of thecerebellum in some subtasks of social cognition.

The aim of the present meta-analysis is to identify, select and ana-lyze these studies. Given the large number of studies, we left the analy-sis of emotion processing and regulation for future analysis. In brief, ourgeneral plan of analysis was as follows:

• As a first step, we selected a large set of individual studies on so-cial mirroring and mentalizing, including studies from previousmeta-analyses (mainly from Van Overwalle, 2009; Van Overwalleand Baetens, 2009) and from a novel literature search. However, asnoted earlier, we excluded studies that involved some sort of motoractivity by the participants (e.g., tasks using imitation and judgmentof self-agency) so that only the effect of pure perception or observa-tion could be examined. For consistency with earlier research on socialcognition, we used the same task categories as in the two meta-

encesb Themes N %c

Mirror propertiesd 125 10%

Morality 67 0%Theory of mind 68 0%Empathy 112 0%Self judgmentsd 48 0%Other judgmentsd 48 0%Selfd 10 0%Social-cognitive – 0%Social groupsd 33 0%Selfd 57 0%Mentalizingd 41 0%Theory of mind (story-based)d 18 0%Theory of mind (Non-story-based)d 42 0%Self-reflectiond 25 0%Theory of mindd 40 25%Theory of mindd 50 0%

Autobiographicd 12 N0%Autobiographicd 16 0%Autobiographicd 24 54%

Discrete emotions 37 0%Core affect All = 91 0%Categorization of discrete emotions 0%Emotional – 0%Fearful faces All = 105 N0%Happy faces N0%Neutral faces N0%Angry faces N0%Disgusted faces 0%Emotional processing 9 N0%Emotions 162 15%

Meditation 26 0%Emotion regulation 16 0%

parametric voxel-based meta-analysis, Costafreda et al. (2009).

Page 6: Social cognition and the cerebellum: A meta-analysis of ...brainmap.org/pubs/VanOverwalleNI14.pdfNevertheless, social cognition and social functioning are only marginally dealt with

Table 2Frequency of cerebellar activity in the meta-analysis.

Theme Categories (2000–2012)a Exemplary stimuli Exemplary instruction Exemplary targetcondition

Exemplary controlcondition

N b % left c % right c % both c

Mirroring (visible motions of body parts)1. Body part motion Body part motion Passive viewing Motion/manipulating

objectNo motion 81 17% 21% 26%

2. Reflecting on intention Body part motion Passive viewing Intentional/incorrectmotion

Unintended/correctmotion

33 19% 19% 31%

Total N of contrasts/mean % 114 18% 20% 29%

Event mentalizing (no visible motions of body parts)3. Goal-directed shape motion Animations with shapes Viewing Goal-directed reactivity Randommotion 17 25% 19% 31%4. Goal-directed action Action/event stories Choose story ending Intentional action Physical event 17 31% 19% 31%5. ToM belief Action/object stories Several questions (False/true) belief Physical event 38 5% 3% 8%6. Morality Action stories Appropriateness

actionMoral Nonmoral 20 5% 5% 10%

7. Social games Games Playing the game Human opponent Computer opponent 13 33% 8% 33%Total N of contrasts/mean % 107 20% 11% 22%

Person mentalizing (no visible motions of body parts)8. Traits of distant others Trait words Describe person Person judgment Non-trait judgment 37 14% 32% 35%9. Traits of close others Trait words Describe person Close other judgment Non-trait judgment 13 15% 31% 38%10. Self-reference Trait words Describe self Self descriptive Non-self descriptive 79 11% 14% 22%11. Other N self-reference Trait words Describe person Other descriptive Self descriptive 25 0% 4% 4%Total N of contrasts/mean % withoutCategory 11

130 13% 13% 32%

Total N of contrasts/mean % 156 10% 11% 25%

Abstraction in mentalizing12. General abstraction Person pictures Describe person Trait category Non-trait category (visual) 4 50% 100% 100%13. Social categories Action stories Action judgment Social category Trait category 3 67% 33% 67%14. Hypothetical Action stories Remember/imagine Hypothetical

(counterfactual)Semantic memory 3 33% 67% 67%

15. Past and future Actions/events Remember/imagine Autobiographicpast + future

Semantic memory 56 43% 59% 75%

16. Personal N impersonalpast/future

Actions/events Remember/imagine Personal past + future Impersonal past + future 7 29% 43% 57%

17. Distant N close past and future Actions/events Remember/imagine Distant past + future Close past + future 7 0% 0% 0%Total N of contrasts/mean % withoutCategories 16–17

66% 48% 65% 77%

Total N of contrasts/mean % 80 37% 50% 61%

Grand total N of contrasts/grandmean %

457 21% 14% 34%

Note: None of the studies include active movement by the participant (e.g., self-agency, self-movement, or imitation of other-movement) or perspective taking. The same studymay par-ticipate in several contrasts across task categories.

a Search period of inclusion.b Number of studies included in the search.c % of studies reporting cerebellum activation in the left or right hemisphere, or one of both; percentages of 50% or higher are reported in bold.

559F. Van Overwalle et al. / NeuroImage 86 (2014) 554–572

analyses by Van Overwalle (2009) and Van Overwalle and Baetens(2009) to define social cognitive functions. Because earlier task cate-gories were defined for analysis of the cerebrum, their potential rele-vance for analysis of the cerebellum is important as well. Additionally,we included novel task categories and contrasts that were inspired byrecent research on abstraction in social mentalizing (cf. Trope andLiberman, 2010) including, as noted earlier, judgments about traits,hypothetical events, the episodic past or future of the self or other per-sons, as opposed to concrete here-and-now events. Each individualstudy is included in a task category that is relatively small, so thatthe conditions and tasks are homogeneous and consistent, which in-creases the possibility to detect a reliable role of the cerebellum(Table 2 and Supplementary Table S1).

• As a second step, we coded the cerebellar coordinates reported in theindividual studies. During this step, we noted a potential under-reporting of the cerebellum due to a failure to include the entire cere-bellum in the whole brain scan (which goes often undetected becauseit is not reported). Although this meta-analysis cannot amend thislimitation, by selecting a large and homogenous set of studies, robust

activity in the cerebellum might survive this noise. We report theincidence of cerebellum activity in each task category.

• As a last step, we conducted an Activation Likelihood Estimation (ALE)analysis to identify the clusters of consistent activation across studiesin the cerebellum. We then compared these clusters to activations re-ported in earlier meta-analyses on the cerebellum (E et al., in press;Stoodley and Schmahmann, 2009) to verify whether these activationsare unique to social cognition, or overlap with other functions such assensorimotor or cognitive processes.

Method

Selection of studies and coordinates

The fMRI studies reviewed in the current studywere taken from twoearlier meta-analyses on social cognition by Van Overwalle (2009) andVan Overwalle and Baetens (2009), and updated by including morerecent studies published between 2009 and the end of 2012. Studieswere identified by a search in PubMed using the term “fMRI” along

Page 7: Social cognition and the cerebellum: A meta-analysis of ...brainmap.org/pubs/VanOverwalleNI14.pdfNevertheless, social cognition and social functioning are only marginally dealt with

560 F. Van Overwalle et al. / NeuroImage 86 (2014) 554–572

with at least one of the following terms in the title or abstract: “person”,“social” or “self”. In addition, we searched for the terms “fMRI” and“autobiographic[al]” from 2000 to the end of 2012. These searches re-sulted in more than a doubling of studies from the prior meta-analyses. We included studies investigating various aspects of socialcognition, defined here as the perception, observation or judgment ofown and others' actions and mental states (beliefs, preferences, traitsand so on), as well as one's own personal present, past and future. Im-portantly, all studies and conditions which involve the participant'sown actions, such as imitation of others' behavior or one's sense ofagency during movement were excluded, because motor activity initself might have activated the cerebellum, rather than social cognition.To make sure that relevant studies were not missed, we included addi-tional studies reported in several meta-analyses on various aspects ofsocial cognition, including mirror studies and mentalizing studieson goal-directed action, beliefs and theory of mind, morality, traits ofothers and the self, and several forms of abstraction (i.e., higher constru-al) including episodic autobiographic studies on the past and future (listin Table 1). These studieswere examined for their classification into oneof several categories or types of social cognition (Table 2), as well as forthe presence of the cerebellum in the reported contrasts.

Studieswere only included if they investigated unmedicated healthyadults or adolescents (i.e., between ages 10 and 19 according to the def-inition of theWorld Health Organization), used fMRI scanning, involvednon-emotional stimuli or tasks, and reported the coordinates of activa-tions in the space of theMNI template (Collins et al., 1994) or the atlas ofTalairach and Tournoux (1988). Note that there were only two studieswith adolescents, of which only one showed cerebellar activity, so thatthis age group has a very limited impact on the overall results. Clinicalstudies were included if they reported the separate results of healthycontrol participants. Manuscripts were electronically screened for theterms “cerebellum” or “cerebellar”. If these terms were absent, thestudywas considered not to disclose any cerebellar activity. Cerebellar ac-tivity was included only when reported (sub)peak coordinates of areaswere labeled as “cerebellum” or anatomical parts of it (e.g., “vermis”,“crus”). In a few cases, mislabeling of the coordinates was suspected,and when control by the Talairach client (www.talairach.org) dem-onstrated that this was the case, the coordinates were included ascerebellar activity (Supplementary Table S1). Studies were excludedwhen scanning or analyses were restricted to areas outside thecerebellum because of limiting regions of interest analyses or incom-plete scanning of the cerebellum (e.g., only the superior part; bottomof Table S1). Studies that revealed clear cerebellar activity in text,table or figures, but did not report cerebellar (sub)peak coordinates,were also excluded from analysis (bottom of Table S1). When activa-tions were reported inMNI space, theywere transformed into Talairachand Tournoux coordinates by means of a non-linear Brett transfor-mation (http://imaging.mrc-cbu.cam.ac.uk/imaging/MniTalairach; Brettet al., 2001) so that all the coordinates were in a common stereotaxicframework.

As noted earlier, we identified task categories that were most similaramong a set of studies. We used the same categories as in the meta-analyses by Van Overwalle and Baetens (2009) and Van Overwalle(2009), and added a number of novel categories on abstraction inmentalizing. The classification of each study into a category was deter-mined by the description of task, stimuli, instructions and contrastsbetween experimental and control conditions, using similar criteria asin the meta-analyses by Van Overwalle (2009) and Van Overwalle andBaetens (2009) (see Table 2 and Supplementary Table S1 for more de-tails). Classification of all the studies proceeded in two steps. The initialclassification and recording of conditions and coordinates was madeafter a first reading of each article by the first author. A second classifica-tion and reading was made by the second author. This second readinggenerally confirmed the initial subdivision of task categories, contrastsand coordinates, although there were occasional disagreements on thefollowing points: relevance of a contrast for a given task category (or

suggestions for another/additional task category; 8% of the contrasts),correct coordinates (5%), correct coordinate system (1%) and correct de-scription of stimuli (2%), instructions (7%), target condition (4%) andbaseline condition (4%). When disagreement emerged, final consensuswas reached after discussion.

ALE meta-analysis

We used the Activation Likelihood Estimation (ALE) procedure topresent the data of our meta-analyses, as implemented by GingerALE2.1 (Eickhoff et al., 2009; Laird et al., 2005). The ALE procedure attemptsto reveal clusters of consistent activation across studies. In particular,based on the collection of peak coordinates from each study identifiedin the meta-analysis, ALE estimates the probability that at least one ofthe peaks lies within a voxel. This computation is repeated at eachvoxel in the brain and results in an ALE map. A statistical threshold forthe ALE map is computed by a nonparametric permutation test. Thistest identifies real activation if the null hypothesis that the activationfoci are spread uniformly throughout the brain (i.e., random clustering)is rejected.

It is important to note that although there were null results in manystudies of this meta-analysis, ALE does not take into account this (lackof) breadth of coverage. The purpose of the ALE method is to providean answer to the question: given a set of studies that assess the locationof functional cerebellar activations, where do these locations convergein space? ALE does not control for null results because its point is toidentify consistently reported activations, regardless of howmany stud-ies contributed to this activation. We tested this claim by running ALEanalyses including all null studies with an extra simulated frontal activ-ity, and this indeed did not alter the ALE clusters meaningfully. Conse-quently, to have a good sense of the role of the cerebellum, not onlyrobust ALE clusters but also frequency of cerebellar activation needs tobe taken into consideration.

Results and discussion

Table 2 lists a summary overview of the categories included in thismeta-analysis, the number of studies included in each category andthe percentage of studies that show activation of the cerebellum. A Sup-plementary Table lists all the details of all the individual studies andcontrasts. We included all the studies with tasks that belonged to a cat-egory, regardless of a (lack of) activation of the cerebellum, so that theproportion of studies involving the cerebellum could be estimated. Toavoid overrepresentation of some studies, the analysis was restrictedto the single most relevant contrast between an experimental task anda base-line control task that was reported as significant according tothe criteria set by each study. Studies were reported more than onceonly if they reported contrasts thatwere relevant formore than one cat-egory or when they involved independent subpopulations (e.g., adoles-cents and adults). The Supplementary Table reports themost significantactivation peak in the left and right side of the cerebellum, as well as allother significant peaks in the cerebellum.

A few contrasts were included in Table 2 to investigate alternative hy-potheses that add to the previousmeta-analyses of social cognition byVanOverwalle and colleagues (Van Overwalle, 2009; Van Overwalle andBaetens, 2009) and further explore the construal level hypothesis (Tropeand Liberman, 2010). These additional contrasts were the following:

• Although self-references typically activate the mentalizing networkmore strongly than trait inferences about other persons, task category11 (other N self contrast) was included to test the reverse hypothesison cerebellar activity. This contrast, however, did not reveal activity be-yond the original self N other contrast (Task category 10) and wastherefore excluded from further analysis.

• Category 16 (personal N impersonal past/future) tested the predictionanalogous to Category 10 that a self-related past/future increases

Page 8: Social cognition and the cerebellum: A meta-analysis of ...brainmap.org/pubs/VanOverwalleNI14.pdfNevertheless, social cognition and social functioning are only marginally dealt with

Fig. 3. ALE activation maps for 4 broad thematic functions in social cognition, in Talairach and Tournoux (1988) coordinates, overlaid on the Colin brain template. Shown are ALE clusterswith p b .01, FDR corrected and volume N100 mm3. Note that the incidence of cerebellar activity is low (22%–32% of the studies) except for abstraction duringmentalizing where the in-cidence is much higher (77% of the studies).

561F. Van Overwalle et al. / NeuroImage 86 (2014) 554–572

cerebellar activity. Category 17 (distant N close past/future) tested theprediction that increasing social time (away from the close past) in-creases construal level (Trope and Liberman, 2010), and so cerebellaractivity. These contrasts, however, did not reveal greater activityabove the original past/future N now contrast (Task Category 15),and were therefore excluded as well.

For each remaining category, we ran an ALE analysis on the studiesthat reported significant cerebellar activity. Next, we combined relatedcategories into broader functional themes if they showed similar ALE clus-ters. This was an iterative process, in which larger themes were retainedonlywhen the combined ALE analysis resulted in larger clusters commonto all categories than the separate analyses themselves (Fig. 3). Table 3lists the ALE peaks of the (combined) themes as well as all separate cate-gories that revealed significant ALE clusters. To aid the interpretation ofthe results, clusters are reported from similar tasks from the meta-analyses by Stoodley and Schmahmann (2009) that included both senso-rimotor and cognitive functions (unlike E et al., in press, who did not an-alyse sensorimotor tasks). We used the same thematic subdivision inTable 2.

The four themes resulting from the ALE analyses involved studies (1)on mirroring which included visual (or other perceptual) input on artic-ulated movements of body parts, and (2) on mentalizing (without suchbodymovements) focusing on specific events, (3) onmore general traits,as well as (4) involving abstractions. We discuss each theme in turn.

Mirroring

The first functional theme lists a large set of fMRI studies on the ob-servation of human motion which typically recruit the mirror network

(Van Overwalle and Baetens, 2009). This theme includes classic mirrorstudies involving observation of movements of human body parts,such as motions by hands and fingers, face and legs (Task 1) as well assimilar taskswith a focus on the intention of the agent, either by explicitinstruction or by using unfamiliar movements reflecting deception,error or implausibility in execution which automatically raise questionson the agent's intention (Task 2). Although these latter tasks also oftenrecruit mentalizing activity, the role of the mirror network remainsrobust.

Given the traditional role of motor recognition in the mirrornetwork, it is surprising to see that only 28% of themirror studies triggercerebellar activity (Table 2). Nonetheless, the ALE analysis reveals twolarge clusters located in the right posterior and anterior VI lobule,which have important motor functions according to the meta-analysisof Stoodley and Schmahmann (2009; Table 3). The remaining heteroge-neous set of smaller clusters is located bilaterally in posterior Crus I(extending to Crus II). This evolutionary younger part of the cerebellumappears to have a specific role in executive functions (Stoodley andSchmahmann, 2009). Several clusters also show overlap with clustersfrom this meta-analysis that reflect language and emotion processes.

Event mentalizing

The second functional theme involves mentalizing about the actor'smomentary intentions and beliefs given a behavioral (event) descrip-tion that does not involve perceptual input on moving human bodyparts, and was extensively discussed by Van Overwalle and Baetens(2009). Typical tasks involve judgments of intentionality while observ-ing animations of moving shapes (Heider and Simmel, 1944; Task 3),

Page 9: Social cognition and the cerebellum: A meta-analysis of ...brainmap.org/pubs/VanOverwalleNI14.pdfNevertheless, social cognition and social functioning are only marginally dealt with

Table 3Clusters and peak coordinates of the ALE meta-analysis.

