8
Slot Tapered Vivaldi Antenna with Corrugated Edges Dr. K. Srinivasa Naik 1 , D. Madhusudan 1 and Dr. S. Aruna 2 1,2 Department of ECE 1 Vignan’s Institute of Information Technology, Visakhapatnam, Andhra Pradesh [email protected] 2 Assistant Professor, AU College of Engineering, Visakhapatnam, Andhra Pradesh [email protected] Abstract. This paper consist a style of Vivaldi antenna by variable the structural parameters properly to balance pattern, come loss performance by minimizing size. The Linear Tapered Slot Vivaldi Antenna has been changed by adding appropriate size corrugations on its edges to regulate the complicated mutual coupling at high scan angles. The Vivaldi antenna is built exploitation substrate of relative permittivity 3.27 and height 0.3807mm. The antenna is intended at frequency of 12GHz with dimensions of 41.97mm× 72.92mm× 0.3807mm. The simulation result showed that the projected antenna provides waveband from 3.1 GHz to 20 GHz at loss -10dB and HPBW varies around close to 900. The antenna includes a smaller size, with improved HPBW and it will meet the necessities of UWB system Keywords: Ultra-wideband (UWB), Half power beam width (HPBW), corrugations and return loss. 1 Introduction In modern communication system, ultra-wideband antenna have to make happy (by meeting a need or reaching a goal) the different needed things, such as sending more information, transmitting and receiving quality of the information. There are many other kinds of ultra-wideband antenna available such as Bow tie, Helical, Spiral, Log- occasional, Horn and Biconical. Vivaldi antenna is selected because of its superior broad band (features/ qualities/ traits), good impedance matching to the feed line, good energy and easy manufacturing process [3-4]. Vivaldi antenna is a kind of travelling wave and non-period antenna with UWB property, which can be made of microstrip so that it is widely used in many applications and as phased rows [1]. Vivaldi structure is proposed by Gibson in 1979 [2]. Vivaldi antenna maintains symmetrical E plane, and H plane patterns and the planar structure is also symmetrical. The UWB antenna must maintain not only wide impedance radio frequency but also wide immediate radio frequency. For ultra-wideband signal, the US Federal Communications Commission (FCC) defined frequency band as 3.1 to 10.6 GHz over which maximum power is radiated. The performance with a rippled surface vivaldi antenna will play an important role for the UWB Communication system. Vivaldi antenna with (a rippled surface structures are being developed for radar and communication systems [5]. Maksimovitch et al, Advanced Science and Technology Letters Vol.147 (SMART DSC-2017), pp.142-149 http://dx.doi.org/10.14257/astl.2017.147.22 ISSN: 2287-1233 ASTL Copyright © 2017 SERSC

Slot Tapered Vivaldi Antenna with Corrugated Edgesonlinepresent.org/proceedings/vol147_2017/22.pdf ·  · 2017-11-29Slot Tapered Vivaldi Antenna with Corrugated Edges ... A linear

Embed Size (px)

Citation preview

Page 1: Slot Tapered Vivaldi Antenna with Corrugated Edgesonlinepresent.org/proceedings/vol147_2017/22.pdf ·  · 2017-11-29Slot Tapered Vivaldi Antenna with Corrugated Edges ... A linear

Slot Tapered Vivaldi Antenna with Corrugated Edges

Dr. K. Srinivasa Naik1, D. Madhusudan1 and Dr. S. Aruna2

1,2Department of ECE 1Vignan’s Institute of Information Technology, Visakhapatnam, Andhra Pradesh

[email protected] 2Assistant Professor, AU College of Engineering, Visakhapatnam, Andhra Pradesh

[email protected]

Abstract. This paper consist a style of Vivaldi antenna by variable the

structural parameters properly to balance pattern, come loss performance by

minimizing size. The Linear Tapered Slot Vivaldi Antenna has been changed

by adding appropriate size corrugations on its edges to regulate the complicated

mutual coupling at high scan angles. The Vivaldi antenna is built exploitation

substrate of relative permittivity 3.27 and height 0.3807mm. The antenna is

intended at frequency of 12GHz with dimensions of 41.97mm× 72.92mm×

0.3807mm. The simulation result showed that the projected antenna provides

waveband from 3.1 GHz to 20 GHz at loss -10dB and HPBW varies around

close to 900. The antenna includes a smaller size, with improved HPBW and it

will meet the necessities of UWB system

Keywords: Ultra-wideband (UWB), Half power beam width (HPBW),

corrugations and return loss.

