48
Small-Scale Anisotropy in High Reynolds Number Turbulence -- Universality of the 2nd Kind -- Y. Kaneda Nagoya University August 23 rd , 2007, Summer School at Cargèse, Small-Scale Turbulence : Theory, Phenomenology and Applications

Small-Scale Anisotropy in High Reynolds Number Turbulencegdr-turbulence.ec-lyon.fr/oldsite/Cargese/Kaneda2.pdf · Small-Scale Anisotropy in High Reynolds Number Turbulence-- Universality

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Small-Scale Anisotropy in High Reynolds Number Turbulencegdr-turbulence.ec-lyon.fr/oldsite/Cargese/Kaneda2.pdf · Small-Scale Anisotropy in High Reynolds Number Turbulence-- Universality

Small-Scale Anisotropy in High Reynolds Number Turbulence

-- Universality of the 2nd Kind --

Y. KanedaNagoya University

August 23rd, 2007, Summer School at Cargèse,Small-Scale Turbulence : Theory, Phenomenology and Applications

Page 2: Small-Scale Anisotropy in High Reynolds Number Turbulencegdr-turbulence.ec-lyon.fr/oldsite/Cargese/Kaneda2.pdf · Small-Scale Anisotropy in High Reynolds Number Turbulence-- Universality

Turbulence = a system of huge degree of freedom

A paradigm of Studies of systems of huge degree of freedom

Thermodynamics and Statistical Mechanics for thermal equilibrium state

Page 3: Small-Scale Anisotropy in High Reynolds Number Turbulencegdr-turbulence.ec-lyon.fr/oldsite/Cargese/Kaneda2.pdf · Small-Scale Anisotropy in High Reynolds Number Turbulence-- Universality

Analogy with Statistical Mechanics for Near Equilibrium System

I. Two kinds of universalitycharacterizing the macroscopic state of the equilibriumsystemnot only

a) Equilibrium state itself, like Boyle-Charles’ lawbut also

b) Response to disturbance

II . Thermal equilibrium state Universal equilibrium state at small scaleinfluence of external force, mean flow, etc. at small scale

may be regarded as disturbance.How dose the equilibrium state respond to the disturbance ?

Universality of the 2nd Kind

Page 4: Small-Scale Anisotropy in High Reynolds Number Turbulencegdr-turbulence.ec-lyon.fr/oldsite/Cargese/Kaneda2.pdf · Small-Scale Anisotropy in High Reynolds Number Turbulence-- Universality

Equilibrium state

at thermal equilibrium state

disturbance

response

Page 5: Small-Scale Anisotropy in High Reynolds Number Turbulencegdr-turbulence.ec-lyon.fr/oldsite/Cargese/Kaneda2.pdf · Small-Scale Anisotropy in High Reynolds Number Turbulence-- Universality

Universality in Response to disturbances, near equilibrium state

1905, Einstein, D=μkT,the first example of FD-elation Perrin’s experiment.

1928, Nyquist’s theorem on thermal noise:P(f)=4kT Re(Z(f))

1931, Onsager’s reciprocal theorem:

J = C X, C=TC

generalized flux, generalized force

Page 6: Small-Scale Anisotropy in High Reynolds Number Turbulencegdr-turbulence.ec-lyon.fr/oldsite/Cargese/Kaneda2.pdf · Small-Scale Anisotropy in High Reynolds Number Turbulence-- Universality

J = CX

Generalized Flux vs. Generalized Force

e.g.Density Flux vs. Density gradient ; J = C grad ρ

Heat Flux vs. Temperature gradient ; J = C grad T

Electric Current vs. External electric field ; J = σ E = σ grad φ , (I=E/R, Ohm’s law)

---

Momentum Flux vs. Strain rate ;

coupling only between tensors of the same order.