Theme Cerebellar label Volume Value x y z Volume x y z Volume x y z Functions (Stoodleyand Schmahmann, 2009)

Mirroring (Categories 1–2):28% cerebellar activity

1. Body part motion 2. Reflecting on intention

Right posterior — uvula VI 800 0.024 10 −78 −32 792 10 −78 −32 248 32 −78 −26 Motor (12 −64 −35)Right anterior — culmen VI 504 0.023 38 −54 −22 192 40 −54 −22 Motor (22 −55 −21) Emotion

(26 −63 −25)Right posterior — uvula Crus I 192 0.018 30 −78 −24 Executive (30 −67 −25) Language

(34 −81 −26)Left posterior — uvula Crus I & II 360 0.022 −12 −78 −32 304 −12 −78 −32 Executive (−12 −77 −20) Emotion

(−4 −79 −25)Left posterior — inf.semi−lunar

Crus I & II 232 0.019 −22 −70 −38 128 −22 −70 −38 Executive (−12 −77 −20)

Event mentalizing(Categories 3–7): 22%cerebellar activity

3. Goal-directed shape motion 7. Social games

Left posterior — uvula Crus I 4128 0.016 −24 −86 −24 1640 −24 −86 −24 Executive (−12 −77 −20)Left posterior — tuber 0.026 −30 −80 −28 −36 −78 −24Left posterior — pyramis 0.016 −14 −80 −30 208 −16 −78 −30Right posterior —pyramis

Crus I 624 0.013 20 −80 −28 Language (34 −81 −26)

Person mentalizing(Categories 8–10): 32%cerebellar activity

10. Self-reference 8−9. Close*/distant** other

Right posterior — tuber Crus I 2544 0.033 24 −82 −28 768 24 −82 −28 *240 26 −86 −32 Language (34 −81 −26) Executive(30 −67 −25)

Right posterior — tuber **488 28 −76 −30Left posterior — pyramis VI 136 0.012 −10 −70 −26 128 −26 −64 −14 **192 −10 −70 −26 Executive (−12 −77 −20) Emotion

(−4 −79 −25)Right anterior — lingual IV 1016 0.022 8 −46 −18 704 8 −46 −18 Somatosensory (20 −51 −16)Right anterior — culmen VI 576 0.019 26 −40 −16 240 26 −40 −18 Motor (22 −55 −21)Left anterior — culmen 280 −12 −40 −12Left anterior — culmen −6 −36 −14

Abstraction inmentalizing (Categories12–15): 77% cerebellaractivity

12. General abstraction 15. Past and future

Right posterior — uvula Crus I 8112 0.036 16 −84 −26 328 16 −84 −26 3424 28 −80 −26 Executive (30 −67 −25) Language(34 −81 −26)

Right posterior — uvula & VI 0.052 28 −80 −26 1344 28 −74 −26 20 −70 −14Right posterior — tuber 0.031 40 −72 −28 40 −72 −28 26 −70 −32Right posterior — tonsil 0.017 36 −60 −42 944 36 −60 −42Right posterior — tonsil 42 −64 −32Right posterior — tonsil IX 4064 0.047 8 −48 −38 3288 8 −48 −38 Verbal working memory

(12 −56 −29)a

Left posterior — tonsil 0.021 −4 −42 −44 −4 −42 −44Left posterior — tonsil 0.019 −8 −48 −38Left posterior — tuber Crus I 816 0.017 −22 −84 −28 Executive (−12 −77 −20)Left posterior — tuber 0.016 −36 −86 −30Left posterior — uvula 0.015 −28 −82 −24Left posterior — uvula 0.014 −34 −74 −24

Note: Anatomical labels given according to the atlas of ALE and Schmahmann et al. (2000). Volume in mm3 for each cluster; Value = ALE Extrema value; All x–y–z coordinates a ccording to the Talairach and Tournoux (1988) atlas; coordinatesfrom related functions (meta-analysis of Stoodley and Schmahmann, 2009; except a E et al., in press) are transformed fromMNI to Talairach and Tournoux (1988) using the Brett sform. Numbers in the headings refer to the categories in Table 2.All ALE peaks are significant at p b .01, FDR corrected and with volume N130 mm3.

562F.V

anOverw

alleetal./N

euroImage

86(2014)

554–572

re atran

Page 10: Social cognition and the cerebellum: A meta-analysis of ...brainmap.org/pubs/VanOverwalleNI14.pdfNevertheless, social cognition and social functioning are only marginally dealt with

563F. Van Overwalle et al. / NeuroImage 86 (2014) 554–572

predictions on the end-state of narrated behaviors (Task 4), or under-standing an actor's true or false beliefs about the desired outcome orthe morality of behavior (Tasks 5-6), or judging the strategic choice ofan opponent in social games (Task 7).

Event mentalizing triggers the cerebellum only marginally (22% onaverage), with one of the highest percentage (31–33%) for socialgames and observing animations with moving shapes (in line with theview that the cerebellum contributes to motor activity), and the lowestfor inferring others' true or false beliefs (8%; Table 2). The ALE analysisreveals two posterior Crus I clusters, an extensive cluster in the left cer-ebellar hemisphere related to executive functions, and a smaller clusterin the right cerebellar hemisphere related to language processing(Stoodley and Schmahmann, 2009; Table 3). Given the right hemispher-ic organization of language in the cerebellum,many right-localized acti-vations in the posterior cerebellum reflect linguistic and semanticprocesses.

Person mentalizing

This third functional theme involves mentalizing about enduringcharacteristics of a person such as traits or preferences of self and others(Van Overwalle, 2009). Because self-references were contrasted againstother judgments whenever possible, this contrast reflects cerebellaractivity over and above mentalizing activity for others (the reverseother N self contrast reveals only 4% activity).

Overall, cerebellar activity in person mentalizing is similar to eventmentalizing (25% on average). The ALE analysis reveals a large clusterin the Crus I lobule, close to a language-related cluster reported byStoodley and Schmahmann (2009; Table 3), but which may also sub-serve an executive function. This cluster refers to a more generalizedfunctionality as it appears in mentalizing about the self, close othersand distant others. A small cluster more specific for distant others islocated in the left posterior lobule VI, and may suggest additional exec-utive or emotional functions (Stoodley and Schmahmann, 2009). Twoclusters that are specific to self-references are located in the right ante-rior lobules IV and VI, and presumably involve somatosensory andmotor functions (Stoodley and Schmahmann, 2009), which is sensiblegiven that these processes are quite relevant during judgments aboutthe self.

Abstraction in mentalizing

As noted earlier, recent research has shown that the mentalizingnetwork is responsible for high-level abstractions about humans (andnon-humans, Baetens et al., in press, 2013; Trope and Liberman,2010). Because abstract trait inferences are often contrasted againsttasks that require some minimal level of abstraction as well (such asin semantic tasks), the involvement of abstraction in trait inferenceshas not always become apparent in earlier fMRI studies. We thereforeused a set of studies that might provide a clearer test of the role of thecerebellum in abstraction. These studies contrast high against lowabstraction, for instance, by contrastingperson judgments against visualjudgments about the same behaviors depicted visually or described ver-bally (e.g., showing a person reading a book), by contrasting the samebehaviors as performed by stereotyped groups as opposed to individ-uals with a given trait, or by contrasting themomentary present againstthe more distant and abstract past or future, or even hypotheticalevents.

Overall, abstraction recruits very strong and robust cerebellar activ-ity, as reflected by 67% to 100% of the studies (Table 2). Although thereare only a few studies available in some of these categories, they provideconverging evidence that the cerebellum might play a critical role inabstraction processes in social cognition. The ALE analysis reveals an ex-tensive and small cluster bilaterally distributed in Crus I which relates toexecutive functioning (Stoodley and Schmahmann, 2009; Table 3), andanother extensive cluster in the medial lobule IX which might relate to

verbal workingmemory as reported in a recentmeta-analysis by E et al.(in press). According to construal level theory (Trope and Liberman,2010), increasing the psychological distance in the past or future by in-creasing social distance (contrasting impersonal against personal/selfactions) or temporal distance (contrasting distant against a close past)should increase construal level further, and this might perhaps also in-crease cerebellar activity. Contrary to this prediction, we failed to findconvincing cerebellar activity in these contrasts over and beyond the ac-tivity found in past and future events alone. In contrast, we foundmoreactivity for the reverse personal/self N impersonal contrast, and littleactivity for the distant N close contrast (Table 2). This seems to pointto some limitations at the level of cerebellar involvement in construallevel theory (Trope and Liberman, 2010), indicating that levels of con-strual do not increase cerebellar activity indefinitely.

General discussion

What is the role of the cerebellum in social cognition?

This review coversmore than 350 fMRI studies to provide further in-sight to the role of the cerebellum in social cognition. In discussing theresults and implications of this study,we follow the dichotomy betweenthe evolutionary younger “cognitive” and older “sensorimotor” cerebel-lar topography. First, the ALE analysis found robust social-cognitiveclusters that overlap with executive and semantic (language) functionsidentified in prior meta-analyses (E et al., in press; Stoodley andSchmahmann, 2009). This suggests that the cerebellum does not playa domain-specific role in social cognition, but most probably providesdomain-general executive and semantic support. As a case in point,we found that the cerebellum is strongly involved during abstractmentalizing, suggesting that the increased difficulty or cognitive loadinvolved in abstraction may cause increased cerebellar activity. This isconsistentwith theories that view the cerebellumas amodulator of cog-nitive processes, that updates information and sends adaptive feedbackto the cerebral cortex (e.g., Andreasen and Pierson, 2008; Bower, 1997).In this view, the cerebellum itself is not responsible for any particularfunction, but rather facilitates the efficiency by which other neocorticalstructures perform their own processes. This explanation is also in linewith our finding that cerebellar activity increases when the level of ab-straction in social cognitive tasks raises, and executive resources are indemand.

The observation that parts of the cerebellum are particularly in-volved in abstract mentalizing (e.g., projecting oneself into the futureand recalling the autobiographical past, thinking about traits and ste-reotypes), and that these parts overlap with cerebellar areas involvedin semantic judgments, is paralleled by a similar overlap in cerebralstructures of abstraction with semantics and conceptual knowledge(Binder et al., 2009; Lindquist and Barrett, 2012). This opens interest-ing perspectives for understanding the process underlying abstractmentalizing in the cerebellum. Specifically, it suggests that abstractionrelies on the retrieval of semantic meaning which is more extensivefor abstract concepts given themultitude of links and potential contextsin comparison with concrete concepts (Baetens et al., 2013). There is asimilar overlap in the cerebrumbetween abstractmentalizing and auto-biographic memory and imaging the future (Martinelli et al., 2012;Schacter et al., 2012; Spreng et al., 2008; Svoboda et al., 2006). This over-lap suggests that abstraction involves a similar increase in retrieval andrecombination of conceptual information from the past. A functionaloverlaphas also been reportedwith the default network reflecting activ-ity during undirected thought and daydreaming at rest (Mars et al.,2012; Spreng et al., 2008). However, this finding is at odds with the in-volvement of the cerebellum in executive control. In support of this, re-cent research demonstrates that abstraction recruits activity in thementalizing network irrespective of high versus low judgment con-straints (Baetens et al., 2013). Taken together, functional overlaps in

Page 11: Social cognition and the cerebellum: A meta-analysis of ...brainmap.org/pubs/VanOverwalleNI14.pdfNevertheless, social cognition and social functioning are only marginally dealt with

564 F. Van Overwalle et al. / NeuroImage 86 (2014) 554–572

the cerebrum and cerebellum provide interesting hypotheses on theneurological mechanisms underlying abstraction in social cognition.

Second, the ALE analysis points to social-cognitive processes that ac-tivate the “older” anterior cerebellum and that reflect sensorimotor andemotional processes. Sensorimotor and emotional processes are recruit-ed when observers try to make sense of humanmovements (recruitingmirror motor function). Sensorimotor processes are also involved dur-ing verbal descriptions of the self (triggeringmotor and somatosensorysensations of the self). Emotional processes are also recruited duringmentalizing about a distant other. We see here a distinct reaction de-pending on the social target: sensorimotor experiences for the self,emotionality for distant others. Future research might provide more in-sight in the common and specific contributions of sensorimotor andemotional processes in the cerebellum.

Although we found substantial overlap in the cerebellum betweenthe social-cognitive clusters of this study and several sensorimotorand executive functions (including language and working memory)identified in previousmeta-analyses, this overlap provides only sugges-tive evidence of common underlying processes. More work is needed toestablish whether these overlapping clusters are empirically justified,either at a meta-analytic level involving many studies (e.g., by combin-ing several meta-analytic studies), or within single studies. Strongerevidence can also be harnessed by exploring the anatomical and func-tional connectivity between cerebellar and cortical clusters involved insocial thought (Habas et al., 2009, for examples in other functional do-mains). Hence, the present findings offer interesting avenues for futureresearch on the commonalities between social cerebral processes andcognitive and sensorimotor operations in the cerebellum.

Some popular alternative explanations of the role of the cerebellumin social cognition did not receive much support in the present study.First, therewas little evidence for a general time-keeping role of the cer-ebellum which coordinates the inputs and outputs from varied sourcesduring processing, as claimed by E et al. (in press). According to theseauthors, this function is supported by a general recruitment of lobuleVI. However, in the present study, this lobule was active only in threeout of our four task themes, as relatively small clusters or as part of alarger cluster. If this time-keeping function plays a role in social thought,it most likely does so during mirroring were it recruits two large clus-ters. Second, there was no evidence for spatial processing as revealedin the meta-analysis of Stoodley and Schmahmann (2009).

What are the practical implications?

It is important to stress that although consistent areas in the cerebel-lum are activated, overall, the role of the cerebellum in social judgmentsis limited, except when mentalizing involves higher levels of abstrac-tion. Given that many studies used semantic (i.e., mid-level abstract)tasks as control conditions, it is possible that the role of the cerebellumis actually even more substantial. We found that abstract mentalizingprocesses are associated with robust cerebellum activity during persontrait inferences (Baetens et al., in press), during stereotyping of socialgroups (Van der Cruyssen et al., submitted for publication), and duringevents taking place in another time (past or future) or hypothetical time(counterfactuals; Van Hoeck et al., 2013). These are all important socialfunctions.

Consequently, if dysfunctions or lesions affect the cerebellum, thiswill certainly have detrimental effects on social functionality, especiallyon the more complex and abstract social cognitive judgments, such asinferences on other people's traits, learning from the past and makingstrategic decision for the future. The cerebellum has been found tobe dysfunctional in a broad range of psychiatric disorders such as au-tistic spectrum disorders, depression, and schizophrenia (Baumanand Kemper, 2005; Penn, 2006), and this finding, coupled with thepresentmeta-analytic findings,may open interesting avenues for futuretreatment. For instance, these social dysfunctions might be diagnosedquite early with high-abstract mentalizing tasks.

Limitations and suggestions for research on social cognition

This studywas limited by the unequal representation of task catego-ries in some domains, especially in the domain of abstraction inmentalizing. The large number of studies on past and future events re-veals a robust effect of high construal level on cerebellar activity. How-ever, the evidence is quite meager for the same high-level construalprocess in general abstraction, hypothetical or social categories (Tasks12–14). It might be that the role of the cerebellum in these social judg-ments is overstatedwhenmore evidence becomes available, or that the-oretical explanations other than construal level (Trope and Liberman,2010)will ultimately fit the evidence better. These domains are a partic-ular challenge for future social cognition research on the cerebellum.

In the Introduction, we pointed out that there are several methodo-logical limitations to the available research on the social brain that ham-per the detection of cerebellar activity. Quite often, the cerebellum isentirely neglected or its inferior part is left out of the scanning proce-dure, so that important activity of the cerebellum goes undetected.The better news is that these limitations are sometimes reported, butwe surmise that the neglect of the cerebellum occurs more often thanreported so far. As demonstrated by this review, the cerebellum playsan important if not crucial role in social cognition, and should be includ-ed in the scanning of social judgments in its entirely.

Supplementary data to this article can be found online at http://dx.doi.org/10.1016/j.neuroimage.2013.09.033.

Conclusion

We return to the initial question of our study: has neuroscienceoverlooked the role of the cerebellum in social cognition? Our answeris twofold. No, the cerebellum seems seldom crucially involved in socialthought that involves little abstraction. Yes, we did underestimate therole of the cerebellum during social inferences that require high-levelabstraction away from the current event. For instance, whenmaking in-ferences about traits and stereotypes of other persons and groups, whenthinking strategically about thepast, the future or hypothetical events. Itappears that the cerebellum plays an important, but perhaps not neces-sary supporting role in executive processing and meaning-givingrequired for such high-level mentalizing.

References

Amodio, D.M., Frith, C.D., 2006. Meeting of minds: the medial frontal cortex and socialcognition. Nat. Rev. Neurosci. 7 (4), 268–277. http://dx.doi.org/10.1038/nrn1884.

Andreasen, N.C., Pierson, R., 2008. The role of the cerebellum in schizophrenia. Biol.Psychiatry 64 (2), 81–88. http://dx.doi.org/10.1016/j.biopsych.2008.01.003.

Baetens, K., Ma, N., Steen, J., Van Overwalle, F., 2013. Involvement of the mentalizingnetwork in social and non-social high construal. Soc. Cogn. Affect. Neurosci.http://dx.doi.org/10.1093/scan/nst048 (in press).

Baetens, K., Ma, N., Vandekerckhove, M., Van Overwalle, F., 2013. The role of the dmPFC inhigh construal: constraint or meaning? Soc. Cogn. Affect. Neurosci.

Baillieux, H., De Smet, H.J., Paquier, P.F., De Deyn, P.P., Mariën, P., 2008. Cerebellarneurocognition: insights into the bottom of the brain. Clin. Neurol. Neurosurg. 110(8), 763–773. http://dx.doi.org/10.1016/j.clineuro.2008.05.013.

Bauman, M.L., Kemper, T.L., 2005. Neuroanatomic observations of the brain in autism: areview and future directions. Int. J. Dev. Neurosci. 23 (2–3), 183–187. http://dx.doi.org/10.1016/j.ijdevneu.2004.09.006.

Binder, J.R., Desai, R.H., Graves, W.W., Conant, L.L., 2009. Where is the semantic system? Acritical review andmeta-analysis of 120 functional neuroimaging studies. Cereb. Cor-tex 19 (12), 2767–2796. http://dx.doi.org/10.1093/cercor/bhp055.

Bower, J., 1997. Control of sensory data acquisition. Int. Rev. Neurobiol. 41, 489–513.Brett, M., Christoff, K., Cusack, R., Lancaster, J., 2001. Using the talairach atlas with the MNI

template. NeuroImage 13 (6), 85. http://dx.doi.org/10.1016/S1053-8119(01)91428-4.Collins, D.L., Neelin, P., Peters, T.M., Evans, A.C., 1994. Automatic 3D intersubject registra-

tion ofMR volumetric data in standardized Talairach space. J. Comput. Assist. Tomogr.18, 192–205.

Costafreda, S.G., David, A.S., Brammer, M.J., 2009. A parametric approach to voxel-based meta-analysis. NeuroImage 46 (1), 115–122. http://dx.doi.org/10.1016/j.neuroimage.2009.01.031.

De Smet, H.J., Paquier, P., Verhoeven, J., Mariën, P., 2013. The cerebellum: its role in lan-guage and related cognitive and affective functions. Brain Lang. http://dx.doi.org/10.1016/j.bandl.2012.11.001 (xxxx).

Page 12: Social cognition and the cerebellum: A meta-analysis of ...brainmap.org/pubs/VanOverwalleNI14.pdfNevertheless, social cognition and social functioning are only marginally dealt with

565F. Van Overwalle et al. / NeuroImage 86 (2014) 554–572

Dunbar, R.I.M., 1998. The social brain hypothesis. Evol. Anthropol. Issues News Rev. 6 (5),178–190. http://dx.doi.org/10.1002/(SICI)1520-6505(1998)6:5b178::AID-EVAN5N3.3.CO;2-P.

E, K.-H., Chen, S.-H.A., Ho, M.-H.R., Desmond, J.E., 2013. A meta-analysis of cerebellarcontribution to higher cognition from PET and fMRI studies. Hum. Brain Mapp.http://dx.doi.org/10.1002/hbm.22194 (in press).

