2
Leu Leu Gln Gln Gln ? Amino acids Amino acids Growth LYSOSOME CYTOPLASM Wnt signaling Growth factor signaling TNF signaling TNF receptor TNFD AMPK Dsh1 GSK3 Rsk1 Ras GEF activity GAP activity GAP activity Raf Mek Erk1/2 SOS GRB2 IRS1 PI3K Akt1 PDK1 NF1 Pten IKK` LKB1 Redd1 p53 Sestrin S6K1 4EBP1 Protein synthesis Energy metabolism HIF1_ Lysosome biogenesis TFEB Lipin-1 SREBP1/2 Lipid biosynthesis ATG13 ULK1 FIP200 Autophagy mTORC1 Ragulator complex p18 TSC complex Lysosomal v-ATPase Movement away from the lysosomal surface TSC complex Movement to the lysosomal surface RagA GTP RagA GDP mTORC1 (inactive) Amino acid transporter SLC1A5 SLC7A5 Ragulator RagC RagA GEF activity GTP Rheb p14 A D a d c c c F A G G E E A B B B H C MP1 HBXIP TSC2 TBC1D7 C7orf59 deptor mTOR mLST8 pras40 raptor TSC1 COMPLEXES AT THE LYSOSOMAL SURFACE DOWNSTREAM CELLULAR PROGRAMS REGULATED BY mTORC1 ACTIVITY mTORC1 substrate Tumor suppressor Oncogene v-ATPase O 2 levels Nutrient signaling DNA damage Energy levels ATP/AMP PIP3 PIP2 GDP FKBP12 Rapamycin mTORC1 (active) GTP GTP Frizzled Tyrosine kinase receptor Wnt IGF See online version for legend and references. 1390 Cell 151, December 7, 2012 ©2012 Elsevier Inc. DOI http://dx.doi.org/10.1016/j.cell.2012.11.038 SnapShot: mTORC1 Signaling at the Lysosomal Surface Liron Bar-Peled and David M. Sabatini Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA

SnapShot: mTORC1 Signaling at the Lysosomal Surface...Bar-Peled, L., Schweitzer, L.D., Zoncu, R., and Sabatini, D.M. (2012). Ragulator is a GEF for the rag GTPases that signal amino

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: SnapShot: mTORC1 Signaling at the Lysosomal Surface...Bar-Peled, L., Schweitzer, L.D., Zoncu, R., and Sabatini, D.M. (2012). Ragulator is a GEF for the rag GTPases that signal amino

Leu

Leu

Gln

Gln

Gln

?

Am

ino

acid

s

Am

ino

acid

s

Gro

wth

LY

SO

SO

ME

CY

TO

PL

AS

M

Wnt

sig

nalin

gG

row

thfa

cto

r si

gna

ling

TN

Fsi

gna

ling T

NF

rece

pto

r

TN

F

AM

PK

Dsh

1

GS

K3

Rsk

1

Ras

GE

Fac

tivi

ty GA

Pac

tivi

ty

GA

P a

ctiv

ity

Raf

Mek

Erk

1/2

SO

SGR

B2

IRS

1P

I3K

Akt

1

PD

K1

NF

1

Pte

n

IKKβ

LKB

1R

edd

1p

53

Ses

trin

S6K

1

4EB

P1

Pro

tein

syn

thes

is

Ene

rgy

met

abol

ism

HIF

Lyso

som

e b

ioge

nesi

sTF

EB

Lip

in-1 SR

EB

P1/

2

Lip

idb

iosy

nthe

sis

ATG

13

ULK

1

FIP200

Aut

opha

gym

TO

RC

1R

ag

ula

tor

co

mp

lex

p1

8

TS

C c

om

ple

xLy

soso

ma

l v-A

TP

ase

Mo

vem

ent

away

fro

m

the

lyso

som

al

surf

ace

TS

C c

om

ple

x

Mo

vem

ent

to t

he

lyso

som

al s

urf

ace

Rag

AG

TP Rag

AG

DP

mT

OR

C1

(ina

cti

ve)