1 Introduction

In modern communication system, ultra-wideband antenna have to make happy (by

meeting a need or reaching a goal) the different needed things, such as sending more

information, transmitting and receiving quality of the information. There are many

other kinds of ultra-wideband antenna available such as Bow tie, Helical, Spiral, Log-

occasional, Horn and Biconical. Vivaldi antenna is selected because of its superior

broad band (features/ qualities/ traits), good impedance matching to the feed line,

good energy and easy manufacturing process [3-4]. Vivaldi antenna is a kind of

travelling wave and non-period antenna with UWB property, which can be made of

microstrip so that it is widely used in many applications and as phased rows [1].

Vivaldi structure is proposed by Gibson in 1979 [2]. Vivaldi antenna maintains

symmetrical E plane, and H plane patterns and the planar structure is also

symmetrical. The UWB antenna must maintain not only wide impedance radio

frequency but also wide immediate radio frequency.

For ultra-wideband signal, the US Federal Communications Commission (FCC)

defined frequency band as 3.1 to 10.6 GHz over which maximum power is radiated.

The performance with a rippled surface vivaldi antenna will play an important role for

the UWB Communication system. Vivaldi antenna with (a rippled surface structures

are being developed for radar and communication systems [5]. Maksimovitch et al,

Advanced Science and Technology Letters Vol.147 (SMART DSC-2017), pp.142-149

http://dx.doi.org/10.14257/astl.2017.147.22

ISSN: 2287-1233 ASTL Copyright © 2017 SERSC

Page 2: Slot Tapered Vivaldi Antenna with Corrugated Edgesonlinepresent.org/proceedings/vol147_2017/22.pdf ·  · 2017-11-29Slot Tapered Vivaldi Antenna with Corrugated Edges ... A linear

introduced corrugations in vivaldi antenna with increased antenna radio frequency.

The radiation characteristics have been improved by the use of a comb structure

etched along the antenna edges combined with resistive films [6].

In the present paper, Vivaldi antenna is designed for reduced size and increase in

impedance radio frequency. A linear slot with thinner at the end (tapered) antenna is

designed for a frequency band 3.1 to 20 GHz.

2 Design of Tapered Slot Vivaldi Antenna

2.1 Tapered Slot Antenna Design

Tapered slot Vivaldi antenna is a kind of antenna that receives signals from one

direction. It's basically a flared slot line, created on a single metallization layer and

supported by a dielectric. The shape of the Vivaldi antenna used in the present paper

has linear tapered slot which impacts the frequency range of the antenna. The opening

of the taper is for high frequency matching and wide end of taper is for lower

frequency matching. The design of tapered slot Vivaldi antenna is a trade-off between

the antenna size and its radio frequency. Slot line starts to radiate significantly under

the condition of

sw =λ0

2 (1)

Where, sw is width of the slot.

In practical conditions, the antenna does not radiate at a single point for a given

frequency, but from a small section along the line of the flare. The taper profile is the

combination of three linear lines, one linear region for high frequency and others are

for low frequency. Linear tapered slot antennas (LTSAs) are the best agreement

between beam width and side lobe level. If the number of linear lines increases slowly

the linear tapered slot becomes a exponential. At the same time, beam of the radiation

pattern becomes narrow.

Different tapered slots types are exist. The most common types are linear tapered

(LTSA), exponentially tapered (VTSA) and constant width (CWSA). The beam

widths of CWSAs are typically the smallest, followed by LTSAs and then VTSAs.

Most TSA elements produce symmetric radiation patterns in the E and H planes.

In this paper, corrugation is introduced at the sting of the projected antenna. By

corrugating the sting of the projected antenna it's potential to suppress surface current

on the longitudinal direction and resonant frequency is reduced. Within the array the

corrugations scale back the coupling between 2 antennas [7].

Advanced Science and Technology Letters Vol.147 (SMART DSC-2017)

Copyright © 2017 SERSC 143

Page 3: Slot Tapered Vivaldi Antenna with Corrugated Edgesonlinepresent.org/proceedings/vol147_2017/22.pdf ·  · 2017-11-29Slot Tapered Vivaldi Antenna with Corrugated Edges ... A linear

Fig. 1. Structure of linear Vivaldi antenna

2.2 Feeding Circuit of Vivaldi Antenna

A simple line feeding port is employed for Vivaldi antenna and at the tip of the feed a

radial stub is employed, that is useful for resistivity matching. The tapered slot

Vivaldi antenna is worked up via the microstrip to fit line transition. The transition

construction exploits broadband options of a microstrip radial stub used as a virtual

broadband short.