Eickhoff, S.B., Laird, A.R., Grefkes, C., Wang, L.E., Zilles, K., Fox, P.T., 2009. Coordinate-basedActivation Likelihood Estimation Meta-analysis of Neuroimaging Data: A Random-effects Approach Based on Empirical Estimates of Spatial Uncertainty, 2926 (November2008). 2907–2926. http://dx.doi.org/10.1002/hbm.20718.

Gallese, V., Keysers, C., Rizzolatti, G., 2004. A unifying view of the basis of social cognition.Trends Cogn. Sci. 8 (9), 396–403. http://dx.doi.org/10.1016/j.tics.2004.07.002.

Habas, C., Kamdar, N., Nguyen, D., Keller, K., Beckamn, C.F., Menon, V., Greicius, M.D., 2009.Distinct cerebellar contributions to intrinsic connectivity networks. J. Neurosci. 29(26), 8586–8594. http://dx.doi.org/10.1523/JNEUROSCI.1868-09.2009.Distinct.

Heider, F., Simmel, M., 1944. An experimental study of apparent behavior. Am. J. Psychol.57, 243–259.

Keysers, C., Gazzola, V., 2007. Integrating simulation and theory of mind: from self tosocial cognition. Trends Cogn. Sci. 11, 194–196.

Keysers, Christian, Perrett, D.I., 2004. Demystifying social cognition: a Hebbian perspec-tive. Trends Cogn. Sci. 8 (11), 501–507. http://dx.doi.org/10.1016/j.tics.2004.09.005.

Keysers, Christian, Kaas, J.H., Gazzola, V., 2010. Somatosensation in social perception. Nat.Rev. Neurosci. 11 (6), 417–428. http://dx.doi.org/10.1038/nrn2833.

Laird, A.R., Fox, P.M., Price, C.J., Glahn, D.C., Uecker, A.M., Lancaster, J.L., Fox, P.T., 2005. ALEmeta-analysis: controlling the false discovery rate and performing statisticalcontrasts. Hum. Brain Mapp. 25 (1), 155–164. http://dx.doi.org/10.1002/hbm.20136.

Lindquist, K.A., Barrett, L.F., 2012. A functional architecture of the human brain: emerginginsights from the science of emotion. Trends Cogn. Sci. 16 (11), 533–540. http://dx.doi.org/10.1016/j.tics.2012.09.005.

Mar, R.A., 2011. The neural bases of social cognition and story comprehension. Annu. Rev.Psychol. 62, 103–134. http://dx.doi.org/10.1146/annurev-psych-120709-145406.

Mariën, P., De Smet, H.J., Paquier, P., De Deyn, P.P., Verhoeven, J., 2013a. Cerebellarmutism. In: Manto, M., Schmahmann, J.D., Rossi, F., Gruol, D.L., Koibuchi, N. (Eds.),Handbook of the Cerebellum and Cerebellar Disorders. Springer Netherlands,Dordrecht, p. 78. http://dx.doi.org/10.1007/978-94-007-1333-8.

Mariën, P., De Smet, H.J., Wijgerde, E., Verhoeven, J., Crols, R., De Deyn, P.P., 2013b. Poste-rior fossa syndrome in adults: a new case and comprehensive survey of the literature.Cortex 49, 284–300. http://dx.doi.org/10.1016/j.cortex.2011.06.018.

Mars, R.B., Neubert, F.-X., Noonan, M.P., Sallet, J., Toni, I., Rushworth, M.F.S., 2012. On therelationship between the “default mode network” and the “social brain”. Front. Hum.Neurosci. 6 (June), 189. http://dx.doi.org/10.3389/fnhum.2012.00189.

Martinelli, P., Sperduti, M., Piolino, P., 2012. Neural substrates of the self-memory system:new insights from ameta-analysis. Hum. Brain Mapp. 000. http://dx.doi.org/10.1002/hbm.22008.

Meyer, M.L., Spunt, R.P., Berkman, E.T., Taylor, S.E., Lieberman,M.D., 2012. Evidence for so-cial working memory from a parametric functional MRI study. Proc. Natl. Acad. Sci. U.S. A. 109 (6), 1883–1888. http://dx.doi.org/10.1073/pnas.1121077109.

Penn, H., 2006. Neurobiological correlates of autism: a review of recent research. ChildNeuropsychol. 12, 57–79.

Salmi, J., Pallesen, K.J., Neuvonen, T., Brattico, E., Korvenoja, A., Salonen, O., Carlson, S.,2010. Cognitive and motor loops of the human cerebro-cerebellar system. J. Cogn.Neurosci. 22 (11), 2663–2676. http://dx.doi.org/10.1162/jocn.2009.21382.

Schacter, D.L., Addis, D.R., Hassabis, D., Martin, V.C., Spreng, R.N., Szpunar, K.K., 2012. Thefuture of memory: remembering, imagining, and the brain. Neuron 76 (4), 677–694.http://dx.doi.org/10.1016/j.neuron.2012.11.001.

Schmahmann, J.D., Sherman, J.C., 1998. The cerebellar cognitive affective syndrome. Brain121, 561–579 (Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/9577385).

Schmahmann, J.D., Doyon, J., Toga, A.W., Petrides, M., Evans, A.C., 2000. MRI Atlas of theHuman Cerebellum. Academic Press, San Diego.

Spreng, R.N., Mar, R.A., Kim, A.S.N., 2008. The common neural basis of autobiographicalmemory, prospection, navigation, theory of mind, and the default mode: a quantita-tive meta-analysis. J. Cogn. Neurosci. 21 (3), 489–510.

Spunt, Robert P., Lieberman, M.D., 2012. Dissociating modality-specific and supramodalneural systems for action understanding. J. Neurosci. 32 (10), 3575–3583. http://dx.doi.org/10.1523/JNEUROSCI.5715-11.2012.

Spunt, R.P., Falk, E.B., Lieberman, M.D., 2010. Dissociable neural systems support retrievalof how and why action knowledge. Psychol. Sci. 21 (11), 1593–1598. http://dx.doi.org/10.1177/0956797610386618.

Stoodley, C.J., Schmahmann, J.D., 2009. Functional topography in the human cerebel-lum: a meta-analysis of neuroimaging studies. NeuroImage 44 (2), 489–501.http://dx.doi.org/10.1016/j.neuroimage.2008.08.039.

Stoodley, C.J., Schmahmann, J.D., 2010. Evidence for topographic organization in the cer-ebellum of motor control versus cognitive and affective processing. Cortex 46 (7),831–844. http://dx.doi.org/10.1016/j.cortex.2009.11.008.

Stoodley, C.J., Valera, E.M., Schmahmann, J.D., 2012. Functional topography of the cerebel-lum for motor and cognitive tasks: an fMRI study. NeuroImage 59 (2), 1560–1570.http://dx.doi.org/10.1016/j.neuroimage.2011.08.065.

Stoodley, C.J., Desmond, J.E., Schmahmann, J.D., 2013. Functional topography of thehuman cerebellum revealed by functional neuroimaging studies. In: Manto, M.,Schmahmann, J.D., Rossi, F., Gruol, D.L., Koibuchi, N. (Eds.), Handbook of the Cerebel-lum and Cerebellar Disorders. Springer Netherlands, Dordrecht, pp. 735–764.http://dx.doi.org/10.1007/978-94-007-1333-8.

Svoboda, E., McKinnon, M., Levine, B., 2006. The functional neuroanatomy of autobiograph-ical memory: a meta-analysis. Neuropsychologia 44 (12), 2189–2208 (Retrieved fromhttp://www.sciencedirect.com/science/article/pii/S0028393206002090).

Talairach, J., Tournoux, P., 1988. Co-planar Stereotaxic Atlas of the Human Brain. Thieme,Stuttgart.

Trope, Y., Liberman, N., 2010. Construal-level theory of psychological distance. Psychol.Rev. 117 (2), 440–463. http://dx.doi.org/10.1037/a0018963.

Uddin, L.Q., Iacoboni, M., Lange, C., Keenan, J.P., 2007. The self and social cognition: therole of cortical midline structures and mirror neurons. Trends Cogn. Sci. 11 (4),153–157. http://dx.doi.org/10.1016/j.tics.2007.01.001.

Van der Cruyssen, L., Heleven, E., Ma, N., Van Overwalle, F., 2013. Distinct Neural Corre-lates of Stereotypes and Traits (submitted for publication).

Van Hoeck, N., Ma, N., Ampe, L., Baetens, K., Vandekerckhove, M., Van Overwalle, F., 2013.Counterfactual thinking: an fMRI study on changing the past for a better future. Soc.Cogn. Affect. Neurosci. http://dx.doi.org/10.1093/scan/nss031.

Van Overwalle, F., 2009. Social cognition and the brain: a meta-analysis. Hum. BrainMapp. 30 (3), 829–858. http://dx.doi.org/10.1002/hbm.20547.

Van Overwalle, F., Baetens, K., 2009. Understanding others' actions and goals by mir-ror and mentalizing systems: a meta-analysis. NeuroImage 48 (3), 564–584.http://dx.doi.org/10.1016/j.neuroimage.2009.06.009.

Wager, T.D., Lindquist, M., Kaplan, L., 2007. Meta-analysis of functional neuroima-gingdata: current and future directions. Soc. Cogn. Affect. Neurosci. 2 (2), 150–158.

Xiang, H., Lin, C., Ma, X., Zhang, Z., Bower, J.M., Weng, X., Gao, J.-H., 2003. Involvement ofthe cerebellum in semantic discrimination: an fMRI study. Hum. Brain Mapp. 18 (3),208–214. http://dx.doi.org/10.1002/hbm.10095.

References from the meta-analysis

Abraham, A., Schubotz, R.I., Von Cramon, D.Y., 2008. Thinking about the future versus thepast in personal and non-personal contexts. Brain Res. 1233, 106–119. http://dx.doi.org/10.1016/j.brainres.2008.07.084.

Abraham, A., Werning, M., Rakoczy, H., Von Cramon, D.Y., Schubotz, R.I., 2008. Minds,persons, and space: an fMRI investigation into the relational complexity of higher-order intentionality. Conscious. Cogn. 17 (2), 438–450. http://dx.doi.org/10.1016/j.concog.2008.03.011.

Abraham, A., Rakoczy, H., Werning, M., Von Cramon, D.Y., Schubotz, R.I., 2010. Matchingmind to world and vice versa: functional dissociations between belief and desiremental state processing. Soc. Neurosci. 5 (1), 1–18. http://dx.doi.org/10.1080/17470910903166853.

Addis, D.R., Moscovitch, M., Crawley, A.P., McAndrews, M.P., 2004. Recollective qualitiesmodulate hippocampal activation during autobiographical memory retrieval. Hippo-campus 14 (6), 752–762. http://dx.doi.org/10.1002/hipo.10215.

Addis, D.R., Wong, A.T., Schacter, D.L., 2007. Remembering the past and imagining thefuture: common and distinct neural substrates during event construction andelaboration. Neuropsychologia 45 (7), 1363–1377. http://dx.doi.org/10.1016/j.neuropsychologia.2006.10.016.

Addis, D.R., Pan, L., Vu, M.-A., Laiser, N., Schacter, D.L., 2009. Constructive episodicsimulation of the future and the past: distinct subsystems of a core brain networkmediate imagining and remembering. Neuropsychologia 47 (11), 2222–2238.http://dx.doi.org/10.1016/j.neuropsychologia.2008.10.026.

Addis, D.R., Knapp, K., Roberts, R.P., Schacter, D.L., 2012. Routes to the past: neural sub-strates of direct and generative autobiographical memory retrieval. NeuroImage 59(3), 2908–2922. http://dx.doi.org/10.1016/j.neuroimage.2011.09.066.

Aichhorn, M., Perner, J., Kronbichler, M., Staffen, W., Ladurner, G., 2006. Do visual perspec-tive tasks need theory of mind? NeuroImage 30 (3), 1059–1068. http://dx.doi.org/10.1016/j.neuroimage.2005.10.026.

Aichhorn, M., Perner, J., Weiss, B., Kronbichler, M., Staffen, W., Ladurner, G., 2009.Temporo-parietal junction activity in theory-of-mind tasks: falseness, beliefs, or at-tention. J. Cogn. Neurosci. 21 (6), 1179–1192. http://dx.doi.org/10.1162/jocn.2009.21082.

Akitsuki, Y., Decety, J., 2009. Social context and perceived agency affects empathyfor pain: an event-related fMRI investigation. NeuroImage 47 (2), 722–734.http://dx.doi.org/10.1016/j.neuroimage.2009.04.091.

Arnott, S.R., Singhal, A., Goodale, M.A., 2009. An investigation of auditory contagiousyawning. Cogn. Affect. Behav. Neurosci. 9 (3), 335–342. http://dx.doi.org/10.3758/CABN.9.3.335.

Arshamian, A., Iannilli, E., Gerber, J.C., Willander, J., Persson, J., Seo, H.-S., Hummel, T., et al.,2013. The functional neuroanatomy of odor evoked autobiographical memories cuedby odors and words. Neuropsychologia 51 (1), 123–131. http://dx.doi.org/10.1016/j.neuropsychologia.2012.10.023.

Atique, B., Erb, M., Gharabaghi, A., Grodd, W., Anders, S., 2011. Task-specific activ-ity and connectivity within the mentalizing network during emotion andintention mentalizing. NeuroImage 55 (4), 1899–1911. http://dx.doi.org/10.1016/j.neuroimage.2010.12.036.

Baetens, K., Ma, N., Steen, J., Van Overwalle, F., 2013. Involvement of the mentalizingnetwork in social and non-social high construal. Soc. Cogn. Affect. Neurosci.(in press).

Baetens, K., Ma, N., Vandekerckhove, M., Van Overwalle, F., 2013. The Role of the dmPFC inHigh Construal: Constraint or Meaning? (under revision).

Bahnemann, M., Dziobek, I., Prehn, K., Wolf, I., Heekeren, H.R., 2010. Sociotopy in thetemporoparietal cortex: common versus distinct processes. Soc. Cogn. Affect.Neurosci. 5 (1), 48–58. http://dx.doi.org/10.1093/scan/nsp045.

Balslev, D., Nielsen, F.A., Paulson, O.B., Law, I., 2005. Right temporoparietal cortex activa-tion during visuo-proprioceptive conflict. Cereb. Cortex 15 (2), 166–169. http://dx.doi.org/10.1093/cercor/bhh119.

Balslev, D., Nielsen, F.A., Lund, T.E., Law, I., Paulson, O.B., 2006. Similar brain networks fordetecting visuo-motor and visuo-proprioceptive synchrony. NeuroImage 31 (1),308–312. http://dx.doi.org/10.1016/j.neuroimage.2005.11.037.

Page 13: Social cognition and the cerebellum: A meta-analysis of ...brainmap.org/pubs/VanOverwalleNI14.pdfNevertheless, social cognition and social functioning are only marginally dealt with

566 F. Van Overwalle et al. / NeuroImage 86 (2014) 554–572

Baron, S.G., Gobbini, M.I., Engell, A.D., Todorov, A., 2011. Amygdala and dorsomedial pre-frontal cortex responses to appearance-based and behavior-based person impres-sions. Soc. Cogn. Affect. Neurosci. 6, 572–581. http://dx.doi.org/10.1093/scan/nsq086.

Baumgaertner, A., Buccino, G., Lange, R., McNamara, A., Binkofski, F., 2007. Polymodal con-ceptual processing of human biological actions in the left inferior frontal lobe. Eur.J. Neurosci. 25 (3), 881–889. http://dx.doi.org/10.1111/j.1460-9568.2007.05346.x.

Beer, J.S., Hughes, B.L., 2010. Neural systems of social comparison and the “above-aver-age” effect. NeuroImage 49 (3), 2671–2679. http://dx.doi.org/10.1016/j.neuroimage.2009.10.075.

Benoit, R.G., Gilbert, S.J., Volle, E., Burgess, P.W., 2010. When I think about me and simu-late you: medial rostral prefrontal cortex and self-referential processes. NeuroImage50 (3), 1340–1349. http://dx.doi.org/10.1016/j.neuroimage.2009.12.091.

Berns, G.S., Chappelow, J., Zink, C.F., Pagnoni, G., Martin-Skurski, M.E., Richards, J., 2005. Neu-robiological correlates of social conformity and independence during mental rotation.Biol. Psychiatry 58 (3), 245–253. http://dx.doi.org/10.1016/j.biopsych.2005.04.012.

Berthoz, S., Armony, J.L., Blair, R.J.R., Dolan, R.J., 2002. An fMRI study of intentional and un-intentional (embarrassing) violations of social norms. Brain 125 (Pt 8), 1696–1708(Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/12135962).

Bhatt, M., Camerer, C.F., 2005. Self-referential thinking and equilibrium as states of mindin games: fMRI evidence. Games Econ. Behav. 52 (2), 424–459. http://dx.doi.org/10.1016/j.geb.2005.03.007.

Biagi, L., Cioni, G., Fogassi, L., Guzzetta, A., Tosetti, M., 2010. Anterior intraparietal cortexcodes complexity of observed hand movements. Brain Res. Bull. 81 (4–5), 434–440.http://dx.doi.org/10.1016/j.brainresbull.2009.12.002.

Bidet-Caulet, A., Voisin, J., Bertrand, O., Fonlupt, P., 2005. Listening to a walking humanactivates the temporal biological motion area. NeuroImage 28 (1), 132–139.http://dx.doi.org/10.1016/j.neuroimage.2005.06.018.

Blakemore, S.-J., Boyer, P., Pachot-Clouard, M., Meltzoff, A., Segebarth, C., Decety, J., 2003.The detection of contingency and animacy from simple animations in the humanbrain. Cereb. Cortex 13 (8), 837–844 (Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/12853370).

Blakemore, S.-J., Bristow, D., Bird, G., Frith, C., Ward, J., 2005. Somatosensory activationsduring the observation of touch and a case of vision-touch synaesthesia. Brain 128(Pt 7), 1571–1583. http://dx.doi.org/10.1093/brain/awh500.

Blakemore, Sarah-Jayne, Den Ouden, H., Choudhury, S., Frith, C., 2007. Adolescent devel-opment of the neural circuitry for thinking about intentions. Soc. Cogn. Affect.Neurosci. 2 (2), 130–139. http://dx.doi.org/10.1093/scan/nsm009.

Blos, J., Chatterjee, A., Kircher, T., Straube, B., 2012. Neural correlates of causality judgmentin physical and social context—the reversed effects of space and time. NeuroImage 63(2), 882–893. http://dx.doi.org/10.1016/j.neuroimage.2012.07.028.

Bluhm, R.L., Frewen, P.A., Coupland, N.C., Densmore, M., Schore, A.N., Lanius, R.A., 2012.Neural correlates of self-reflection in post-traumatic stress disorder. Acta Psychiatr.Scand. 125 (3), 238–246. http://dx.doi.org/10.1111/j.1600-0447.2011.01773.x.