Am

ino

aci

dtr

ansp

ort

er

SL

C1A

5S

LC

7A5

Rag

ulat

or

Rag

C

Rag

A

GE

F a

ctiv

ity

Rag

AG

TP

Rhe

b

p1

4A D

ad c

cc

FA

GG

EE

AB

BB H

C

MP

1H

BX

IP

TS

C2

TB

C1D

7C

7orf

59

deptor

mT

OR

mL

ST

8

pra

s40

rap

tor

TS

C1

CO

MP

LE

XE

S A

T T

HE

LY

SO

SO

MA

L S

UR

FA

CE

DO

WN

ST

RE

AM

CE

LL

UL

AR

PR

OG

RA

MS

RE

GU

LA

TE

D B

Y m

TO

RC

1 A

CT

IVIT

Y

mTO

RC

1 su

bst

rate

Tum

or s

upp

ress

orO

ncog

ene

v-A

TP

ase

O2 le

vels

Nut

rien

t si

gna

ling

DN

Ad

amag

eE

nerg

y le

vels

ATP

/AM

P

PIP

3

PIP

2

GD

P

FK

BP

12Rap

amyc

in

mT

OR

C1

(ac

tive

)G

TP

GT

P

Fri

zzle

dTy

rosi

ne

kin

ase

rece

pto

r

Wnt

IGF

See online version for legend and references.1390 Cell 151, December 7, 2012 ©2012 Elsevier Inc. DOI http://dx.doi.org/10.1016/j.cell.2012.11.038

Snap

Shot:

mTO

RC

1 S

ignal

ing a

t th

e

Lyso

som

al S

urf

ace

Liro

n B

ar-P

eled

and

Dav

id M

. Sab

atin

iW

hite

head

Inst

itute

fo

r B

iom

edic

al R

esea

rch,

Mas

sach

uset

ts In

stitu

te o

f Te

chno

log

y, C

amb

rid

ge,

MA

021

42, U

SA

Page 2: SnapShot: mTORC1 Signaling at the Lysosomal Surface...Bar-Peled, L., Schweitzer, L.D., Zoncu, R., and Sabatini, D.M. (2012). Ragulator is a GEF for the rag GTPases that signal amino

SnapShot: mTORC1 Signaling at the Lysosomal SurfaceLiron Bar-Peled and David M. SabatiniWhitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA

In mammals, the mTOR complex 1 (mTORC1) ser/thr kinase regulates cellular and organismal growth in response to a variety of environmental and intracellular stimuli. Amino acid levels mediate the first step in the bipartite activation of mTORC1 by promoting its translocation from a cytosolic compartment to the lysosomal surface. By a poorly understood mechanism, amino acid sensing initiates from within the lysomal lumen and, in a process requiring the v-ATPase, activates the GEF activity of the Ragulator complex toward RagA within the heterodimeric Rag GTPases. Upon GTP binding, RagA recruits mTORC1 to the lysosomal surface, allowing it to interact with the small GTPase Rheb, a potent stimulator of mTORC1 kinase activity. Regulation of nucleotide binding state of Rheb by the tumor suppressor TSC, which is found at the lysosomal surface, is the second step in the activation of mTORC1. Many of the environmental and intracellular cues that impinge on mTORC1 funnel through TSC and regulate its GAP activity toward Rheb. Among them, growth factor signaling through the PI3K or Ras pathways leads to the activation of the protein kinases Akt and Rsk1, respectively, which phosphorylate and inhibit TSC function. The AMPK pathway becomes activated upon low energy levels and in a p53-dependent manner by DNA damage, leading to phosphorylation and activation of TSC and phosphorylation and inactivation of mTORC1. Reduction in oxygen levels induces Redd1 expression, which by an ill-defined process maintains TSC function.

Once activated, mTORC1 enables growth by promoting anabolic programs while repressing catabolic processes. mTORC1 phosphorylates key effectors such as z1 and 4EBP1 to activate translation and inhibits autophagy by phosphorylating and inactivating ATG13 and ULK1. As a master regulator of cell metabolism, deregulation of the mTORC1 pathway is common in many human diseases. Cancers with aberrant mTORC1 activity, such as tuberous sclerosis and advanced renal cell carcinoma, are increasingly treated with analogs of the mTORC1 inhibitor Rapamycin. Furthermore, overactivation of this pathway leads to the downregulation of IRS1 and progression of type 2 diabetes. Although the mTORC1 pathway is absolutely required for mammalian development, reduction of mTORC1 activity in mice models through pharmacological inhibition not only enhances adult stem cell numbers, function, or both, but also extends murine life span.