The microstrip is just about shunted to the second half of the slot line metallization

whereas the primary half is a ground metallization for the microstrip line, it's

necessary to rework the resistivity of the input feeding microstrip line (50Ω) to the

input resistivity (100Ω) of the transition [8-10]. The tapered slot Vivaldi antenna with

feeding circuits is shown in Fig. 2.

Fig. 2. Feed structure of proposed antenna

Advanced Science and Technology Letters Vol.147 (SMART DSC-2017)

144 Copyright © 2017 SERSC

Page 4: Slot Tapered Vivaldi Antenna with Corrugated Edgesonlinepresent.org/proceedings/vol147_2017/22.pdf ·  · 2017-11-29Slot Tapered Vivaldi Antenna with Corrugated Edges ... A linear

Table 1. Dimension of the Linear Vivaldi Antenna

Width, W 72.92mm

Length, L 41.97mm

l1 3mm

l2 16mm

l3 27mm

Cavity diameter, r 2.9mm

G 1.5mm

W50 0.9021mm

W100 0.2668mm

Radius of the microstrip stub,

Rstub

3.5mm

3 Results and Analysis

Linear Tapered Slot Vivaldi antenna designed in the present paper is shown in Fig. 1.

The parameters of the Vivaldi antenna are given in Table I. It has 0.017 mm thickness

copper fins on the both sides of a “Roger TTM3”. The total length is 72.92mm by

assuming a lower cut-off frequency at 3GHz. The width is 41.97mm which is

sufficiently wide to reduce the reflection. The Tapered slot Vivaldi antenna designed

with substrates of “Roger TMM3” (𝜖𝑟=3.27, ℎ=0.3807 mm, tan(δ) = 0) is simulated

with HFSS 15.

Simulated results leads to Fig. 3 shows that this tapered slot Vivaldi antenna

presents sensible UWB characteristics in terms of resistivity information measure,

come loss is below -10 sound unit between three.1 GHz and twenty GHz.

VSWR represents of the antenna’s fitness; thus, it's vital that the VSWR be below

a pair of across the complete UWB spectrum (3.1–20 GHz). The simulated result

presented in Fig 3 clearly shows that the VSWR curve for this antenna is less than 2

over the frequency range of 3.1GHz – 20 GHz.

Fig. 3. Return loss of the linear Vivaldi Antenna (in dB).

Advanced Science and Technology Letters Vol.147 (SMART DSC-2017)

Copyright © 2017 SERSC 145

Page 5: Slot Tapered Vivaldi Antenna with Corrugated Edgesonlinepresent.org/proceedings/vol147_2017/22.pdf ·  · 2017-11-29Slot Tapered Vivaldi Antenna with Corrugated Edges ... A linear

Fig. 4. Simulated VSWR of Vivaldi Antenna.

Fig. 5 shows the value of real and imaginary impedance between 3.1 to 20 GHz for

the Vivaldi antenna. The figure shows a good matching of the antennas to the feed

line and proposed antenna have the values of impedance real part near 50 ohm and

value of imaginary part near zero ohm.

Fig. 5. Impedance plot for the Vivaldi antenna

The E-plane and H-plane radiation patterns for the frequencies of 10 and 12 GHz

are shown in Fig. 5. The x-y plane is the E-plane while the x-z plane is the H-plane.

The HPBW is almost in between 900 to 1000 at 10 GHz, 12 GHz. The designed

antennas can be used in the entire UWB frequency band with a fractional bandwidth

of 146% from 3.1 up to 20 GHz. It exhibits a voltage standing wave of less than 2.0 in

a frequency range from 3.1 to 20 GHz.