Botzung, A., Denkova, E., Manning, L., 2008. Experiencing past and future personal events:functional neuroimaging evidence on the neural bases of mental time travel. BrainCogn. 66 (2), 202–212. http://dx.doi.org/10.1016/j.bandc.2007.07.011.

Brass, M., Schmitt, R.M., Spengler, S., Gergely, G., 2007. Investigating action understand-ing: inferential processes versus action simulation. Curr. Biol. 17 (24), 2117–2121.http://dx.doi.org/10.1016/j.cub.2007.11.057.

Brüne, M., Lissek, S., Fuchs, N., Witthaus, H., Peters, S., Nicolas, V., Juckel, G., et al., 2008. AnfMRI study of theory of mind in schizophrenic patients with “passivity” symptoms.Neuropsychologia 46 (7), 1992–2001. http://dx.doi.org/10.1016/j.neuropsychologia.2008.01.023.

Bruneau, E.G., Pluta, A., Saxe, R., 2012. Distinct roles of the “Shared Pain” and “Theory ofMind” networks in processing others' emotional suffering. Neuropsychologia 50(2), 219–231. http://dx.doi.org/10.1016/j.neuropsychologia.2011.11.008.

Buccino, G., Binkofski, F., Fink, G.R., Fadiga, L., Fogassi, L., Gallese, V., Seitz, R.J., et al., 2001.Action observation activates premotor and parietal areas in a somatotopic manner:an fMRI study. Eur. J. Neurosci. 13 (2), 400–404. http://dx.doi.org/10.1046/j.1460-9568.2001.01385.x.

Buccino, G., Lui, F., Canessa, N., Patteri, I., Lagravinese, G., Benuzzi, F., Porro, C.A., et al., 2004.Neural circuits involved in the recognition of actions performed by nonconspecifics: anFMRI study. J. Cogn. Neurosci. 16 (1), 114–126. http://dx.doi.org/10.1162/089892904322755601.

Buccino, G., Vogt, S., Ritzl, A., Fink, G., Zilles, K., 2004. Neural circuits underlying imitationlearning of hand actions: an event-related fMRI study. Neuron 42, 323–334 (Retrievedfrom http://www.sciencedirect.com/science/article/pii/S0896627304001813).

Buccino, G., Baumgaertner, A., Colle, L., Buechel, C., Rizzolatti, G., Binkofski, F., 2007. Theneural basis for understanding non-intended actions. NeuroImage 36 (Suppl. 2),T119–T127. http://dx.doi.org/10.1016/j.neuroimage.2007.03.036.

Cabeza, R., Prince, S.E., Daselaar, S.M., Greenberg, D.L., Budde, M., Dolcos, F., LaBar, K.S., etal., 2004. Brain activity during episodic retrieval of autobiographical and laboratoryevents: an fMRI study using a novel photo paradigm. J. Cogn. Neurosci. 16 (9),1583–1594 (Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/15622612).

Calvert, G.A., Campbell, R., 2003. Reading speech from still and moving faces: the neuralsubstrates of visible speech. J. Cogn. Neurosci. 15 (1), 57–70. http://dx.doi.org/10.1162/089892903321107828.

Calvo-Merino, B., Glaser, D.E., Grèzes, J., Passingham, R.E., Haggard, P., 2005. Action obser-vation and acquired motor skills: an FMRI study with expert dancers. Cereb. Cortex15 (8), 1243–1249. http://dx.doi.org/10.1093/cercor/bhi007.

Calvo-Merino, Beatriz, Grèzes, J., Glaser, D.E., Passingham, R.E., Haggard, P., 2006. Seeingor doing? Influence of visual and motor familiarity in action observation. Curr. Biol.16 (19), 1905–1910. http://dx.doi.org/10.1016/j.cub.2006.07.065.

Carter, E.J., Hodgins, J.K., Rakison, D.H., 2011. Exploring the neural correlates of goal-directed action and intention understanding. NeuroImage 54 (2), 1634–1642.http://dx.doi.org/10.1016/j.neuroimage.2010.08.077.

Chao, L.L., Martin, a., 2000. Representation ofmanipulableman-made objects in the dorsalstream. NeuroImage 12 (4), 478–484. http://dx.doi.org/10.1006/nimg.2000.0635.

Cheng, Y., Meltzoff, A.N., Decety, J., 2007. Motivation modulates the activity of the humanmirror–neuron system. Cereb. Cortex 17 (8), 1979–1986. http://dx.doi.org/10.1093/cercor/bhl107.

Chiao, J.Y., Harada, T., Komeda, H., Li, Z., Mano, Y., Saito, D., Parrish, T.B., et al., 2009. Neuralbasis of individualistic and collectivistic views of self. Hum. Brain Mapp. 30 (9),2813–2820. http://dx.doi.org/10.1002/hbm.20707.

Ciaramidaro, a, Adenzato, M., Enrici, I., Erk, S., Pia, L., Bara, B.G., Walter, H., 2007.The intentional network: how the brain reads varieties of intentions. Neuropsychologia45 (13), 3105–3113. http://dx.doi.org/10.1016/j.neuropsychologia.2007.05.011.

Cloutier, J., Gabrieli, J.D.E., O'Young, D., Ambady, N., 2011. An fMRI study of violations ofsocial expectations: when people are not who we expect them to be. NeuroImage57 (2), 583–588. http://dx.doi.org/10.1016/j.neuroimage.2011.04.051.

Cloutier, J., Ambady, N., Meagher, T., Gabrieli, J.D.E., 2012. The neural substrates ofperson perception: spontaneous use of financial and moral status knowledge.Neuropsychologia 50 (9), 2371–2376. http://dx.doi.org/10.1016/j.neuropsychologia.2012.06.010.

Costantini, M., Galati, G., Ferretti, A., Caulo, M., Tartaro, A., Romani, G.L., Aglioti, S.M., 2005.Neural systems underlying observation of humanly impossible movements: an fMRIstudy. Cereb. Cortex 15 (11), 1761–1767.

Cross, E.S., Hamilton, A.F.D.C., Grafton, S.T., 2006. Building a motor simulation de novo:observation of dance by dancers. NeuroImage 31 (3), 1257–1267. http://dx.doi.org/10.1016/j.neuroimage.2006.01.033.

D'Argembeau, A., Ruby, P., Collette, F., Degueldre, C., Balteau, E., Luxen, A., Maquet, P., etal., 2007. Distinct regions of the medial prefrontal cortex are associated with self-referential processing and perspective taking. J. Cogn. Neurosci. 19 (6), 935–944.http://dx.doi.org/10.1162/jocn.2007.19.6.935.

D'Argembeau, A., Feyers, D., Majerus, S., Collette, F., Van der Linden, M., Maquet, P.,Salmon, E., 2008. Self-reflection across time: cortical midline structures differentiatebetween present and past selves. Soc. Cogn. Affect. Neurosci. 3 (3), 244–252.http://dx.doi.org/10.1093/scan/nsn020.

D'Argembeau, A., Xue, G., Lu, Z.-L., Van der Linden, M., Bechara, A., 2008. Neural correlatesof envisioning emotional events in the near and far future. NeuroImage 40 (1),398–407. http://dx.doi.org/10.1016/j.neuroimage.2007.11.025.

D'Argembeau, A., Stawarczyk, D., Majerus, S., Collette, F., Van der Linden, M., Feyers, D.,Maquet, P., et al., 2010. The neural basis of personal goal processingwhen envisioningfuture events. J. Cogn. Neurosci. 22 (8), 1701–1713. http://dx.doi.org/10.1162/jocn.2009.21314.

D'Argembeau, A., Stawarczyk, D., Majerus, S., Collette, F., Van der Linden, M., Salmon, E.,2010. Modulation of medial prefrontal and inferior parietal cortices whenthinking about past, present, and future selves. Soc. Neurosci. 5 (2), 187–200.http://dx.doi.org/10.1080/17470910903233562.

Daselaar, S.M., Rice, H.J., Greenberg, D.L., Cabeza, R., LaBar, K.S., Rubin, D.C., 2008. The spa-tiotemporal dynamics of autobiographical memory: neural correlates of recall, emo-tional intensity, and reliving. Cereb. Cortex 18 (1), 217–229. http://dx.doi.org/10.1093/cercor/bhm048.

David, N., Bewernick, B.H., Cohen,M.X., Newen, A., Lux, S., Fink, G.R., Shah, N.J., et al., 2006.Neural representations of self versus other: visual–spatial perspective taking. J. Cogn.Neurosci. 6, 898–910.

David, Nicole, Aumann, C., Santos, N.S., Bewernick, B.H., Eickhoff, S.B., Newen, A., Shah,N.J., et al., 2008. Differential involvement of the posterior temporal cortex inmentalizing but not perspective taking. Soc. Cogn. Affect. Neurosci. 3 (3), 279–289.http://dx.doi.org/10.1093/scan/nsn023.

De Lange, F.P., Spronk, M., Willems, R.M., Toni, I., Bekkering, H., 2008. Complementarysystems for understanding action intentions. Curr. Biol. 18 (6), 454–457. http://dx.doi.org/10.1016/j.cub.2008.02.057.

Decety, J., Jackson, P.L., Sommerville, J.a, Chaminade, T., Meltzoff, A.N., 2004. The neuralbases of cooperation and competition: an fMRI investigation. NeuroImage 23 (2),744–751. http://dx.doi.org/10.1016/j.neuroimage.2004.05.025.

Decety, J., Michalska, K.J., Akitsuki, Y., 2008. Who caused the pain? An fMRI investigationof empathy and intentionality in children. Neuropsychologia 46 (11), 2607–2614.http://dx.doi.org/10.1016/j.neuropsychologia.2008.05.026.

Deen, B., McCarthy, G., 2010. Reading about the actions of others: biological motion imag-ery and action congruency influence brain activity. Neuropsychologia 48 (6),1607–1615. http://dx.doi.org/10.1016/j.neuropsychologia.2010.01.028.

Den Ouden, H.E.M., Frith, U., Frith, C., Blakemore, S., 2005. Thinking about intentions.NeuroImage 28, 787–796. http://dx.doi.org/10.1016/j.neuroimage.2005.05.001.

Denkova, E., Botzung, A., Scheiber, C., Manning, L., 2006. Implicit emotion during recollec-tion of past events: a nonverbal fMRI study. Brain Res. 1078 (1), 143–150. http://dx.doi.org/10.1016/j.brainres.2006.01.061.

Devue, C., Collette, F., Balteau, E., Degueldre, C., Luxen, A., Maquet, P., Brédart, S., 2007.Here I am: the cortical correlates of visual self-recognition. Brain Res. 1143,169–182. http://dx.doi.org/10.1016/j.brainres.2007.01.055.

Döhnel, K., Schuwerk, T., Meinhardt, J., Sodian, B., Hajak, G., Sommer, M., 2012. Functionalactivity of the right temporo-parietal junction and of the medial prefrontal cortex as-sociated with true and false belief reasoning. NeuroImage 60 (3), 1652–1661. http://dx.doi.org/10.1016/j.neuroimage.2012.01.073.

Dosch, M., Loenneker, T., Bucher, K., Martin, E., Klaver, P., 2010. Learning to appreciateothers: neural development of cognitive perspective taking. NeuroImage 50 (2),837–846. http://dx.doi.org/10.1016/j.neuroimage.2009.12.013.

Dubeau, M., Iacoboni, M., Koski, L., Markovac, J., & Mazziotta, J. C. (2001). Topography forbody-part motions in the posterior STS region. Unpublished poster.

Eich, E., Nelson, A.L., Leghari, M.A., Handy, T.C., 2009. Neural systems mediating field andobserver memories. Neuropsychologia 47 (11), 2239–2251. http://dx.doi.org/10.1016/j.neuropsychologia.2009.02.019.

Page 14: Social cognition and the cerebellum: A meta-analysis of ...brainmap.org/pubs/VanOverwalleNI14.pdfNevertheless, social cognition and social functioning are only marginally dealt with

567F. Van Overwalle et al. / NeuroImage 86 (2014) 554–572

Elliott, R., Völlm, B., Drury, A., McKie, S., Richardson, P., Deakin, J.F.W., 2006. Co-operationwith another player in a financially rewarded guessing game activates regions impli-cated in theory of mind. Soc. Neurosci. 1 (3–4), 385–395. http://dx.doi.org/10.1080/17470910601041358.

Emmorey, K., Xu, J., Gannon, P., 2010. CNS activation and regional connectivity duringpantomime observation: no engagement of the mirror neuron system for deafsigners. NeuroImage 49 (1), 994–1005. http://dx.doi.org/10.1016/j.neuroimage.2009.08.001.CNS.

Engel, A., Burke, M., Fiehler, K., Bien, S., Rosler, F., 2008. How moving objects becomeanimated: the human mirror neuron system assimilates non-biological movementpatterns. Soc. Neurosci. 3 (3–4), 368–387. http://dx.doi.org/10.1080/17470910701612793.

Engel, A., Burke, M., Fiehler, K., Bien, S., Rösler, F., 2008. What activates the human mirrorneuron system during observation of artificial movements: bottom-up visual featuresor top-down intentions? Neuropsychologia 46 (7), 2033–2042. http://dx.doi.org/10.1016/j.neuropsychologia.2008.01.025.

Engel, L., Frum, C., Puce, A., Walker, N., Lewis, J., 2009. Different categories of living andnon-living sound-sources activate distinct cortical networks. NeuroImage 47 (4),1778–1791. http://dx.doi.org/10.1016/j.neuroimage.2009.05.041.Different.

Farrer, C., Frith, C.D., 2002. Experiencing oneself vs another person as being the cause ofan action: the neural correlates of the experience of agency. NeuroImage 15 (3),596–603. http://dx.doi.org/10.1006/nimg.2001.1009.

Farrer, Chlöé, Frey, S.H., Van Horn, J.D., Tunik, E., Turk, D., Inati, S., Grafton, S.T., 2008. Theangular gyrus computes action awareness representations. Cereb. Cortex 18 (2),254–261. http://dx.doi.org/10.1093/cercor/bhm050.

Farrow, T.F.D., Jones, S.C., Kaylor-Hughes, C.J., Wilkinson, I.D., Woodruff, P.W.R., Hunter,M.D., Spence, S.a., 2011. Higher or lower? The functional anatomy of perceivedallocentric social hierarchies. NeuroImage 57 (4), 1552–1560. http://dx.doi.org/10.1016/j.neuroimage.2011.05.069.

Feldmanhall, O., Dalgleish, T., Thompson, R., Evans, D., Schweizer, S., Mobbs, D., 2012. Dif-ferential neural circuitry and self-interest in real vs hypothetical moral decisions. Soc.Cogn. Affect. Neurosci. http://dx.doi.org/10.1093/scan/nss069.

Ferstl, E.C., Von Cramon, D.Y., 2002.What does the frontomedian cortex contribute to lan-guage processing: coherence or theory of mind? NeuroImage 1612, 1599–1612.http://dx.doi.org/10.1006/nimg.2002.1247.

Fiddick, L., Spampinato, M.V., Grafman, J., 2005. Social contracts and precautionsactivate different neurological systems: an fMRI investigation of deontic reason-ing. NeuroImage 28 (4), 778–786. http://dx.doi.org/10.1016/j.neuroimage.2005.05.033.

Fonlupt, P., 2003. Perception and judgement of physical causality involve differentbrain structures. Brain Res. Cogn. Brain Res. 17 (2), 248–254 (Retrieved fromhttp://www.ncbi.nlm.nih.gov/pubmed/12880896).

Fossati, P., Hevenor, S.J., Graham, S.J., Grady, C., Keightley,M.L., Craik, F., Mayberg, H., 2003.In search of the emotional self: an fMRI study using positive and negative emotionalwords. Am. J. Psychiatry 160 (11), 1938–1945 (Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/14594739).

Fossati, P., Hevenor, S.J., Lepage, M., Graham, S.J., Grady, C., Keightley, M.L., Craik, F., et al.,2004. Distributed self in episodic memory: neural correlates of successful retrieval ofself-encoded positive and negative personality traits. NeuroImage 22 (4), 1596–1604.http://dx.doi.org/10.1016/j.neuroimage.2004.03.034.

Frey, S.H., Gerry, V.E., 2006. Modulation of neural activity during observational learningof actions and their sequential orders. J. Neurosci. 26 (51), 13194–13201.http://dx.doi.org/10.1523/JNEUROSCI.3914-06.2006.

Fukui, H., Murai, T., Shinozaki, J., Aso, T., Fukuyama, H., Hayashi, T., Hanakawa, T., 2006.The neural basis of social tactics: an fMRI study. NeuroImage 32 (2), 913–920.http://dx.doi.org/10.1016/j.neuroimage.2006.03.039.

Galati, G., Committeri, G., Spitoni, G., Aprile, T., Di Russo, F., Pitzalis, S., Pizzamiglio, L.,2008. A selective representation of the meaning of actions in the auditory mirrorsystem. NeuroImage 40 (3), 1274–1286. http://dx.doi.org/10.1016/j.neuroimage.2007.12.044.

Gallagher, Helen L., Frith, C.D., 2004. Dissociable neural pathways for the perception andrecognition of expressive and instrumental gestures. Neuropsychologia 42 (13),1725–1736. http://dx.doi.org/10.1016/j.neuropsychologia.2004.05.006.

Gallagher, H.L., Happé, F., Brunswick, N., Fletcher, P.C., Frith, U., Frith, C.D., 2000. Readingthe mind in cartoons and stories: an fMRI study of “theory of mind” in verbal andnonverbal tasks. Neuropsychologia 38 (1), 11–21 (Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/10617288).

Gallagher, Helen L., Jack, A.I., Roepstorff, A., Frith, C.D., 2002. Imaging the intentionalstance in a competitive game. Neurology 821, 814–821. http://dx.doi.org/10.1006/nimg.2002.1117.

Gao, T., Scholl, B.J., McCarthy, G., 2012. Dissociating the detection of intentionality fromanimacy in the right posterior superior temporal sulcus. J. Neurosci. 32 (41),14276–14280. http://dx.doi.org/10.1523/JNEUROSCI.0562-12.2012.

Gardini, S., Cornoldi, C., De Beni, R., Venneri, A., 2006. Left mediotemporal structures me-diate the retrieval of episodic autobiographical mental images. NeuroImage 30 (2),645–655. http://dx.doi.org/10.1016/j.neuroimage.2005.10.012.

Gazzola, V., Van der Worp, H., Mulder, T., Wicker, B., Rizzolatti, G., Keysers, C.,2007. Aplasics born without hands mirror the goal of hand actions withtheir feet. Curr. Biol. 17 (14), 1235–1240. http://dx.doi.org/10.1016/j.cub.2007.06.045.