AbbreviationsmTOR, mechanistic target of rapamycin; raptor, regulatory associated protein of mTOR; mLST8, mammalian lethal with SEC13 protein 8; pras40, proline-rich Akt substrate 40 kDa; Rheb, ras homolog enriched in brain; TSC, tuberous sclerosis complex; Rag, ras-related GTP binding; MP1, MAPK scaffold protein 1; HBXIP, hepatitis B virus X-interacting protein; v-ATPase, vacuolar H+-adenosine triphosphatase ATPase; GEF, guanine nucleotide exchange factor; GAP, GTPase-activating protein; ULK1, unc-51-like kinase 1; ATG13, autophagy-related protein 13; FIP200, FAK family kinase-interacting protein of 200 kDA; S6K1, p70 ribosomal S6 kinase 1; 4EBP1, 4E-binding protein 1; Redd, protein regulated in development and DNA damage response 1; TFEB, transcription factor EB; HIF1a, hypoxia-inducible factor 1a; LKB1, serine/threonine-protein kinase STK11; SREBP1, sterol regulatory element binding protein-1; AMPK, 5´-AMP-activated protein kinase; PIP2, phosphatidylinositol 4,5-bisphosphate; PIP3, phosphatidylinositol 3,4,5-trisphosphate; PTEN, phosphatase and tensin homolog; PI3K, phosphatidylinositol 3-kinase; GRB2, growth factor receptor-bound protein 2; SOS, son-of-sevenless; NF1, neurofibromin 1; PDK1, phosphoinositide dependent kinase 1; IRS1, insulin receptor substrate 1; IGF, insulin-like growth factor; TNFa, tumor necrosis factor a; IKKB, inhibitor of nuclear factor k-B kinase subunit b; WNT, wingless; Dsh1, dishevelled 1; GSK3, glycogen synthase kinase 3; TK, tyrosine kinase; SLC1A5, solute carrier family 1 member 5; SLC7A5, solute carrier family 7 member 5; FKBP12, FK506-binding protein 12 KDa.

RefeRences

Bar-Peled, L., Schweitzer, L.D., Zoncu, R., and Sabatini, D.M. (2012). Ragulator is a GEF for the rag GTPases that signal amino acid levels to mTORC1. Cell 150, 1196–1208.

Dibble, C.C., Elis, W., Menon, S., Qin, W., Klekota, J., Asara, J.M., Finan, P.M., Kwiatkowski, D.J., Murphy, L.O., and Manning, B.D. (2012). TBC1D7 is a third subunit of the TSC1-TSC2 complex upstream of mTORC1. Mol. Cell 47, 535–546.

Harrison, D.E., Strong, R., Sharp, Z.D., Nelson, J.F., Astle, C.M., Flurkey, K., Nadon, N.L., Wilkinson, J.E., Frenkel, K., Carter, C.S., et al. (2009). Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature 460, 392–395.

Laplante, M., and Sabatini, D.M. (2012). mTOR signaling in growth control and disease. Cell 149, 274–293.

Loewith, R., and Hall, M.N. (2011). Target of rapamycin (TOR) in nutrient signaling and growth control. Genetics 189, 1177–1201.

Ma, X.M., and Blenis, J. (2009). Molecular mechanisms of mTOR-mediated translational control. Nat. Rev. Mol. Cell Biol. 10, 307–318.

Mihaylova, M.M., and Shaw, R.J. (2011). The AMPK signalling pathway coordinates cell growth, autophagy and metabolism. Nat. Cell Biol. 13, 1016–1023.

Nobukuni, T., Joaquin, M., Roccio, M., Dann, S.G., Kim, S.Y., Gulati, P., Byfield, M.P., Backer, J.M., Natt, F., Bos, J.L., et al. (2005). Amino acids mediate mTOR/raptor signaling through activation of class 3 phosphatidylinositol 3OH-kinase. Proc. Natl. Acad. Sci. USA 102, 14238–14243.

Reiling, J.H., and Hafen, E. (2004). The hypoxia-induced paralogs Scylla and Charybdis inhibit growth by down-regulating S6K activity upstream of TSC in Drosophila. Genes Dev. 18, 2879–2892.

Russell, R.C., Fang, C., and Guan, K.L. (2011). An emerging role for TOR signaling in mammalian tissue and stem cell physiology. Development 138, 3343–3356.

1390.e1 Cell 151, December 7, 2012 ©2012 Elsevier Inc. DOI http://dx.doi.org/10.1016/j.cell.2012.11.038