(Newton’s law)

Page 7: Small-Scale Anisotropy in High Reynolds Number Turbulencegdr-turbulence.ec-lyon.fr/oldsite/Cargese/Kaneda2.pdf · Small-Scale Anisotropy in High Reynolds Number Turbulence-- Universality

Thermal Equilibrium system

Linear response

Equilibrium state

Disturbance

Xgrad φgrad Tgrad c

Xgrad φgrad Tgrad c

F=CX (Hooke’s law)J = C’ grad φ= σE (Ohm’s law)J = C’’ grad T (Fourier’s law)J = C’’’ grad c (Fick’s law)

F=CX (Hooke’s law)J = C’ grad φ= σE (Ohm’s law)J = C’’ grad T (Fourier’s law)J = C’’’ grad c (Fick’s law)

Page 8: Small-Scale Anisotropy in High Reynolds Number Turbulencegdr-turbulence.ec-lyon.fr/oldsite/Cargese/Kaneda2.pdf · Small-Scale Anisotropy in High Reynolds Number Turbulence-- Universality

History:Universality in Response

to disturbances, near equilibrium state

1905, Einstein, D=μkT,the first example of FD-elation Perrin’s experiment.

1928, Nyquist’s theorem on thermal noise:P(f)=4kT Re(Z(f))

1931, Onsager’s reciprocal theorem:J = C X, C=TC

generalized flux, generalized force

1950-60, Nakano, KuboLinear Response Theory

Page 9: Small-Scale Anisotropy in High Reynolds Number Turbulencegdr-turbulence.ec-lyon.fr/oldsite/Cargese/Kaneda2.pdf · Small-Scale Anisotropy in High Reynolds Number Turbulence-- Universality

Equilibrium State of Turbulence

Page 10: Small-Scale Anisotropy in High Reynolds Number Turbulencegdr-turbulence.ec-lyon.fr/oldsite/Cargese/Kaneda2.pdf · Small-Scale Anisotropy in High Reynolds Number Turbulence-- Universality

Equilibrium state

?

disturbance

response

Turbulence ?

Page 11: Small-Scale Anisotropy in High Reynolds Number Turbulencegdr-turbulence.ec-lyon.fr/oldsite/Cargese/Kaneda2.pdf · Small-Scale Anisotropy in High Reynolds Number Turbulence-- Universality

DNS

Series1Series1 Series2Series2

Energy Spectrum a la Kolmogorov (K41)

From Kaneda &Ishihara (2006)

Page 12: Small-Scale Anisotropy in High Reynolds Number Turbulencegdr-turbulence.ec-lyon.fr/oldsite/Cargese/Kaneda2.pdf · Small-Scale Anisotropy in High Reynolds Number Turbulence-- Universality

Equilibrium state

a la Kolmogorov K41

disturbance

response

Page 13: Small-Scale Anisotropy in High Reynolds Number Turbulencegdr-turbulence.ec-lyon.fr/oldsite/Cargese/Kaneda2.pdf · Small-Scale Anisotropy in High Reynolds Number Turbulence-- Universality

Disturbance

1. Mean Shear2. Buoyancy by Stratification3. Magneto-Hydrodynamic Force

Page 14: Small-Scale Anisotropy in High Reynolds Number Turbulencegdr-turbulence.ec-lyon.fr/oldsite/Cargese/Kaneda2.pdf · Small-Scale Anisotropy in High Reynolds Number Turbulence-- Universality

I. Mean Shear

See Ishihara et al. (2002)

Page 15: Small-Scale Anisotropy in High Reynolds Number Turbulencegdr-turbulence.ec-lyon.fr/oldsite/Cargese/Kaneda2.pdf · Small-Scale Anisotropy in High Reynolds Number Turbulence-- Universality

Local co-ordinateNS-equation

Effect of mean shear

Turbulent Shear Flow

Local strain rate of mean flow

Page 16: Small-Scale Anisotropy in High Reynolds Number Turbulencegdr-turbulence.ec-lyon.fr/oldsite/Cargese/Kaneda2.pdf · Small-Scale Anisotropy in High Reynolds Number Turbulence-- Universality

Effect of Mean FlowHomogenous Mean Shear Flow:

• in the inertial subrange of homogeneous turbulent shear flow;

i ij jU S x=

( ) ( ) ( )ij i jQ u u= −k k k = ?