German, T.P., Niehaus, J.L., Roarty, M.P., Giesbrecht, B., Miller, M.B., 2004. Neural correlatesof detecting pretense: automatic engagement of the intentional stance under covertconditions. J. Cogn. Neurosci. 16 (10), 1805–1817. http://dx.doi.org/10.1162/0898929042947892.

Gilbert, S.J., Williamson, I.D.M., Dumontheil, I., Simons, J.S., Frith, C.D., Burgess, P.W., 2007.Distinct regions of medial rostral prefrontal cortex supporting social and nonsocial

functions. Soc. Cogn. Affect. Neurosci. 2 (3), 217–226. http://dx.doi.org/10.1093/scan/nsm014.

Gilead, M., Liberman, N., Maril, A., 2013. From mind to matter: neural correlates of ab-stract and concrete mindsets. Soc. Cogn. Affect. Neurosci. http://dx.doi.org/10.1093/scan/nst031.

Gobbini, M. Ida, Leibenluft, E., Santiago, N., Haxby, J.V., 2004. Social and emotionalattachment in the neural representation of faces. NeuroImage 22 (4), 1628–1635.http://dx.doi.org/10.1016/j.neuroimage.2004.03.049.

Gobbini, Maria Ida, Koralek, A.C., Bryan, R.E., Montgomery, K.J., Haxby, J.V., 2007. Twotakes on the social brain: a comparison of theory of mind tasks. J. Cogn. Neurosci.19 (11), 1803–1814. http://dx.doi.org/10.1162/jocn.2007.19.11.1803.

Gobbini, Maria Ida, Koralek, A.C., Bryan, R.E., Montgomery, K.J., Haxby, J.V., 2007. Twotakes on the social brain: a comparison of theory of mind tasks. J. Cogn. Neurosci.19 (11), 1803–1814. http://dx.doi.org/10.1162/jocn.2007.19.11.1803.

Graham, K.S., Lee, A.C.H., Brett, M., Patterson, K., 2003. The neural basis of autobiograph-ical and semanticmemory: new evidence from three PET studies. Cogn. Affect. Behav.Neurosci. 3 (3), 234–254 (Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/14672158).

Greenberg, D.L., Rice, H.J., Cooper, J.J., Cabeza, R., Rubin, D.C., Labar, K.S., 2005. Co-activationof the amygdala, hippocampus and inferior frontal gyrus during autobiographicalmemory retrieval. Neuropsychologia 43 (5), 659–674. http://dx.doi.org/10.1016/j.neuropsychologia.2004.09.002.

Greene, J.D., Sommerville, R.B., Nystrom, L.E., Darley, J.M., Cohen, J.D., 2001. An fMRI inves-tigation of emotional engagement in moral judgment. Science 293 (5537),2105–2108. http://dx.doi.org/10.1126/science.1062872.

Greene, Joshua D., Nystrom, L.E., Engell, A.D., Darley, J.M., Cohen, J.D., 2004. The neuralbases of cognitive conflict and control in moral judgment. Neuron 44 (2), 389–400.http://dx.doi.org/10.1016/j.neuron.2004.09.027.

Grèzes, J., Frith, C., Passingham, R., 2004. Brain mechanisms for inferring deceit in the ac-tions of others. J. Neurosci. 24 (24), 5500–5505. http://dx.doi.org/10.1523/JNEUROSCI.0219-04.2004.

Grèzes, J., Frith, C., Passingham, R., 2004. Inferring false beliefs from the actions of oneselfand others: an fMRI study. NeuroImage 21, 744–750. http://dx.doi.org/10.1016/j.neuroimage.2003.10.014.

Grèzes, J., Berthoz, S., Passingham, R.E., 2006. Amygdala activation when one is the targetof deceit: did he lie to you or to someone else? NeuroImage 30 (2), 601–608. http://dx.doi.org/10.1016/j.neuroimage.2005.09.038.

Grosbras, M.-H., Paus, T., 2006. Brain networks involved in viewing angry hands or faces.Cereb. Cortex 16 (8), 1087–1096. http://dx.doi.org/10.1093/cercor/bhj050.

Grossman, M., Eslinger, P.J., Troiani, V., Anderson, C., Avants, B., Gee, J.C., McMillan, C., etal., 2010. The role of ventral medial prefrontal cortex in social decisions: convergingevidence from fMRI and frontotemporal lobar degeneration. Neuropsychologia 48(12), 3505–3512. http://dx.doi.org/10.1016/j.neuropsychologia.2010.07.036.

Gutchess, A.H., Kensinger, E.a, Schacter, D.L., 2007. Aging, self-referencing, and me-dial prefrontal cortex. Soc. Neurosci. 2 (2), 117–133. http://dx.doi.org/10.1080/17470910701399029.

Gutchess, A.H., Kensinger, E.a, Schacter, D.L., 2010. Functional neuroimaging of self-referential encoding with age. Neuropsychologia 48 (1), 211–219. http://dx.doi.org/10.1016/j.neuropsychologia.2009.09.006.

Hamilton, A.F.D.C., Grafton, S.T., 2006. Goal representation in human anterior intraparietalsulcus. J. Neurosci. 26 (4), 1133–1137. http://dx.doi.org/10.1523/JNEUROSCI.4551-05.2006.

Hamilton, A.F.D.C., Grafton, S.T., 2008. Action outcomes are represented in human inferiorfrontoparietal cortex. Cereb. Cortex 18 (5), 1160–1168. http://dx.doi.org/10.1093/cercor/bhm150.

Hamzei, F., Rijntjes, M., Dettmers, C., Glauche, V., Weiller, C., Büchel, C., 2003. The humanaction recognition system and its relationship to Broca's area: an fMRI study.NeuroImage 19 (3), 637–644. http://dx.doi.org/10.1016/S1053-8119(03)00087-9.

Han, S., Gu, X., Mao, L., Ge, J., Wang, G., Ma, Y., 2010. Neural substrates of self-referentialprocessing in Chinese Buddhists. Soc. Cogn. Affect. Neurosci. 5 (2–3), 332–339.http://dx.doi.org/10.1093/scan/nsp027.

Harada, T., Li, Z., Chiao, J.Y., 2010. Differential dorsal and ventral medial prefrontal repre-sentations of the implicit self modulated by individualism and collectivism: anfMRI study. Soc. Neurosci. 5 (3), 257–271. http://dx.doi.org/10.1080/17470910903374895.

Harris, L.T., Todorov, A., Fiske, S.T., 2005. Attributions on the brain: neuro-imaging dispo-sitional inferences, beyond theory of mind. NeuroImage 28 (4), 763–769. http://dx.doi.org/10.1016/j.neuroimage.2005.05.021.

Hartwright, C.E., Apperly, I.a, Hansen, P.C., 2012. Multiple roles for executive control inbelief-desire reasoning: distinct neural networks are recruited for self perspective in-hibition and complexity of reasoning. NeuroImage 61 (4), 921–930. http://dx.doi.org/10.1016/j.neuroimage.2012.03.012.

Hassabis, D., Kumaran, D., Maguire, E.a., 2007. Using imagination to understand the neuralbasis of episodic memory. J. Neurosci. 27 (52), 14365–14374. http://dx.doi.org/10.1523/JNEUROSCI.4549-07.2007.

Heatherton, T.F., Wyland, C.L., Macrae, C.N., Demos, K.E., Denny, B.T., Kelley, W.M., 2006.Medial prefrontal activity differentiates self from close others. Soc. Cogn. Affect.Neurosci. 1 (1), 18–25. http://dx.doi.org/10.1093/scan/nsl001.

Heberlein, A.S., Saxe, R.R., 2005. Dissociation between emotion and personality judg-ments: convergent evidence from functional neuroimaging. NeuroImage 28 (4),770–777. http://dx.doi.org/10.1016/j.neuroimage.2005.06.064.

Heekeren, H.R., Wartenburger, I., Schmidt, H., Schwintowski, H.-P., Villringer, A., 2003. AnfMRI study of simple ethical decision-making. Neuroreport 14 (9), 1215–1219. http://dx.doi.org/10.1097/01.wnr.0000081878.45938.a7.

Heekeren, H.R., Wartenburger, I., Schmidt, H., Prehn, K., Schwintowski, H.-P., Villringer, A.,2005. Influence of bodily harm on neural correlates of semantic and moral decision-

Page 15: Social cognition and the cerebellum: A meta-analysis of ...brainmap.org/pubs/VanOverwalleNI14.pdfNevertheless, social cognition and social functioning are only marginally dealt with

568 F. Van Overwalle et al. / NeuroImage 86 (2014) 554–572

making. NeuroImage 24 (3), 887–897. http://dx.doi.org/10.1016/j.neuroimage.2004.09.026.

Herwig, U., Kaffenberger, T., Schell, C., Jäncke, L., Brühl, A.B., 2012. Neural activity associ-ated with self-reflection. BMC Neurosci. 13 (1), 52. http://dx.doi.org/10.1186/1471-2202-13-52.

Hesse, M.D., Sparing, R., Fink, G.R., 2009. End or means—the “what” and “how” of ob-served intentional actions. J. Cogn. Neurosci. 21 (4), 776–790. http://dx.doi.org/10.1162/jocn.2009.21058.

Heyda, R.D., Green, S.R., Vander Wyk, B.C., Morris, J.P., Pelphrey, K.a., 2010. Brain mecha-nisms for representing what another person sees. NeuroImage 50 (2), 693–700.http://dx.doi.org/10.1016/j.neuroimage.2009.12.101.

Holland, A.C., Addis, D.R., Kensinger, E.a., 2011. The neural correlates of specific versusgeneral autobiographical memory construction and elaboration. Neuropsychologia49 (12), 3164–3177. http://dx.doi.org/10.1016/j.neuropsychologia.2011.07.015.

Hoscheidt, S.M., Nadel, L., Payne, J., Ryan, L., 2010. Hippocampal activation during retrievalof spatial context from episodic and semantic memory. Behav. Brain Res. 212 (2),121–132. http://dx.doi.org/10.1016/j.bbr.2010.04.010.

Hughes, B.L., Beer, J.S., 2012. Orbitofrontal cortex and anterior cingulate cortex aremodulated by motivated social cognition. Cereb. Cortex 22 (6), 1372–1381.http://dx.doi.org/10.1093/cercor/bhr213.

Hynes, C.a, Baird, A. a, Grafton, S.T., 2006. Differential role of the orbital frontal lobe inemotional versus cognitive perspective-taking. Neuropsychologia 44 (3), 374–383.http://dx.doi.org/10.1016/j.neuropsychologia.2005.06.011.

Iacoboni, M., Lieberman, M.D., Knowlton, B.J., Molnar-Szakacs, I., Moritz, M., Throop,C.J., Fiske, A.P., 2004. Watching social interactions produces dorsomedial pre-frontal and medial parietal BOLD fMRI signal increases compared to a restingbaseline. NeuroImage 21 (3), 1167–1173. http://dx.doi.org/10.1016/j.neuroimage.2003.11.013.

Iacoboni, M., Molnar-Szakacs, I., Gallese, V., Buccino, G., Mazziotta, J.C., Rizzolatti, G., 2005.Grasping the intentions of others with one's own mirror neuron system. PLoS Biol. 3(3), e79. http://dx.doi.org/10.1371/journal.pbio.0030079.

Ino, T., Nakai, R., Azuma, T., Kimura, T., Fukuyama, H., 2011. Brain activation during auto-biographical memory retrieval with special reference to default mode network. OpenNeuroimaging J. 5, 14–23. http://dx.doi.org/10.2174/1874440001105010014.

Izuma, K., Saito, D.N., Sadato, N., 2010. The roles of the medial prefrontal cortex and stri-atum in reputation processing. Soc. Neurosci. 5 (2), 133–147. http://dx.doi.org/10.1080/17470910903202559.

Jardri, R., Pins, D., Bubrovszky, M., Despretz, P., Pruvo, J.-P., Steinling, M., Thomas, P., 2007.Self awareness and speech processing: an fMRI study. NeuroImage 35 (4),1645–1653. http://dx.doi.org/10.1016/j.neuroimage.2007.02.002.

Jastorff, J., Clavagnier, S., Gergely, G., Orban, G. a, 2011. Neural mechanisms of understand-ing rational actions: middle temporal gyrus activation by contextual violation. Cereb.Cortex 21 (2), 318–329. http://dx.doi.org/10.1093/cercor/bhq098.

Jenkins, A.C., Mitchell, J.P., 2010. Mentalizing under uncertainty: dissociated neural re-sponses to ambiguous and unambiguous mental state inferences. Cereb. Cortex 20(2), 404–410. http://dx.doi.org/10.1093/cercor/bhp109.

Jenkins, A.C., Mitchell, J.P., 2011. Medial prefrontal cortex subserves diverse forms of self-reflection. Soc. Neurosci. 6 (3), 211–218. http://dx.doi.org/10.1080/17470919.2010.507948.

Jimura, K., Konishi, S., Asari, T., Miyashita, Y., 2010. Temporal pole activity during under-standing other persons' mental states correlates with neuroticism trait. Brain Res.1328, 104–112. http://dx.doi.org/10.1016/j.brainres.2010.03.016.

Johnson, S.C., Baxter, L.C., Wilder, L.S., Pipe, J.G., Heiserman, J.E., Prigatano, G.P., 2002. Neu-ral correlates of self-reflection. Brain 125, 1808–1814. http://dx.doi.org/10.1093/brain/awf181.

Johnson, M.K., Raye, C.L., Mitchell, K.J., Touryan, S.R., Greene, E.J., Nolen-Hoeksema, S.,2006. Dissociating medial frontal and posterior cingulate activity during self-reflection. Soc. Cogn. Affect. Neurosci. 1 (1), 56–64. http://dx.doi.org/10.1093/scan/nsl004.

Johnson-Frey, S.H., Maloof, F.R., Newman-Norlund, R., Farrer, C., Inati, S., Grafton, S.T.,2003. Actions or hand–object interactions? Human inferior frontal cortex and actionobservation. Neuron 39 (6), 1053–1058 (Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/12971903).

Kable, J.W., Chatterjee, A., 2006. Specificity of action representations in the lateraloccipitotemporal cortex. J. Cogn. Neurosci. 18 (9), 1498–1517. http://dx.doi.org/10.1162/jocn.2006.18.9.1498.

Kana, R.K., Keller, T.a, Cherkassky, V.L., Minshew, N.J., Just, M.A., 2009. Atypical frontal-posterior synchronization of Theory of Mind regions in autism during mentalstate attribution. Soc. Neurosci. 4 (2), 135–152. http://dx.doi.org/10.1080/17470910802198510.

Kaplan, J.T., Iacoboni, M., 2006. Getting a grip on other minds: mirror neurons, intentionunderstanding, and cognitive empathy. Soc. Neurosci. 1 (3–4), 175–183. http://dx.doi.org/10.1080/17470910600985605.

Kelley, W.M., Macrae, C.N., Wyland, C.L., Caglar, S., Inati, S., Heatherton, T.F., 2002. Findingthe self? An event-related fMRI study. J. Cogn. Neurosci. 14 (5), 785–794. http://dx.doi.org/10.1162/08989290260138672.

Kim, K., Johnson, M.K., 2012. Extended self: medial prefrontal activity during transient as-sociation of self and objects. Soc. Cogn. Affect. Neurosci. 7, 199–207. http://dx.doi.org/10.1093/scan/nsq096.

Kim, Y., Lee, J., Song, H., Kim, J., Kwon, D., Kim, M., Yoo, D., et al., 2010. Alterations in Cor-tical Activity of Male Methamphetamine Abusers Performing an Empathy Task: fMRIStudy (November 2009). 63–70. http://dx.doi.org/10.1002/hup.

Kircher, T.T., Senior, C., Phillips, M.L., Benson, P.J., Bullmore, E.T., Brammer,M., Simmons, a,et al., 2000. Towards a functional neuroanatomy of self processing: effects of facesand words. Brain Res. Cogn. Brain Res. 10 (1-2), 133–144 (Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/10978701).

Kircher, T.T., Senior, C., Phillips, M.L., Rabe-Hesketh, S., Benson, P.J., Bullmore, E.T.,Brammer, M., et al., 2001. Recognizing one's own face. Cognition 78 (1), B1–B15.http://dx.doi.org/10.1016/S0010-0277(00)00104-9.

Kircher, T.T.J., Brammer, M., Bullmore, E., Simmons, A., Bartels, M., David, A.S., 2002. Theneural correlates of intentional and incidental self processing. Neuropsychologia 40(6), 683–692 (Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/11792407).

Kliemann, D., Young, L., Scholz, J., Saxe, R.R., 2008. The influence of prior record onmoral judgment. Neuropsychologia 46 (12), 2949–2957. http://dx.doi.org/10.1016/j.neuropsychologia.2008.06.010.

Knutson, K.M., McClellan, E.M., Grafman, J., 2008. Observing social gestures: an fMRIstudy. Exp. Brain Res. 188 (2), 187–198. http://dx.doi.org/10.1007/s00221-008-1352-6.

Kobayashi, C., Glover, G.H., Temple, E., 2006. Cultural and linguistic influence on neuralbases of “Theory of Mind”: an fMRI study with Japanese bilinguals. Brain Lang. 98(2), 210–220. http://dx.doi.org/10.1016/j.bandl.2006.04.013.

Kobayashi, C., Glover, G.H., Temple, E., 2007. Children's and adults' neural bases of verbaland nonverbal “theory of mind”. Neuropsychologia 45 (7), 1522–1532. http://dx.doi.org/10.1016/j.neuropsychologia.2006.11.017.

Kobayashi, C., Glover, G.H., Temple, E., 2008. Switching language switchesmind: linguisticeffects on developmental neural bases of “Theory of Mind”. Soc. Cogn. Affect.Neurosci. 3 (1), 62–70. http://dx.doi.org/10.1093/scan/nsm039.

Koelkebeck, K., Hirao, K., Kawada, R., Miyata, J., Saze, T., 2011. Transcultural Differences inBrain Activation Patterns During Theory ofMind (ToM) Task Performance in Japaneseand Caucasian Participants Transcultural Differences in Brain Activation PatternsDuring Theory of Mind (ToM) Task Performance in, (January 2013). 37–41.

Kovacs, Á. M., & Brass, M. (2013). Neural correlates of automatic belief tracking and itstwo potential components The neural structure of automatic belief attribution. un-published manuscript.

Krach, S., Hegel, F., Wrede, B., Sagerer, G., Binkofski, F., Kircher, T., 2008. Can machinesthink? Interaction and perspective taking with robots investigated via fMRI. PLoSOne 3 (7), e2597. http://dx.doi.org/10.1371/journal.pone.0002597.

Krach, S., Blümel, I., Marjoram, D., Lataster, T., Krabbendam, L., Weber, J., Van Os, J., et al.,2009. Are women better mindreaders? Sex differences in neural correlates ofmentalizing detected with functional MRI. BMC Neurosci. 10, 9. http://dx.doi.org/10.1186/1471-2202-10-9.