Advanced Science and Technology Letters Vol.147 (SMART DSC-2017)

146 Copyright © 2017 SERSC

Page 6: Slot Tapered Vivaldi Antenna with Corrugated Edgesonlinepresent.org/proceedings/vol147_2017/22.pdf ·  · 2017-11-29Slot Tapered Vivaldi Antenna with Corrugated Edges ... A linear

Fig. 5(a). Radiation Pattern at 12 GHz (phi=00)

Fig. 5(b). E-field at 12 GHz (phi=00 and phi=900)

Fig. 5(c). Radiation Pattern at 10 GHz (phi=00)

Advanced Science and Technology Letters Vol.147 (SMART DSC-2017)

Copyright © 2017 SERSC 147

Page 7: Slot Tapered Vivaldi Antenna with Corrugated Edgesonlinepresent.org/proceedings/vol147_2017/22.pdf ·  · 2017-11-29Slot Tapered Vivaldi Antenna with Corrugated Edges ... A linear

Fig. 5(d). E-field at 10 GHz (phi=00 and phi=900)

3 Conclusion

In this paper, the impact of the antenna exploitation furrowed structure on the tapered-

slot antenna characteristics has been studied. And conjointly reduced size is intended

that has sensible resistivity information measure of a linear tapered slot antenna. The

aspect lobes of the pattern also are improved. The antenna has sensible beam

dimension for array scanning and improved come loss. The projected antenna is often

simply integrated with a tabular circuit.

References

1. Farzaneh Taringou, David Dousset, Jens Bornemann and Ke Wu, “Broadband CPW Feed

for Millimeter-Wave SIW-Based Antipodal Linearly Tapered Slot Antennas”, IEEE

Transactions on Antennas and Propagation, vol. 61, no. 4, pp. 1756-1762, April 2013.

2. J. H. Shafieha, J. Noorinia, and Ch. Ghobadi, "Probing the Feed Line Parameters in

Vivaldi Notch Antennas", Progress In Electromagnetics Research B, Vol. 1, pp. 237–252,

2008.

3. Joon Shin and Daniel H. Schaubert, “A Parameter Study of Stripline-Fed Vivaldi Notch-

Antenna Arrays”, IEEE Transactions on Antennas and Propagation, vol. 47, NO. 5, pp.

879-886, May 1999.

4. P. J. Gibson, “The vivaldi aerial”, Proceedings of the 9th European Microwave

Conference, pp. 101–105, 1979.

5. W. C. K. F. Lee, Advances in microstrip and printed antennas, J. Wiley & sons, pp. 433-

513, 1997.

6. Maksimovitch Ye. S., Mikhnev V. A., and Vainikainen P., “Radiation properties of ultra-

wideband printed-board antennas: simulations and experimental verification,” Ultra-

wideband and Ultra short Impulse Signals, Sevastopol, Ukraine, pp. 160-162, 15-19

September, 2008.

Advanced Science and Technology Letters Vol.147 (SMART DSC-2017)

148 Copyright © 2017 SERSC

Page 8: Slot Tapered Vivaldi Antenna with Corrugated Edgesonlinepresent.org/proceedings/vol147_2017/22.pdf ·  · 2017-11-29Slot Tapered Vivaldi Antenna with Corrugated Edges ... A linear

7. Yongwei Zhang, K. Brown, “Bunny Ear Combline Antennas for Compact WideBand Dual

Polarized Aperture Array,” IEEE Transactions on Antennas and Propagation, vol. 59, no.

8, pp. 3071-3075, august 2011.

8. J. B. Knorr, “Slot-Line Transitions,” IEEE Transactions on Microwave Theory and

Techniques, pp. 548-554, May 1974.

9. B. Schuppert, “Microstrip / Slotline Transitions: Modeling and Experimental

Investigation,” IEEE Transactions on Microwave Theory and Techniques, vol. 36, no. 08,

pp. 1272-1281, Aug. 1988.

10. Robert A. Scholtz, David M. Pozar, Won Namgoong, “Ultra-Wideband Radio”, EURASIP

Journal on Applied Signal Processing 2005:3, pp. 252–272, 12 May 2004.

11. Daniel Valderas, Juan Ignacio Sancho, David Puente, Ultra-wideband Antennas: Design

and Applications, Imperial college press, 2011.

12. C. A. Balanis, Antenna Theory Analysis and Design, 2ed edition. J. Wiley & Sons, 1997.

13. Z. N. C. a. M. Y. W. Chia, Broadband Planar Antennas: Design and Applications, John

Wiley & Sons, Ltd, pp. 180-190, 2006.

14. J. N. M. M. P. Černý, “Optimization of Tapered Slot Vivaldi Antenna for UWB

Application,” Faculty of Electrical Engineering, 2007.

Advanced Science and Technology Letters Vol.147 (SMART DSC-2017)

Copyright © 2017 SERSC 149