Let δ(k) =τk/T, (where τk =1/(ε 1/3 k 2/3), T=1/S)

Assume (1) δ <<1, for large enough k(2) expand in powers of δ

k=1/l

Page 17: Small-Scale Anisotropy in High Reynolds Number Turbulencegdr-turbulence.ec-lyon.fr/oldsite/Cargese/Kaneda2.pdf · Small-Scale Anisotropy in High Reynolds Number Turbulence-- Universality

Two kind of measures characterizing the universal equilibrium state

0( ) ( ) ( )ij ij ijQ Q C Sαβ αβ= +k k k<ui(k)uj(-k)> =

1) Equilibrium state itself

2) Response to disturbanceSimilar to stress vs. rate of strain relation:

τ ij = Cijαβ Sαβ(justified by the Linear response theory for non-equilibrium system)

Not only

but also

(0) 2 /3 11/3( ) ( )4

Kij ij

CQ k Pεπ

−=k k

ˆ ˆ ˆ( ) , /ij ij i j i iP kk k k kδ= − =k

Page 18: Small-Scale Anisotropy in High Reynolds Number Turbulencegdr-turbulence.ec-lyon.fr/oldsite/Cargese/Kaneda2.pdf · Small-Scale Anisotropy in High Reynolds Number Turbulence-- Universality

Anisotropic part

ˆ ˆ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )ij i j i j ijC a k P P P P b k P k kαβ α β β α α β⎡ ⎤= + +⎣ ⎦k k k k k k1/3 13/3 1/3 13/3( ) , ( )a k A k b k B kε ε− −= =

Only 2 (universal) parameters, A and B

Is this correct? What are the values of A and B?

0( ) ( ) ( )ij ij ijQ Q C Sαβ αβ= +k k k<ui(k)uj(-k)> =

at small scale of turbulent shear flowKolmogorov’s isotropic equilibrium spectrum

response

cf. Lumley(1967) Cambon & Rubinstein (2006)

Page 19: Small-Scale Anisotropy in High Reynolds Number Turbulencegdr-turbulence.ec-lyon.fr/oldsite/Cargese/Kaneda2.pdf · Small-Scale Anisotropy in High Reynolds Number Turbulence-- Universality

Method of numerical experiment

max 1k η =

Initial condition: isotropic turbulence

max 241k =

DNS of homogeneous turbulence with the simple shear flow

2

00

Sx⎛ ⎞⎜ ⎟= ⎜ ⎟⎜ ⎟⎝ ⎠

U

Resolution: 5123

ˆ ˆ( ) ( ), ( ) ( )abij ij ij a b ij

p k p kE k Q E k p p Q

= =

= =∑ ∑p pObserve

especially,12 12 12 12 11 22 33

12 11 22 33 12 12 12( ), ( ), ( ), ( ), ( ), ( ), ( ), ( )iiE k E k E k E k E k E k E k E k

Estimate A and B, and check consistency.

0.5,1.0S =

1212 12

4 1 4( ) (7 ) , ( ), ( ) ( ) ,15 2 15iiE k A B E k E k A Bπ πξ ξ= − = − + L 1/3 7 /3k Sξ ε −=

Page 20: Small-Scale Anisotropy in High Reynolds Number Turbulencegdr-turbulence.ec-lyon.fr/oldsite/Cargese/Kaneda2.pdf · Small-Scale Anisotropy in High Reynolds Number Turbulence-- Universality

Anisotropic Energy spectrum of homogeneous turbulent shear flow

ˆ ˆ( ) ( ) ( )abij a b i j

p kE k p p u u

=

= −∑ p p

( ) ( ) ( )ij i jp k

E k u u=

= −∑ p p

124( ) (7 )15

E k A Bπ ξ= −

121 4( ) ( )2 15iiE k A Bπ ξ= − +

12 ( )E k

121 ( )2 iiE k−

1 ( )2 iiE k

2

00

Sx⎛ ⎞⎜ ⎟= ⎜ ⎟⎜ ⎟⎝ ⎠

UMean Flow

3312

4( ) (23 ) ,105

E k A Bπ ξ= − L

11 2212 12

4( ) ( ) (13 3 )105

E k E k A Bπ ξ= = −

1/3 7 /3S kξ ε −=

Theoretical predictions:

where

Ishihara, et al. (2002)