Kumaran, D., Maguire, E.a., 2005. The human hippocampus: cognitive maps orrelational memory? J. Neurosci. 25 (31), 7254–7259. http://dx.doi.org/10.1523/JNEUROSCI.1103-05.2005.

Kuzmanovic, B., Bente, G., Von Cramon, D.Y., Schilbach, L., Tittgemeyer, M., Vogeley, K., 2012.Imaging first impressions: distinct neural processing of verbal and nonverbal socialinformation. NeuroImage 60 (1), 179–188. http://dx.doi.org/10.1016/j.neuroimage.2011.12.046.

Lamm, C., Fischer, M.H., Decety, J., 2007. Predicting the actions of others taps into one'sown somatosensory representations—a functional MRI study. Neuropsychologia 45(11), 2480–2491. http://dx.doi.org/10.1016/j.neuropsychologia.2007.03.024.

Lawrence, E.J., Shaw, P., Giampietro, V.P., Surguladze, S., Brammer, M.J., David, a S., 2006.The role of “shared representations” in social perception and empathy: an fMRIstudy. NeuroImage 29 (4), 1173–1184. http://dx.doi.org/10.1016/j.neuroimage.2005.09.001.

Lee, W., Reeve, J., 2012. Self-determined, but not non-self-determined, motivation pre-dicts activations in the anterior insular cortex: an fMRI study of personal agency.Soc. Cogn. Affect. Neurosci. http://dx.doi.org/10.1093/scan/nss029.

Lee, S.M., Gao, T., McCarthy, G., 2012. Attributing intentions to random motion engagesthe posterior superior temporal sulcus. Soc. Cogn. Affect. Neurosci. 1–7. http://dx.doi.org/10.1093/scan/nss110.

Lemogne, C., Gorwood, P., Bergouignan, L., Pélissolo, A., Lehéricy, S., Fossati, P., 2011. Neg-ative affectivity, self-referential processing and the cortical midline structures. Soc.Cogn. Affect. Neurosci. 6 (4), 426–433. http://dx.doi.org/10.1093/scan/nsq049.

Levine, B., Turner, G.R., Tisserand, D., Hevenor, S.J., Graham, S.J., McIntosh, A.R., 2004. Thefunctional neuroanatomy of episodic and semantic autobiographical remembering: aprospective functional MRI study. J. Cogn. Neurosci. 16 (9), 1633–1646. http://dx.doi.org/10.1162/0898929042568587.

Lewis, J.W., Brefczynski, J.a, Phinney, R.E., Janik, J.J., DeYoe, E.a., 2005. Distinct corticalpathways for processing tool versus animal sounds. J. Neurosci. 25 (21),5148–5158. http://dx.doi.org/10.1523/JNEUROSCI.0419-05.2005.

Lieberman, M.D., Jarcho, J.M., Satpute, A.B., 2004. Evidence-based and intuition-based self-knowledge: an FMRI study. J. Pers. Soc. Psychol. 87 (4), 421–435. http://dx.doi.org/10.1037/0022-3514.87.4.421.

Liepelt, R., Von Cramon, D.Y., Brass, M., 2008. How do we infer others' goals from non-stereotypic actions? The outcome of context-sensitive inferential processing in rightinferior parietal and posterior temporal cortex. NeuroImage 43 (4), 784–792.http://dx.doi.org/10.1016/j.neuroimage.2008.08.007.

Lindner, M., Hundhammer, T., Ciaramidaro, A., Linden, D.E.J., Mussweiler, T., 2008. Theneural substrates of person comparison—an fMRI study. NeuroImage 40 (2),963–971. http://dx.doi.org/10.1016/j.neuroimage.2007.12.022.

Lombardo, M.V., Chakrabarti, B., Bullmore, E.T., Wheelwright, S.J., Sadek, S.a, Suckling, J.,Baron-Cohen, S., 2010. Shared neural circuits for mentalizing about the selfand others. J. Cogn. Neurosci. 22 (7), 1623–1635. http://dx.doi.org/10.1162/jocn.2009.21287.

Lotze, M., Heymans, U., Birbaumer, N., Veit, R., Erb, M., Flor, H., Halsband, U., 2006.Differential cerebral activation during observation of expressive gestures andmotor acts. Neuropsychologia 44 (10), 1787–1795. http://dx.doi.org/10.1016/j.neuropsychologia.2006.03.016.

Ma, N., Vandekerckhove, M., Baetens, K., Van Overwalle, F., Seurinck, R., Fias, W., 2012a.Inconsistencies in spontaneous and intentional trait inferences. Soc. Cogn. Affect.Neurosc. 7, 937–950. http://dx.doi.org/10.1093/scan/nsr064.

Page 16: Social cognition and the cerebellum: A meta-analysis of ...brainmap.org/pubs/VanOverwalleNI14.pdfNevertheless, social cognition and social functioning are only marginally dealt with

569F. Van Overwalle et al. / NeuroImage 86 (2014) 554–572

Ma, N., Vandekerckhove, M., Van Hoeck, N., Van Overwalle, V.F., 2012b. Distinct recruitmentof temporo-parietal junction and medial prefrontal cortex in behavior understandingand trait identification. Soc. Neurosc. 7, 591–605.

Macrae, C.N., Moran, J.M., Heatherton, T.F., Banfield, J.F., Kelley, W.M., 2004. Medial pre-frontal activity predicts memory for self. Cereb. Cortex 14 (6), 647–654. http://dx.doi.org/10.1093/cercor/bhh025.

Maddock, R.J., Garrett, a S., Buonocore, M.H., 2001. Remembering familiar people: the pos-terior cingulate cortex and autobiographical memory retrieval. Neuroscience 104 (3),667–676 (Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/11440800).

Maguire, E.A., Frith, C.D., 2003. Aging affects the engagement of the hippocampus duringautobiographical memory retrieval. Brain 126 (Pt 7), 1511–1523. http://dx.doi.org/10.1093/brain/awg157.

Maguire, E.A., Mummery, C.J., Büchel, C., 2000. Patterns of hippocampal–cortical interac-tion dissociate temporal lobe memory subsystems. Hippocampus 10 (4), 475–482.http://dx.doi.org/10.1002/1098-1063(2000)10:4b475::AID-HIPO14N3.0.CO;2-X.

Malfait, N., Valyear, K.F., Culham, J.C., Anton, J.-L., Brown, L.E., Gribble, P.L., 2010. fMRI ac-tivation during observation of others' reach errors. J. Cogn. Neurosci. 22 (7),1493–1503. http://dx.doi.org/10.1162/jocn.2009.21281.

Malhi, G.S., Lagopoulos, J., Das, P., Moss, K., Berk, M., Coulston, C.M., 2008. A functional MRIstudy of Theory of Mind in euthymic bipolar disorder patients. Bipolar Disord. 10 (8),943–956. http://dx.doi.org/10.1111/j.1399-5618.2008.00643.x.

Manthey, S., Schubotz, R.I., Von Cramon, D.Y., 2003. Premotor cortex in observing errone-ous action: an fMRI study. Brain Res. Cogn. Brain Res. 15 (3), 296–307 (Retrievedfrom http://www.ncbi.nlm.nih.gov/pubmed/12527103).

Martin, A., Weisberg, J., 2003. Neural foundations for understanding social and mechani-cal concepts. Cogn. Neuropsychol. 20 (3–6), 575.

Mason, M.F., Banfield, J.F., Macrae, C.N., 2004. Thinking about actions: the neural sub-strates of person knowledge. Cereb. Cortex 14 (2), 209–214.

Matura, S., Muth, K., Magerkurth, J., Walter, H., Klein, J., Haenschel, C., Pantel, J., 2012.Neural correlates of autobiographical memory in amnestic Mild Cognitive Impair-ment. Psychiatry Res. 201 (2), 159–167. http://dx.doi.org/10.1016/j.pscychresns.2011.06.007.

Mayer, A.R., Dorflinger, J.M., Rao, S.M., Seidenberg, M., 2004. Neural networks underlyingendogenous and exogenous visual–spatial orienting. NeuroImage 23 (2), 534–541.http://dx.doi.org/10.1016/j.neuroimage.2004.06.027.

McAdams, C.J., Krawczyk, D.C., 2012. Who am I? How do I look? Neural differences in self-identity in anorexia nervosa. Soc. Cogn. Affect. Neurosci. http://dx.doi.org/10.1093/scan/nss093.

Mecklinger, A., Gruenewald, C., Weiskopf, N., Doeller, C.F., 2004. Motor affordance and itsrole for visual working memory: evidence from fMRI studies. Exp. Psychol. 51 (4),258–269. http://dx.doi.org/10.1027/1618-3169.51.4.258.

Mende-Siedlecki, P., Cai, Y., Todorov, A., 2012. The neural dynamics of updating personimpressions. Soc. Cogn. Affect. Neurosci. http://dx.doi.org/10.1093/scan/nss040.

Meulenbroek, O., Rijpkema, M., Kessels, R.P.C., Rikkert, M.G.M.O., Fernández, G., 2010. Au-tobiographical memory retrieval in patients with Alzheimer's disease. NeuroImage53 (1), 331–340. http://dx.doi.org/10.1016/j.neuroimage.2010.05.082.

Meyer, M.L., Spunt, R.P., Berkman, E.T., Taylor, S.E., Lieberman,M.D., 2012. Evidence for so-cial working memory from a parametric functional MRI study. Proc. Natl. Acad. Sci. U.S. A. 109 (6), 1883–1888. http://dx.doi.org/10.1073/pnas.1121077109.

Milton, F., Butler, C.R., Benattayallah, a, Zeman, A.Z.J., 2012. The neural basis of autobio-graphical memory deficits in transient epileptic amnesia. Neuropsychologia 50(14), 3528–3541. http://dx.doi.org/10.1016/j.neuropsychologia.2012.09.027.

Mitchell, J.P., 2008. Activity in right temporo-parietal junction is not selective for theory-of-mind. Cereb. Cortex 18 (2), 262–271. http://dx.doi.org/10.1093/cercor/bhm051.

Mitchell, J.P., Heatherton, T.F., Macrae, C.N., 2002. Distinct neural systems subserve personand object knowledge. Proc. Natl. Acad. Sci. U. S. A. 99 (23), 15238–15243. http://dx.doi.org/10.1073/pnas.232395699.

Mitchell, J.P., Macrae, C.N., Banaji, M.R., 2004. Encoding-specific effects of social cognitionon the neural correlates of subsequent memory. J. Neurosci. 24 (21), 4912–4917.http://dx.doi.org/10.1523/JNEUROSCI.0481-04.2004.

Mitchell, J.P., Banaji, M.R., Macrae, C.N., 2005. General and specific contributions of themedial prefrontal cortex to knowledge about mental states. NeuroImage 28 (4),757–762. http://dx.doi.org/10.1016/j.neuroimage.2005.03.011.

Mitchell, J.P., Banaji, M.R., Macrae, C.N., 2005. The link between social cognition and self-referential thought in the medial prefrontal cortex. J. Cogn. Neurosci. 17 (8),1306–1315. http://dx.doi.org/10.1162/0898929055002418.

Mitchell, J.P., Neil Macrae, C., Banaji, M.R., 2005. Forming impressions of people versus in-animate objects: social-cognitive processing in the medial prefrontal cortex.NeuroImage 26 (1), 251–257. http://dx.doi.org/10.1016/j.neuroimage.2005.01.031.

Mitchell, J.P., Cloutier, J., Banaji, M.R., Macrae, C.N., 2006. Medial prefrontal dissociationsduring processing of trait diagnostic and nondiagnostic person information. Soc.Cogn. Affect. Neurosci. 1 (1), 49–55. http://dx.doi.org/10.1093/scan/nsl007.

Mitchell, J.P., Ames, D.L., Jenkins, A.C., Banaji, M.R., 2009. Neural correlates of stereotypeapplication. J. Cogn. Neurosci. 21 (3), 594–604. http://dx.doi.org/10.1162/jocn.2009.21033.

Mitchell, K.J., Raye, C.L., Ebner, N.C., Tubridy, S.M., Frankel, H., Johnson, M.K., 2009. Age-groupdifferences in medial cortex activity associated with thinking about self-relevantagendas. Psychol. Aging 24 (2), 438–449. http://dx.doi.org/10.1037/a0015181.

Miyamoto, R., Kikuchi, Y., 2012. Gender differences of brain activity in the conflicts basedon implicit self-esteem. PLoS One 7 (5), e37901. http://dx.doi.org/10.1371/journal.pone.0037901.

Modinos, G., Ormel, J., Aleman, A., 2009. Activation of anterior insula during self-reflection. PLoS One 4 (2), e4618. http://dx.doi.org/10.1371/journal.pone.0004618.

Modinos, G., Renken, R., Ormel, J., Aleman, A., 2011. Self-reflection and the psychosis-prone brain: an fMRI study. Neuropsychology 25 (3), 295–305. http://dx.doi.org/10.1037/a0021747.

Molenberghs, P., Morrison, S., 2012. The role of the medial prefrontal cortex in social cat-egorization. Soc. Cogn. Affect. Neurosci. 1–5. http://dx.doi.org/10.1093/scan/nss135.

Moll, J., Eslinger, P.J., Oliveira-Souza, R., 2001. Frontopolar and anterior temporal cortexactivation in a moral judgment task: preliminary functional MRI results in normalsubjects. Arq. Neuropsiquiatr. 59 (3-B), 657–664 (Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/11593260).

Moll, Jorge, De Oliveira-Souza, R., Bramati, I.E., Grafman, J., 2002. Functional networks inemotional moral and nonmoral social judgments. NeuroImage 16 (3), 696–703.http://dx.doi.org/10.1006/nimg.2002.1118.

Moll, Jorge, De Oliveira-Souza, R., Eslinger, P.J., Bramati, I.E., Mourão-Miranda, J.,Andreiuolo, P.A., Pessoa, L., 2002. The neural correlates of moral sensitivity: a func-tional magnetic resonance imaging investigation of basic and moral emotions.J. Neurosci. 22 (7), 2730–2736 (doi:20026214).

Moll, Jorge, De Oliveira-Souza, R., Garrido, G.J., Bramati, I.E., Caparelli-Daquer, E.M.a, Paiva,M.L.M.F., Zahn, R., et al., 2007. The self as a moral agent: linking the neural bases ofsocial agency and moral sensitivity. Soc. Neurosci. 2 (3–4), 336–352. http://dx.doi.org/10.1080/17470910701392024.

Molnar-Szakacs, I., Kaplan, J., Greenfield, P.M., Iacoboni, M., 2006. Observing complexaction sequences: the role of the fronto-parietal mirror neuron system. NeuroImage33 (3), 923–935. http://dx.doi.org/10.1016/j.neuroimage.2006.07.035.

Moran, J.M., Macrae, C.N., Heatherton, T.F., Wyland, C.L., Kelley, W.M., 2006. Neuroana-tomical evidence for distinct cognitive and affective components of self. J. Cogn.Neurosci. 18 (9), 1586–1594. http://dx.doi.org/10.1162/jocn.2006.18.9.1586.

Moran, Joseph M., Heatherton, T.F., Kelley, W.M., 2009. Modulation of cortical midlinestructures by implicit and explicit self-relevance evaluation. Soc. Neurosci. 4 (3),197–211. http://dx.doi.org/10.1080/17470910802250519.

Moran, J., Lee, S., Gabrieli, J., 2010. Dissociable neural systems supporting knowledgeabout human character and appearance in ourselves and others. J. Cogn. Neurosci.1–9 (Retrieved from http://www.mitpressjournals.org/doi/pdf/10.1162/jocn.2010.21580).

Moriguchi, Y., Ohnishi, T., Lane, R.D., Maeda, M., Mori, T., Nemoto, K., Matsuda, H., et al.,2006. Impaired self-awareness and theory of mind: an fMRI study of mentalizingin alexithymia. NeuroImage 32 (3), 1472–1482. http://dx.doi.org/10.1016/j.neuroimage.2006.04.186.

Moriguchi, Y., Ohnishi, T., Decety, J., Hirakata, M., Maeda, M., Matsuda, H., Komaki, G.,2009. The human mirror neuron system in a population with deficient self-awareness: an fMRI study in alexithymia. Hum. Brain Mapp. 30 (7), 2063–2076.http://dx.doi.org/10.1002/hbm.20653.

Morris, J.P., Pelphrey, K.a, McCarthy, G., 2008. Perceived causality influences brain activityevoked by biological motion. Soc. Neurosci. 3 (1), 16–25. http://dx.doi.org/10.1080/17470910701476686.

Murphy, E.R., Brent, B.K., Benton, M., Pruitt, P., Diwadkar, V., Rajarethinam, R.P., Keshavan,M.S., 2010. Differential processing of metacognitive evaluation and the neural circuit-ry of the self and others in schizophrenia: a pilot study. Schizophr. Res. 116 (2–3),252–258. http://dx.doi.org/10.1016/j.schres.2009.11.009.

Nadel, L., Campbell, J., Ryan, L., 2007. Autobiographical memory retrieval and hippocam-pal activation as a function of repetition and the passage of time. Neural Plast. 2007,90472. http://dx.doi.org/10.1155/2007/90472.

Nahab, F.B., Hattori, N., Saad, Z.S., Hallett, M., 2009. Contagious yawning and the frontallobe: an fMRI study. Hum. Brain Mapp. 30 (5), 1744–1751. http://dx.doi.org/10.1002/hbm.20638.

Nedelko, V., Hassa, T., Hamzei, F., Weiller, C., Binkofski, F., Schoenfeld, M.A., Tüscher, O., etal., 2010. Age-independent activation in areas of the mirror neuron system duringaction observation and action imagery. A fMRI study. Restor. Neurol. Neurosci. 28(6), 737–747. http://dx.doi.org/10.3233/RNN-2010-0542.

Newman-Norlund, R., Van Schie, H.T., Van Hoek, M.E.C., Cuijpers, R.H., Bekkering, H., 2010.The role of inferior frontal and parietal areas in differentiating meaningful andmean-ingless object-directed actions. Brain Res. 1315, 63–74. http://dx.doi.org/10.1016/j.brainres.2009.11.065.

Niki, K., Luo, J., 2002. An fMRI study on the time-limited role of the medial temporal lobein long-term topographical autobiographic memory. J. Cogn. Neurosci. 14 (3),500–507. http://dx.doi.org/10.1162/089892902317362010.

Noppeney, U., Josephs, O., Kiebel, S., Friston, K.J., Price, C.J., 2005. Action selectivity in pa-rietal and temporal cortex. Brain Res. Cogn. Brain Res. 25 (3), 641–649. http://dx.doi.org/10.1016/j.cogbrainres.2005.08.017.

Ochsner, K.N., Beer, J.S., Robertson, E.R., Cooper, J.C., Gabrieli, J.D.E., Kihsltrom, J.F.,D'Esposito, M., 2005. The neural correlates of direct and reflected self-knowledge.NeuroImage 28 (4), 797–814. http://dx.doi.org/10.1016/j.neuroimage.2005.06.069.

Oddo, S., Lux, S., Weiss, P.H., Schwab, A., Welzer, H., Markowitsch, H.J., Fink, G.R., 2010.Specific role of medial prefrontal cortex in retrieving recent autobiographical memo-ries: an fMRI study of young female subjects. Cortex 46 (1), 29–39. http://dx.doi.org/10.1016/j.cortex.2008.07.003.

Ohnishi, T., Moriguchi, Y., Matsuda, H., Mori, T., Hirakata, M., Imabayashi, E., Hirao, K., etal., 2004. The neural network for the mirror system and mentalizing in normally de-veloped children: an fMRI study. Neuroreport 15 (9), 1483–1487.

Ojanen, V., Möttönen, R., Pekkola, J., Jääskeläinen, I.P., Joensuu, R., Autti, T., Sams, M., 2005.Processing of audiovisual speech in Broca's area. NeuroImage 25 (2), 333–338.http://dx.doi.org/10.1016/j.neuroimage.2004.12.001.

Ortigue, S., Thompson, J.C., Parasuraman, R., Grafton, S.T., 2009. Spatio-temporal dynamicsof human intention understanding in temporo-parietal cortex: a combined EEG/fMRIrepetition suppression paradigm. PLoS One 4 (9), e6962. http://dx.doi.org/10.1371/journal.pone.0006962.

Otsuka, Y., Osaka, N., Yaoi, K., Osaka, M., 2011. First-person perspective effects on theoryof mind without self-reference. PLoS One 6 (4), e19320. http://dx.doi.org/10.1371/journal.pone.0019320.

Page 17: Social cognition and the cerebellum: A meta-analysis of ...brainmap.org/pubs/VanOverwalleNI14.pdfNevertheless, social cognition and social functioning are only marginally dealt with

570 F. Van Overwalle et al. / NeuroImage 86 (2014) 554–572

Packer, D.J., Cunningham, W.a., 2009. Neural correlates of reflection on goal states: therole of regulatory focus and temporal distance. Soc. Neurosci. 4 (5), 412–425.http://dx.doi.org/10.1080/17470910902750186.

Paulus, M.P., Frank, L.R., 2003. Ventromedial prefrontal cortex activation is critical forpreference judgments. Neuroreport 14 (10), 1311–1315. http://dx.doi.org/10.1097/01.wnr.0000078543.07662.02.

Pelphrey, K.A., Morris, J.P., McCarthy, G., 2004. Grasping the intentions of others: the per-ceived intentionality of an action influences activity in the superior temporal sulcusduring social perception. J. Cogn. Neurosci. 16 (10), 1706–1716. http://dx.doi.org/10.1162/0898929042947900.

Pelphrey, K.A., Morris, J.P., Michelich, C.R., Allison, T., McCarthy, G., 2005. Functional anat-omy of biological motion perception in posterior temporal cortex: an fMRI study ofeye, mouth and hand movements. Cereb. Cortex 15, 1866–1876.

Perner, J., Aichhorn, M., Kronbichler, M., Staffen, W., Ladurner, G., 2006. Thinking of men-tal and other representations: the roles of left and right temporo-parietal junction.Soc. Neurosci. 1 (3–4), 245–258. http://dx.doi.org/10.1080/17470910600989896.

Pfeifer, J.H., Lieberman, M.D., Dapretto, M., 2007. “I know you are but what am I?!”: neuralbases of self- and social knowledge retrieval in children and adults. J. Cogn. Neurosci.19 (8), 1323–1337. http://dx.doi.org/10.1162/jocn.2007.19.8.1323.

Pfeifer, J.H., Masten, C.L., Borofsky, L.a, Dapretto, M., Fuligni, A.J., Lieberman, M.D., 2009.Neural correlates of direct and reflected self-appraisals in adolescents and adults:when social perspective-taking informs self-perception. Child Dev. 80 (4),1016–1038. http://dx.doi.org/10.1111/j.1467-8624.2009.01314.x.

Piefke, M., 2003. Differential remoteness and emotional tone modulate the neural corre-lates of autobiographical memory. Brain 126 (3), 650–668. http://dx.doi.org/10.1093/brain/awg064.

Pierno, A.C., Becchio, C., Wall, M.B., Smith, A.T., Castiello, U., 2006. Transfer of interferedmotor patterns to self from others. Eur. J. Neurosci. 23 (7), 1949–1955. http://dx.doi.org/10.1111/j.1460-9568.2006.04706.x.

Pilgramm, S., Lorey, B., Rudolf Stark, J.M., Vaitl, D., Zentgraf, K., 2010. Differential activationof the lateral premotor cortex during action observation. BMC Neurosci. 11, 89.

Platek, S.M., Keenan, J.P., Gallup, G.G., Mohamed, F.B., 2004.Where am I? The neurologicalcorrelates of self and other. Brain Res. Cogn. Brain Res. 19 (2), 114–122. http://dx.doi.org/10.1016/j.cogbrainres.2003.11.014.

Platek, S.M., Loughead, J.W., Gur, R.C., Busch, S., Ruparel, K., Phend, N., Panyavin, I.S., et al.,2006. Neural substrates for functionally discriminating self-face from personally fa-miliar faces. Hum. Brain Mapp. 27 (2), 91–98. http://dx.doi.org/10.1002/hbm.20168.

Poettrich, K., Weiss, P.H., Werner, A., Lux, S., Donix, M., Gerber, J., Von Kummer, R., et al.,2009. Altered neural network supporting declarative long-termmemory in mild cog-nitive impairment. Neurobiol. Aging 30 (2), 284–298. http://dx.doi.org/10.1016/j.neurobiolaging.2007.05.027.

Powell, L.J., Macrae, C.N., Cloutier, J., Metcalfe, J., Mitchell, J.P., 2010. Dissociable neuralsubstrates for agentic versus conceptual representations of self. J. Cogn. Neurosci.22 (10), 2186–2197. http://dx.doi.org/10.1162/jocn.2009.21368.

Prehn, K., Wartenburger, I., Mériau, K., Scheibe, C., Goodenough, O.R., Villringer, A., Vander Meer, E., et al., 2008. Individual differences in moral judgment competence influ-ence neural correlates of socio-normative judgments. Soc. Cogn. Affect. Neurosci. 3(1), 33–46. http://dx.doi.org/10.1093/scan/nsm037.

Quadflieg, S., Turk, D.J., Waiter, G.D., Mitchell, J.P., Jenkins, A.C., Macrae, C.N., 2009. Explor-ing the neural correlates of social stereotyping. J. Cogn. Neurosci. 21 (8), 1560–1570.http://dx.doi.org/10.1162/jocn.2009.21091.

Rabin, J.S., Rosenbaum, R.S., 2012. Familiarity modulates the functional relationship be-tween theory of mind and autobiographical memory. NeuroImage 62 (1), 520–529.http://dx.doi.org/10.1016/j.neuroimage.2012.05.002.

Rabin, J.S., Gilboa, A., Stuss, D.T., Mar, R.a, Rosenbaum, R.S., 2010. Common and uniqueneural correlates of autobiographical memory and theory of mind. J. Cogn. Neurosci.22 (6), 1095–1111. http://dx.doi.org/10.1162/jocn.2009.21344.

Rameson, L.T., Satpute, A.B., Lieberman, M.D., 2010. The neural correlates of implicit andexplicit self-relevant processing. NeuroImage 50 (2), 701–708. http://dx.doi.org/10.1016/j.neuroimage.2009.12.098.

Ramnani, N., Miall, R.C., 2004. A system in the human brain for predicting the actions ofothers. Nat. Neurosci. 7 (1), 85–90. http://dx.doi.org/10.1038/nn1168.

Ramsey, R., Hamilton, A.F.D.C., 2010. Triangles have goals too: understanding action rep-resentation in left aIPS. Neuropsychologia 48 (9), 2773–2776. http://dx.doi.org/10.1016/j.neuropsychologia.2010.04.028.

Reithler, J., Van Mier, H.I., Peters, J.C., Goebel, R., 2007. Nonvisual motor learning influ-ences abstract action observation. Curr. Biol. 17 (14), 1201–1207. http://dx.doi.org/10.1016/j.cub.2007.06.019.

Rekkas, P.V., Constable, R.T., 2006. Hemodynamic retrieval intensity in hippocampus isdecreased by pre-exposure to autobiographic test items. Brain Res. Bull. 70 (4–6),467–473. http://dx.doi.org/10.1016/j.brainresbull.2006.07.002.

Rekkas, P.V., Constable, R.T., 2005. Evidence that autobiographic memory retrieval doesnot become independent of the hippocampus: an fMRI study contrasting very recentwith remote events. J. Cogn. Neurosci. 17 (12), 1950–1961 (Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/16475281).

Rekkas, P.V., Westerveld, M., Skudlarski, P., Zumer, J., Pugh, K., Spencer, D.D., Constable,R.T., 2005. Neural correlates of temporal-order judgments versus those of spatial-location: deactivation of hippocampus may facilitate spatial performance. BrainCogn. 59 (2), 103–113. http://dx.doi.org/10.1016/j.bandc.2005.05.013.

Reniers, R.L.E.P., Corcoran, R., Völlm, B.a, Mashru, A., Howard, R., Liddle, P.F., 2012. Moraldecision-making, ToM, empathy and the default mode network. Biol. Psychol. 90(3), 202–210. http://dx.doi.org/10.1016/j.biopsycho.2012.03.009.

Ries, M.L., Schmitz, T.W., Kawahara, T.N., Torgerson, B.M., Trivedi, M.a, Johnson, S.C.,2006. Task-dependent posterior cingulate activation in mild cognitiveimpairment. NeuroImage 29 (2), 485–492. http://dx.doi.org/10.1016/j.neuroimage.2005.07.030.

Rilling, J.K., Sanfey, A.G., Aronson, J.A., Nystrom, L.E., Cohen, J.D., 2004. The neural corre-lates of theory of mind within interpersonal interactions. NeuroImage 22,1694–1703. http://dx.doi.org/10.1016/j.neuroimage.2004.04.015.

Robertson, D., Snarey, J., Ousley, O., Harenski, K., DuBois Bowman, F., Gilkey, R., Kilts, C.,2007. The neural processing of moral sensitivity to issues of justice and care.Neuropsychologia 45 (4), 755–766. http://dx.doi.org/10.1016/j.neuropsychologia.2006.08.014.

Ryan, L., Nadel, L., Keil, K., Putnam, K., Schnyer, D., Trouard, T., Moscovitch, M., 2001. Hip-pocampal complex and retrieval of recent and very remote autobiographical memo-ries: evidence from functional magnetic resonance imaging in neurologically intactpeople. Hippocampus 11 (6), 707–714. http://dx.doi.org/10.1002/hipo.1086.

Sajonz, B., Kahnt, T., Margulies, D.S., Park, S.Q., Wittmann, A., Stoy, M., Ströhle, A., et al.,2010. Delineating self-referential processing from episodic memory retrieval: com-mon and dissociable networks. NeuroImage 50 (4), 1606–1617. http://dx.doi.org/10.1016/j.neuroimage.2010.01.087.

Sakreida, K., Schubotz, R.I., Wolfensteller, U., Von Cramon, D.Y., 2005. Motion class depen-dency in observers' motor areas revealed by functional magnetic resonance imaging.J. Neurosci. 25 (6), 1335–1342. http://dx.doi.org/10.1523/JNEUROSCI.4170-04.2005.

Samson, A.C., Zysset, S., Huber, O., 2008. Cognitive humor processing: different logicalmechanisms in nonverbal cartoons–an fMRI study. Soc. Neurosci. 3 (2), 125–140.http://dx.doi.org/10.1080/17470910701745858.

Santi, A., Servos, P., Vatikiotis-Bateson, E., Kuratate, T., Munhall, K., 2003. Perceiving bio-logical motion: dissociating visible speech from walking. J. Cogn. Neurosci. 15 (6),800–809. http://dx.doi.org/10.1162/089892903322370726.

Santos, N.S., Kuzmanovic, B., David, N., Rotarska-Jagiela, a, Eickhoff, S.B., Shah, J.N., Fink,G.R., et al., 2010. Animated brain: a functional neuroimaging study on animacy expe-rience. NeuroImage 53 (1), 291–302. http://dx.doi.org/10.1016/j.neuroimage.2010.05.080.

Saxe, R.R., Kanwisher, N., 2003. People thinking about thinking peopleThe role of thetemporo-parietal junction in “theory of mind”. NeuroImage 19 (4), 1835–1842.http://dx.doi.org/10.1016/S1053-8119(03)00230-1.

Saxe, R.R., Powell, L.J., 2006. It's the thought that counts: specific brain regions for onecomponent of theory of mind. Psychol. Sci. 17 (8), 692–699. http://dx.doi.org/10.1111/j.1467-9280.2006.01768.x.

Saxe, R.R., Wexler, A., 2005. Making sense of another mind: the role of the right temporo-parietal junction. Neuropsychologia 43 (10), 1391–1399. http://dx.doi.org/10.1016/j.neuropsychologia.2005.02.013.

Saxe, R., Whitfield-Gabrieli, S., 2009. Brain regions for perceiving and reasoning aboutother people in school‐aged children. Child Dev. 80 (4), 1197–1209. http://dx.doi.org/10.1111/j.1467-8624.2009.01325.x/full.

Saxe, R.R., Schulz, L.E., Jiang, Y.V., 2006. Readingminds versus following rules: dissociatingtheory of mind and executive control in the brain. Soc. Neurosci. 1 (3–4), 284–298.http://dx.doi.org/10.1080/17470910601000446.

Saygin, A.P., Chaminade, T., Ishiguro, H., Driver, J., Frith, C., 2012. The thing that should notbe: predictive coding and the uncanny valley in perceiving human and humanoidrobot actions. Soc. Cogn. Affect. Neurosci. http://dx.doi.org/10.1093/scan/nsr025.

Schaefer, M., Xu, B., Flor, H., Cohen, L.G., 2009. Effects of different viewing perspectives onsomatosensory activations during observation of touch. Hum. Brain Mapp. 30 (9),2722–2730. http://dx.doi.org/10.1002/hbm.20701.

Schaich Borg, J., Hynes, C., Van Horn, J., Grafton, S., Sinnott-Armstrong, W., 2006. Conse-quences, action, and intention as factors in moral judgments: an FMRI investigation.J. Cogn. Neurosci. 18 (5), 803–817. http://dx.doi.org/10.1162/jocn.2006.18.5.803.

Schiller, D., Freeman, J.B., Mitchell, J.P., Uleman, J.S., Phelps, E.a., 2009. A neural mechanismof first impressions. Nat. Neurosci. 12 (4), 508–514. http://dx.doi.org/10.1038/nn.2278.

Schippers, M.B., Gazzola, V., Goebel, R., Keysers, C., 2009. Playing charades in the fMRI: aremirror and/or mentalizing areas involved in gestural communication? PLoS One 4(8), e6801. http://dx.doi.org/10.1371/journal.pone.0006801.

Schmidt, G.L., Seger, C.a., 2009. Neural correlates of metaphor processing: the roles of fig-urativeness, familiarity and difficulty. Brain Cogn. 71 (3), 375–386. http://dx.doi.org/10.1016/j.bandc.2009.06.001.

Schmitz, T.W., Johnson, S.C., 2006. Self-appraisal decisions evoke dissociated dorsal-ventral aMPFC networks. NeuroImage 30 (3), 1050–1058. http://dx.doi.org/10.1016/j.neuroimage.2005.10.030.

Schmitz, T.W., Kawahara-Baccus, T.N., Johnson, S.C., 2004. Metacognitive evaluation, self-relevance, and the right prefrontal cortex. NeuroImage 22 (2), 941–947. http://dx.doi.org/10.1016/j.neuroimage.2004.02.018.

Schmitz, T.W., Rowley, H.a, Kawahara, T.N., Johnson, S.C., 2006. Neural correlates of self-evaluative accuracy after traumatic brain injury. Neuropsychologia 44 (5), 762–773.http://dx.doi.org/10.1016/j.neuropsychologia.2005.07.012.

Schubotz, R.I., von Cramon, D.Y., 2004. Premotor Cortex in Abstract Sequences and Action.1–2.

Schultz, J., Imamizu, H., Kawato, M., Frith, C.D., 2004. Activation of the human supe-rior temporal gyrus during observation of goal attribution by intentional ob-jects. J. Cogn. Neurosci. 16 (10), 1695–1705. http://dx.doi.org/10.1162/0898929042947874.

Sebastian, C.L., Fontaine, N.M.G., Bird, G., Blakemore, S.-J., Brito, S.a, De McCrory, E.J.P.,Viding, E., 2012. Neural processing associated with cognitive and affective Theory ofMind in adolescents and adults. Soc. Cogn. Affect. Neurosci. 7 (1), 53–63. http://dx.doi.org/10.1093/scan/nsr023.

Seger, C.a, Stone, M., Keenan, J.P., 2004. Cortical activations during judgments about theself and another person. Neuropsychologia 42 (9), 1168–1177. http://dx.doi.org/10.1016/j.neuropsychologia.2004.02.003.

Shane, M.S., Stevens, M., Harenski, C.L., Kiehl, K.a., 2008. Neural correlates of the processingof another's mistakes: a possible underpinning for social and observational learning.NeuroImage 42 (1), 450–459. http://dx.doi.org/10.1016/j.neuroimage.2007.12.067.

Page 18: Social cognition and the cerebellum: A meta-analysis of ...brainmap.org/pubs/VanOverwalleNI14.pdfNevertheless, social cognition and social functioning are only marginally dealt with

571F. Van Overwalle et al. / NeuroImage 86 (2014) 554–572

Sheldon, S., Moscovitch, M., 2012. The nature and time-course of medial temporal lobecontributions to semantic retrieval: an fMRI study on verbal fluency. Hippocampus22 (6), 1451–1466. http://dx.doi.org/10.1002/hipo.20985.

Shmuelof, L., Zohary, E., 2005. Dissociation between ventral and dorsal fMRI activationduring object and action recognition. Neuron 47 (3), 457–470. http://dx.doi.org/10.1016/j.neuron.2005.06.034.

Shmuelof, L., Zohary, E., 2008. Mirror-image representation of action in the anterior pari-etal cortex. Nat. Neurosci. 11 (11), 1267–1269. http://dx.doi.org/10.1038/nn.2196.

Shultz, S., Lee, S.M., Pelphrey, K., McCarthy, G., 2011. The posterior superior temporalsulcus is sensitive to the outcome of human and non-human goal-directed actions.Soc. Cogn. Affect. Neurosci. 6 (5), 602–611. http://dx.doi.org/10.1093/scan/nsq087.

Sommer, M., Döhnel, K., Sodian, B., Meinhardt, J., Thoermer, C., Hajak, G., 2007. Neuralcorrelates of true and false belief reasoning. NeuroImage 35 (3), 1378–1384. http://dx.doi.org/10.1016/j.neuroimage.2007.01.042.