Page 21: Small-Scale Anisotropy in High Reynolds Number Turbulencegdr-turbulence.ec-lyon.fr/oldsite/Cargese/Kaneda2.pdf · Small-Scale Anisotropy in High Reynolds Number Turbulence-- Universality

Consistency11 22 3312 12 12( ), ( ), ( )E k E k E k− − − 12 12 12

11 22 33( ), ( ), ( )E k E k E k− − −

3312

4( ) (23 )105

E k A Bπ ξ= −

11 2212 12

4( ) ( ) (13 3 )105

E k E k A Bπ ξ= = − 12 1211 22

16( ) ( ) ( 2 )105

E k E k A Bπ ξ= = − +

1233

8( ) ( 3 )105

E k A Bπ ξ= +

Theoretical predictions:

1.02.0

SSt

==

1.02.0

SSt

==

Ishihara et al.(2002)

See also Yoshida et al. (2003)

Page 22: Small-Scale Anisotropy in High Reynolds Number Turbulencegdr-turbulence.ec-lyon.fr/oldsite/Cargese/Kaneda2.pdf · Small-Scale Anisotropy in High Reynolds Number Turbulence-- Universality

II. Stratification

See Kaneda & Yoshida (2004)

Page 23: Small-Scale Anisotropy in High Reynolds Number Turbulencegdr-turbulence.ec-lyon.fr/oldsite/Cargese/Kaneda2.pdf · Small-Scale Anisotropy in High Reynolds Number Turbulence-- Universality

Boussinesq approximation

Buoyancy by Stratification

Page 24: Small-Scale Anisotropy in High Reynolds Number Turbulencegdr-turbulence.ec-lyon.fr/oldsite/Cargese/Kaneda2.pdf · Small-Scale Anisotropy in High Reynolds Number Turbulence-- Universality

Kolmogorov scaling:

Page 25: Small-Scale Anisotropy in High Reynolds Number Turbulencegdr-turbulence.ec-lyon.fr/oldsite/Cargese/Kaneda2.pdf · Small-Scale Anisotropy in High Reynolds Number Turbulence-- Universality

Boussinesq Turbulence Scaling

From Kaneda & Yoshida (2004)

Page 26: Small-Scale Anisotropy in High Reynolds Number Turbulencegdr-turbulence.ec-lyon.fr/oldsite/Cargese/Kaneda2.pdf · Small-Scale Anisotropy in High Reynolds Number Turbulence-- Universality

Angular dependence

From Kaneda & Yoshida (2004)

Page 27: Small-Scale Anisotropy in High Reynolds Number Turbulencegdr-turbulence.ec-lyon.fr/oldsite/Cargese/Kaneda2.pdf · Small-Scale Anisotropy in High Reynolds Number Turbulence-- Universality

From Kaneda & Yoshida (2004)

Page 28: Small-Scale Anisotropy in High Reynolds Number Turbulencegdr-turbulence.ec-lyon.fr/oldsite/Cargese/Kaneda2.pdf · Small-Scale Anisotropy in High Reynolds Number Turbulence-- Universality

III. MHD

See Ishida & Kaneda (2007)

Page 29: Small-Scale Anisotropy in High Reynolds Number Turbulencegdr-turbulence.ec-lyon.fr/oldsite/Cargese/Kaneda2.pdf · Small-Scale Anisotropy in High Reynolds Number Turbulence-- Universality

MHD approximation

quasi-static approximation

+O(b2)

Magnetic force

Page 30: Small-Scale Anisotropy in High Reynolds Number Turbulencegdr-turbulence.ec-lyon.fr/oldsite/Cargese/Kaneda2.pdf · Small-Scale Anisotropy in High Reynolds Number Turbulence-- Universality
Page 31: Small-Scale Anisotropy in High Reynolds Number Turbulencegdr-turbulence.ec-lyon.fr/oldsite/Cargese/Kaneda2.pdf · Small-Scale Anisotropy in High Reynolds Number Turbulence-- Universality

Local co-ordinateNS-equation

Effect of mean shear

Turbulent Shear Flow

Local strain rate of mean flow

Page 32: Small-Scale Anisotropy in High Reynolds Number Turbulencegdr-turbulence.ec-lyon.fr/oldsite/Cargese/Kaneda2.pdf · Small-Scale Anisotropy in High Reynolds Number Turbulence-- Universality

Response; Anisotropic

Isotropic turbulence( Equilibrium state )

Disturbance : X

External forcedue to the magnetic field

External forcedue to the magnetic field

C XC X

Approximately linear in “X”

Page 33: Small-Scale Anisotropy in High Reynolds Number Turbulencegdr-turbulence.ec-lyon.fr/oldsite/Cargese/Kaneda2.pdf · Small-Scale Anisotropy in High Reynolds Number Turbulence-- Universality

response of isotropic turbulence

3 (universal) parameters in the inertial subrange

Page 34: Small-Scale Anisotropy in High Reynolds Number Turbulencegdr-turbulence.ec-lyon.fr/oldsite/Cargese/Kaneda2.pdf · Small-Scale Anisotropy in High Reynolds Number Turbulence-- Universality

anisotropic parts

• To detect , define

< f (k) >k= k

Page 35: Small-Scale Anisotropy in High Reynolds Number Turbulencegdr-turbulence.ec-lyon.fr/oldsite/Cargese/Kaneda2.pdf · Small-Scale Anisotropy in High Reynolds Number Turbulence-- Universality

Theoretical prediction (1)• Angular dependence

Page 36: Small-Scale Anisotropy in High Reynolds Number Turbulencegdr-turbulence.ec-lyon.fr/oldsite/Cargese/Kaneda2.pdf · Small-Scale Anisotropy in High Reynolds Number Turbulence-- Universality

Theoretical prediction (2)• Scale dependence

– Assumptions• are functions of only and in the inertial subrange)(kqi

Page 37: Small-Scale Anisotropy in High Reynolds Number Turbulencegdr-turbulence.ec-lyon.fr/oldsite/Cargese/Kaneda2.pdf · Small-Scale Anisotropy in High Reynolds Number Turbulence-- Universality

Comparison between theory and DNS

• Angular dependence– Theory

– DNS

– for the DNS• Every 3°• Shells

– [k0,k1)=[8,16)– [k0,k1)=[16,32)– [k0,k1)=[32,64)– [k0,k1)=[64,128)– [k0,k1)=[128,241)

From Ishida & Kaneda (2007)

Page 38: Small-Scale Anisotropy in High Reynolds Number Turbulencegdr-turbulence.ec-lyon.fr/oldsite/Cargese/Kaneda2.pdf · Small-Scale Anisotropy in High Reynolds Number Turbulence-- Universality

Comparison between theory and the DNS

• Angular dependence– Theory

– DNS

From Ishida & Kaneda (2007)

Page 39: Small-Scale Anisotropy in High Reynolds Number Turbulencegdr-turbulence.ec-lyon.fr/oldsite/Cargese/Kaneda2.pdf · Small-Scale Anisotropy in High Reynolds Number Turbulence-- Universality

Comparison between theory and DNS

• Scale dependence

Theory

DNS-5/3

-7/3

k-7/3/k-5/3=k-2/3

From Ishida & Kaneda (2007)

Page 40: Small-Scale Anisotropy in High Reynolds Number Turbulencegdr-turbulence.ec-lyon.fr/oldsite/Cargese/Kaneda2.pdf · Small-Scale Anisotropy in High Reynolds Number Turbulence-- Universality

anisotropy remains at small scale.

From Vorobev et al.( Phys. Fluids 17, 125105 (2005))

Page 41: Small-Scale Anisotropy in High Reynolds Number Turbulencegdr-turbulence.ec-lyon.fr/oldsite/Cargese/Kaneda2.pdf · Small-Scale Anisotropy in High Reynolds Number Turbulence-- Universality

Results in our DNS

approaches to isotropic state. (c(k)→1)

Anisotropy increases.