Spengler, S., Von Cramon, D.Y., Brass, M., 2009. Control of shared representations relies onkey processes involved in mental state attribution. Hum. Brain Mapp. 30 (11),3704–3718. http://dx.doi.org/10.1002/hbm.20800.

Spiers, H.J., Maguire, E.a., 2006. Spontaneous mentalizing during an interactive real worldtask: an fMRI study. Neuropsychologia 44 (10), 1674–1682. http://dx.doi.org/10.1016/j.neuropsychologia.2006.03.028.

Spreng, R.N., Grady, C.L., 2010. Patterns of brain activity supporting autobiographicalmemory, prospection, and theory of mind, and their relationship to the defaultmode network. J. Cogn. Neurosci. 22 (6), 1112–1123. http://dx.doi.org/10.1162/jocn.2009.21282.

Spunt, Robert P., Lieberman, M.D., 2012. Dissociating modality-specific and supramodalneural systems for action understanding. J. Neurosci. 32 (10), 3575–3583. http://dx.doi.org/10.1523/JNEUROSCI.5715-11.2012.

Spunt, Robert P., Lieberman, M.D., 2012. An integrative model of the neural systemssupporting the comprehension of observed emotional behavior. NeuroImage 59(3), 3050–3059. http://dx.doi.org/10.1016/j.neuroimage.2011.10.005.

Spunt, Robert P., Lieberman, M.D., 2013. The busy social brain: evidence for automaticityand control in the neural systems supporting social cognition and action understand-ing. Psychol. Sci. 24 (1), 80–86. http://dx.doi.org/10.1177/0956797612450884.

Spunt, R.P., Falk, E.B., Lieberman, M.D., 2010. Dissociable neural systems support retrievalof how and why action knowledge. Psychol. Sci. 21 (11), 1593–1598. http://dx.doi.org/10.1177/0956797610386618.

Spunt, Robert P., Satpute, A.B., Lieberman, M.D., 2011. Identifying the what, why, and howof an observed action: an fMRI study of mentalizing and mechanizing duringaction observation. J. Cogn. Neurosci. 23 (1), 63–74. http://dx.doi.org/10.1162/jocn.2010.21446.

Sripada, C.S., Angstadt, M., Banks, S., Nathan, P.J., Liberzon, I., Phana, K.L., 2009. Functionalneuroimaging of mentalizing during the trust game in social anxiety disorder.Neuroreport 20 (11), 984–989.

St Jacques, P., Rubin, D.C., LaBar, K.S., Cabeza, R., 2008. The short and long of it: neuralcorrelates of temporal-order memory for autobiographical events. J. Cogn. Neurosci.20 (7), 1327–1341. http://dx.doi.org/10.1162/jocn.2008.20091.

St-Laurent, M., Abdi, H., Burianová, H., Grady, C.L., 2011. Influence of aging on the neuralcorrelates of autobiographical, episodic, and semantic memory retrieval. J. Cogn.Neurosci. 23 (12), 4150–4163. http://dx.doi.org/10.1162/jocn_a_00079.

Sugiura, M., Sassa, Y., Jeong, H.,Wakusawa, K., Horie, K., Sato, S., Kawashima, R., 2012. Self-face recognition in social context. Hum. Brain Mapp. 33 (6), 1364–1374. http://dx.doi.org/10.1002/hbm.21290.

Summerfield, J.J., Hassabis, D., Maguire, E.a., 2009. Cortical midline involvement in auto-biographical memory. NeuroImage 44 (3), 1188–1200. http://dx.doi.org/10.1016/j.neuroimage.2008.09.033.

Svoboda, E., Levine, B., 2009. The effects of rehearsal on the functional neuroanatomy ofepisodic autobiographical and semantic remembering: a functional magnetic reso-nance imaging study. J. Neurosci. 29 (10), 3073–3082. http://dx.doi.org/10.1523/JNEUROSCI.3452-08.2009.

Szpunar, K.K., Watson, J.M., McDermott, K.B., 2007. Neural substrates of envisioning thefuture. Proc. Natl. Acad. Sci. U. S. A. 104 (2), 642–647. http://dx.doi.org/10.1073/pnas.0610082104.

Tacikowski, P., Brechmann, a, Marchewka, a, Jednoróg, K., Dobrowolny, M., Nowicka, a,2011. Is it about the self or the significance? An fMRI study of self-name recognition.Soc. Neurosci. 6 (1), 98–107. http://dx.doi.org/10.1080/17470919.2010.490665.

Tai, Y.F., Scherfler, C., Brooks, D.J., Sawamoto, N., Castiello, U., 2004. The human premotorcortex is “mirror” only for biological actions. Curr. Biol. 14 (2), 117–120. http://dx.doi.org/10.1016/j.cub.2004.01.005.

Takahashi, H., Shibuya, T., Kato, M., Sassa, T., Koeda, M., Yahata, N., Suhara, T., et al., 2008.Enhanced activation in the extrastriate body area by goal-directed actions. PsychiatryClin. Neurosci. 62 (2), 214–219. http://dx.doi.org/10.1111/j.1440-1819.2008.01757.x.

Tamir, D.I., Mitchell, J.P., 2011. The default network distinguishes construals of proximalversus distal events. J. Cogn. Neurosci. 23 (10), 2945–2955. http://dx.doi.org/10.1162/jocn_a_00009.

Tavares, P., Lawrence, A.D., Barnard, P.J., 2008. Paying attention to social meaning: anFMRI study. Cereb. Cortex 18 (8), 1876–1885. http://dx.doi.org/10.1093/cercor/bhm212.

Taylor, M.J., Arsalidou, M., Bayless, S.J., Morris, D., Evans, J.W., Barbeau, E.J., 2009. Neuralcorrelates of personally familiar faces: parents, partner and own faces. Hum. BrainMapp. 30 (7), 2008–2020. http://dx.doi.org/10.1002/hbm.20646.

Tettamanti, M., Buccino, G., Saccuman, M.C., Gallese, V., Danna, M., Scifo, P., Fazio, F., et al.,2005. Listening to action-related sentences activates fronto-parietal motor circuits.J. Cogn. Neurosci. 17 (2), 273–281. http://dx.doi.org/10.1162/0898929053124965.

Todorov, A., Gobbini, M.I., Evans, K.K., Haxby, J.V., 2007. Spontaneous retrieval of affectiveperson knowledge in face perception. Neuropsychologia 45 (1), 163–173. http://dx.doi.org/10.1016/j.neuropsychologia.2006.04.018.

Tomlin, D., Kayali, M.A., King-Casas, B., Anen, C., Camerer, C.F., Quartz, S.R., Montague, P.R.,2006. Agent-specific responses in the cingulate cortex during economic exchanges.Science 312 (5776), 1047–1050. http://dx.doi.org/10.1126/science.1125596.

Trinkler, I., King, J.a, Doeller, C.F., Rugg, M.D., Burgess, N., 2009. Neural bases of autobio-graphical support for episodic recollection of faces. Hippocampus 19 (8), 718–730.http://dx.doi.org/10.1002/hipo.20556.

Turk, D.J., Banfield, J.F., Walling, B.R., Heatherton, T.F., Grafton, S.T., Handy, T.C., Gazzaniga,M.S., et al., 2004. From facial cue to dinner for two: the neural substrates of personalchoice. NeuroImage 22 (3), 1281–1290. http://dx.doi.org/10.1016/j.neuroimage.2004.02.037.

Valyear, K.F., Cavina-Pratesi, C., Stiglick, A.J., Culham, J.C., 2007. Does tool-related fMRIactivity within the intraparietal sulcus reflect the plan to grasp? Door: NeuroImage36 (2), T94.

Van Buuren, M., Gladwin, T.E., Zandbelt, B.B., Kahn, R.S., Vink, M., 2010. Reduced function-al coupling in the default-mode network during self-referential processing. Hum.Brain Mapp. 31 (8), 1117–1127. http://dx.doi.org/10.1002/hbm.20920.

Van der Cruyssen, L., Heleven, E., Ma, N., Van Overwalle, F., 2013. Distinct Neural Corre-lates of Stereotypes and Traits (submitted for publication).

Van der Meer, L., Groenewold, N.a, Nolen, W. a, Pijnenborg, M., Aleman, A., 2011. Inhibityourself and understand the other: neural basis of distinct processes underly-ing Theory of Mind. NeuroImage 56 (4), 2364–2374. http://dx.doi.org/10.1016/j.neuroimage.2011.03.053.

Van Hoeck, N., Ma, N., Ampe, L., Baetens, K., Vandekerckhove, M., Van Overwalle, F., 2013.Counterfactual thinking: an fMRI study on changing the past for a better future. Soc.Cogn. Affect. Neurosci. http://dx.doi.org/10.1093/scan/nss031.

Vandekerckhove, M.M.P., Markowitsch, H.J., Mertens, M., Woermann, F.G., 2005.Bi-hemispheric engagement in the retrieval of autobiographical episodes. Behav.Neurol. 16 (4), 203–210 (Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/16518010).

Vander Wyk, B.C., Hudac, C.M., Carter, E.J., Sobel, D.M., Pelphrey, K.A., 2009. Actionunderstanding in the superior temporal sulcus region. Psychol. Sci. 20 (6), 771–777.http://dx.doi.org/10.1111/j.1467-9280.2009.02359.x.

Vanderwal, T., Hunyadi, E., Grupe, D.W., Connors, C.M., Schultz, R.T., 2008. Self, motherand abstract other: an fMRI study of reflective social processing. NeuroImage 41(4), 1437–1446. http://dx.doi.org/10.1016/j.neuroimage.2008.03.058.

Veroude, K., Keulers, E.H.H., Evers, E.A.T., Stiers, P., Jolles, J., Krabbendam, L., 2012. The ef-fect of perspective and content on brain activation during mentalizing in young fe-males. The effect of perspective and content on brain activation during mentalizingin young females. J. Clin. Exp. Neuropsychol. (August), 37–41.

Viard, A., Piolino, P., Desgranges, B., Chételat, G., Lebreton, K., Landeau, B., Young, A., et al.,2007. Hippocampal activation for autobiographical memories over the entire life-time in healthy aged subjects: an fMRI study. Cereb. Cortex 17 (10), 2453–2467.http://dx.doi.org/10.1093/cercor/bhl153.

Viard, A., Chételat, G., Lebreton, K., Desgranges, B., Landeau, B., De La Sayette, V., Eustache,F., et al., 2011. Mental time travel into the past and the future in healthy agedadults: an fMRI study. Brain Cogn. 75 (1), 1–9. http://dx.doi.org/10.1016/j.bandc.2010.10.009.

Villarreal, M., Fridman, E.a, Amengual, A., Falasco, G., Gerschcovich, E.R.,Gerscovich, E.R., Ulloa, E.R., et al., 2008. The neural substrate of gesture rec-ognition. Neuropsychologia 46 (9), 2371–2382. http://dx.doi.org/10.1016/j.neuropsychologia.2008.03.004.

Vogeley, K., Bussfeld, P., Newen, a, Herrmann, S., Happé, F., Falkai, P., Maier, W., et al.,2001. Mind reading: neural mechanisms of theory of mind and self-perspective.NeuroImage 14 (1 Pt 1), 170–181. http://dx.doi.org/10.1006/nimg.2001.0789.

Völlm, B.a, Taylor, A.N.W., Richardson, P., Corcoran, R., Stirling, J., McKie, S., Deakin, J.F.W.,et al., 2006. Neuronal correlates of theory of mind and empathy: a functionalmagnetic resonance imaging study in a nonverbal task. NeuroImage 29 (1), 90–98.http://dx.doi.org/10.1016/j.neuroimage.2005.07.022.

Wakusawa, K., Sugiura, M., Sassa, Y., Jeong, H., Horie, K., Sato, S., Yokoyama, H., et al., 2007.Comprehension of implicit meanings in social situations involving irony: a functionalMRI study. NeuroImage 37 (4), 1417–1426. http://dx.doi.org/10.1016/j.neuroimage.2007.06.013.

Walter, H., Adenzato, M., Ciaramidaro, A., Enrici, I., Pia, L., Bara, B.G., 2004. Under-standing intentions in social interaction: the role of the anterior paracingulatecortex. J. Cogn. Neurosci. 16 (10), 1854–1863. http://dx.doi.org/10.1162/0898929042947838.

Wang, a T., Lee, S.S., Sigman, M., Dapretto, M., 2006. Developmental changes in the neuralbasis of interpreting communicative intent. Soc. Cogn. Affect. Neurosci. 1 (2),107–121. http://dx.doi.org/10.1093/scan/nsl018.

Wang, G., Mao, L., Ma, Y., Yang, X., Cao, J., Liu, X., Wang, J., et al., 2012. Neural representa-tions of close others in collectivistic brains. Soc. Cogn. Affect. Neurosci. 7 (2),222–229. http://dx.doi.org/10.1093/scan/nsr002.

Wheaton, K.J., Thompson, J.C., Syngeniotis, A., Abbott, D.F., Puce, A., 2004. Viewing themo-tion of human body parts activates different regions of premotor, temporal, and pa-rietal cortex. NeuroImage 22 (1), 277–288. http://dx.doi.org/10.1016/j.neuroimage.2003.12.043.

Whitehead, C., Marchant, J.L., Craik, D., Frith, C.D., 2009. Neural correlates of observingpretend play in which one object is represented as another. Soc. Cogn. Affect.Neurosci. 4 (4), 369–378. http://dx.doi.org/10.1093/scan/nsp021.

Whitfield-Gabrieli, S., Moran, J.M., Nieto-Castañón, A., Triantafyllou, C., Saxe, R., Gabrieli,J.D.E., 2011. Associations and dissociations between default and self-referencenetworks in the human brain. NeuroImage 55 (1), 225–232. http://dx.doi.org/10.1016/j.neuroimage.2010.11.048.

Wilson, S.M., Molnar-Szakacs, I., Iacoboni, M., 2008. Beyond superior temporal cortex:intersubject correlations in narrative speech comprehension. Cereb. Cortex 18 (1),230–242. http://dx.doi.org/10.1093/cercor/bhm049.

Page 19: Social cognition and the cerebellum: A meta-analysis of ...brainmap.org/pubs/VanOverwalleNI14.pdfNevertheless, social cognition and social functioning are only marginally dealt with

572 F. Van Overwalle et al. / NeuroImage 86 (2014) 554–572

Wolf, I., Dziobek, I., Heekeren, H.R., 2010. Neural correlates of social cognition in natural-istic settings: a model-free analysis approach. NeuroImage 49 (1), 894–904. http://dx.doi.org/10.1016/j.neuroimage.2009.08.060.

Wright, M.J., Jackson, R.C., 2007. Brain regions concerned with perceptual skills in tennis:an fMRI study. Int. J. Psychophysiol. 63 (2), 214–220. http://dx.doi.org/10.1016/j.ijpsycho.2006.03.018.

Yang, J., Dedovic, K., Chen, W., Zhang, Q., 2012. Self-esteemmodulates dorsal anterior cin-gulate cortical response in self-referential processing. Neuropsychologia 50 (7),1267–1270. http://dx.doi.org/10.1016/j.neuropsychologia.2012.02.010.

Yaoi, K., Osaka, N., Osaka, M., 2009. Is the self special in the dorsomedial prefrontalcortex? An fMRI study. Soc. Neurosci. 4 (5), 455–463. http://dx.doi.org/10.1080/17470910903027808.

Yoshimura, S., Ueda, K., Suzuki, S., Onoda, K., Okamoto, Y., Yamawaki, S., 2009. Self-referential processing of negative stimuli within the ventral anterior cingulategyrus and right amygdala. Brain Cogn. 69 (1), 218–225. http://dx.doi.org/10.1016/j.bandc.2008.07.010.

Young, L., Saxe, R.R., 2008. The neural basis of belief encoding and integration in moraljudgment. NeuroImage 40 (4), 1912–1920. http://dx.doi.org/10.1016/j.neuroimage.2008.01.057.

Young, L., Saxe, R., 2009. An FMRI investigation of spontaneous mental state inference formoral judgment. J. Cogn. Neurosci. 21 (7), 1396–1405. http://dx.doi.org/10.1162/jocn.2009.21137.

Young, L., Cushman, F., Hauser, M., Saxe, R.R., 2007. The neural basis of the interaction be-tween theory of mind and moral judgment. Proc. Natl. Acad. Sci. U. S. A. 104 (20),8235–8240. http://dx.doi.org/10.1073/pnas.0701408104.

Young, L., Dodell-Feder, D., Saxe, R.R., 2010. What gets the attention of thetemporo-parietal junction? An fMRI investigation of attention and theory of mind.

Neuropsychologia 48 (9), 2658–2664. http://dx.doi.org/10.1016/j.neuropsychologia.2010.05.012.

Young, K., Erickson, K., Nugent, A., Fromm, S.J., Mallinger, A.G., Furey, M.L., Drevets, W.C.,2011. Functional anatomy of autobiographical memory recall deficits in depression.Psychol. Med. 42 (2), 345–357 (Retrieved from http://journals.cambridge.org/production/action/cjoGetFulltext?fulltextid=8468476).

Young, K.D., Bellgowan, P.S.F., Bodurka, J., Drevets, W.C., 2012. Functional neuroimaging ofsex differences in autobiographical memory recall. Hum. Brain Mapp. 000 (May).http://dx.doi.org/10.1002/hbm.22144.

Zaitchik, D., Walker, C., Miller, S., LaViolette, P., Feczko, E., Dickerson, B.C., 2010. Mentalstate attribution and the temporoparietal junction: an fMRI study comparing belief,emotion, and perception. Neuropsychologia 48 (9), 2528–2536. http://dx.doi.org/10.1016/j.neuropsychologia.2010.04.031.

Zaki, J., Hennigan, K., Weber, J., Ochsner, K.N., 2010. Social cognitive conflict reso-lution: contributions of domain-general and domain-specific neural systems.J. Neurosci. 30 (25), 8481–8488. http://dx.doi.org/10.1523/JNEUROSCI.0382-10.2010.

Zhang, L., Zhou, T., Zhang, J., Liu, Z., Fan, J., Zhu, Y., 2006. In search of the Chinese self: anfMRI study. Sci. China Ser. C 49 (1), 89–96. http://dx.doi.org/10.1007/s11427-004-5105-x.

Zhu, Y., Zhang, L., Fan, J., Han, S., 2007. Neural basis of cultural influence on self-representation. NeuroImage 34 (3), 1310–1316. http://dx.doi.org/10.1016/j.neuroimage.2006.08.047.

Zhu, L., Guo, X., Li, J., Zheng, L., Wang, Q., Yang, Z., 2012. Hippocampal activity is associatedwith self-descriptiveness effect in memory, whereas self-reference effect in memorydepends on medial prefrontal activity. Hippocampus 22 (7), 1540–1552. http://dx.doi.org/10.1002/hipo.20994.