From Ishida & Kaneda (2007)

Page 42: Small-Scale Anisotropy in High Reynolds Number Turbulencegdr-turbulence.ec-lyon.fr/oldsite/Cargese/Kaneda2.pdf · Small-Scale Anisotropy in High Reynolds Number Turbulence-- Universality

Results in our DNS

approaches to isotropic state. (c(k)→1)

Anisotropy increases.

From Ishida & Kaneda (2007)

Page 43: Small-Scale Anisotropy in High Reynolds Number Turbulencegdr-turbulence.ec-lyon.fr/oldsite/Cargese/Kaneda2.pdf · Small-Scale Anisotropy in High Reynolds Number Turbulence-- Universality

• Anisotropy : c(k)– DNS

– Our theory

Page 44: Small-Scale Anisotropy in High Reynolds Number Turbulencegdr-turbulence.ec-lyon.fr/oldsite/Cargese/Kaneda2.pdf · Small-Scale Anisotropy in High Reynolds Number Turbulence-- Universality

Comparison between theory and the DNS

T=TM=16 magnetic field OFF T=TF=32 magnetic field ON

Comparison with the DNS and the theory

≒0.1~0.2

k-7/3/k-5/3=k-2/3

From Ishida & Kaneda (2007)

Page 45: Small-Scale Anisotropy in High Reynolds Number Turbulencegdr-turbulence.ec-lyon.fr/oldsite/Cargese/Kaneda2.pdf · Small-Scale Anisotropy in High Reynolds Number Turbulence-- Universality

Summary -1For turbulence,We don’t know the pdf nor Hamiltonian in contrast to thermal equilibrium state

But we may assume 1) the existence of equilibrium state at small scale

(Universal) Local equilibrium state a la K41,disturbance can be treated as perturbation to theinherent equilibrium state determined by the NS-dynamics

and see

2) the response small disturbancedisturbances tested:

Mean Shear, Stratification, MHD( others, e.g., scalar field under mean scalar gradient).

But3) The anisotropy may remain large even at small scales,

if Re is not high enough, so that the inertial subrange is not wide.

Page 46: Small-Scale Anisotropy in High Reynolds Number Turbulencegdr-turbulence.ec-lyon.fr/oldsite/Cargese/Kaneda2.pdf · Small-Scale Anisotropy in High Reynolds Number Turbulence-- Universality

Summary -2

Equilibrium state

?

Disturbance; X

Response: J

Mean shearStratificationMHD

Jij= Δ Qij= Cijkm Xkm

Page 47: Small-Scale Anisotropy in High Reynolds Number Turbulencegdr-turbulence.ec-lyon.fr/oldsite/Cargese/Kaneda2.pdf · Small-Scale Anisotropy in High Reynolds Number Turbulence-- Universality

References• Ishida T. and Kaneda Y., (2007)

Small-scale anisotropy in MHD turbulence under a strong uniform magnetic field,Physics of Fluids, Vol.19, No. 7, 2007/07, Art. No. 075104-1_10

• Kaneda Y. and Ishihara T., (2006)High-resolution direct numerical simulation of turbulence,Journal of Turbulence, 7 (20): 1-17.

• Kaneda Y. and Yoshida K., (2004)Small-scale anisotropy in stably stratified turbulence,New Journal of Physics, Vol.6, Page/Article No.34-1_16.

• Yoshida K., Ishihara T. and Kaneda Y., (2003)Anisotropic spectrum of homogeneous turbulent shear flow in a Lagrangian renormalized approximation, Physics of Fluids, Vol.15, No. 8, pp.2385-2397.

• Ishihara T., Yoshida K. and Kaneda Y., (2002)Anisotropic velocity correlation spectrum at small scales in a homogeneous turbulent shear flow,Physical Review Letters, Vol. 88, No. 15, Art. No. 154501-1_4.

Page 48: Small-Scale Anisotropy in High Reynolds Number Turbulencegdr-turbulence.ec-lyon.fr/oldsite/Cargese/Kaneda2.pdf · Small-Scale Anisotropy in High Reynolds Number Turbulence-- Universality

The end