38
Introduction to Introduction to Sensors and Sensors and actuators actuators S. Senthil S. Senthil Raja Raja

Slides for Presentation

  • Upload
    ssrgman

  • View
    220

  • Download
    2

Embed Size (px)

Citation preview

Page 1: Slides for Presentation

Introduction to Sensors Introduction to Sensors and actuatorsand actuators

S. Senthil RajaS. Senthil Raja

Page 2: Slides for Presentation
Page 3: Slides for Presentation

SensorsSensors IntroductionIntroduction Describing Sensor PerformanceDescribing Sensor Performance Sensor typesSensor types Temperature SensorsTemperature Sensors Light SensorsLight Sensors Force SensorsForce Sensors Displacement SensorsDisplacement Sensors Motion SensorsMotion Sensors Sound SensorsSound Sensors Sensor InterfacingSensor Interfacing

Page 4: Slides for Presentation

IntroductionIntroduction Sensor is a basic component of transducer.Sensor is a basic component of transducer. The purpose of a sensor is to respond to The purpose of a sensor is to respond to some kind of an input physical property some kind of an input physical property and to convert it into an electrical signal which and to convert it into an electrical signal which is compatible with electronic circuits.is compatible with electronic circuits. The sensor output signal may be in the The sensor output signal may be in the form of voltage, current, or charge .form of voltage, current, or charge .

  

Page 5: Slides for Presentation

Introduction contd...,Introduction contd..., To be useful, systems must interact with their To be useful, systems must interact with their

environment. To do this they use sensors and actuatorsenvironment. To do this they use sensors and actuators Sensors and actuators are examples of transducersSensors and actuators are examples of transducers

A transducer is a device that convertsA transducer is a device that convertsone physical quantity into anotherone physical quantity into another

• examples include:examples include: a mercury-in-glass thermometer (converts a mercury-in-glass thermometer (converts

temperature into displacement of a column of temperature into displacement of a column of mercury)mercury)

a microphone (converts sound into an electrical a microphone (converts sound into an electrical signal).signal).

We will look at sensors and actuators in this lectureWe will look at sensors and actuators in this lecture

Page 6: Slides for Presentation

Almost any physical property of a material that changes in Almost any physical property of a material that changes in response to some excitation can be used to produce a sensor response to some excitation can be used to produce a sensor • widely used sensors include those that are:widely used sensors include those that are:

resistiveresistive inductiveinductive capacitivecapacitive piezoelectricpiezoelectric photoresistivephotoresistive elasticelastic thermal.thermal.

• in this lecture we will look at several examplesin this lecture we will look at several examples

Page 7: Slides for Presentation

Sensor TypesSensor Types

A.  Based on power requirement:        1.  Active: Require external power, called 1.  Active: Require external power, called

excitation signal, for the operationexcitation signal, for the operation        2.  Passive: Directly generate electrical signal 2.  Passive: Directly generate electrical signal

in response to the external stimulusin response to the external stimulus  B.  B.  Based on sensor placement:          1.  Contact sensors1.  Contact sensors          2.  Non-contact sensors2.  Non-contact sensors

  

Page 8: Slides for Presentation

Describing Sensor Describing Sensor PerformancePerformance

Range• maximum and minimum values that can be measured

Resolution or discrimination• smallest discernible change in the measured value

Error• difference between the measured and actual values

random errors systematic errors

Accuracy, inaccuracy, uncertainty• accuracy is a measure of the maximum expected error

Page 9: Slides for Presentation

Precisiona measure of the lack of random errors (scatter)

Page 10: Slides for Presentation

Linearity• maximum deviation from a ‘straight-line’ response• normally expressed as a percentage of the full-

scale value Sensitivity

• a measure of the change produced at the output for a given change in the quantity being measured

Page 11: Slides for Presentation

Temperature sensorsTemperature sensors Resistive thermometers

• typical devices use platinum wire (such a device is called a platinum resistance thermometers or PRT)

• linear but has poor sensitivity

A typical PRT elementA typical PRT element A sheathed PRT A sheathed PRT

Page 12: Slides for Presentation

Thermistors• use materials with a high thermal coefficient of

resistance• sensitive but highly non-linear

A typical disc thermistorA typical disc thermistor A threaded thermistor A threaded thermistor

Page 13: Slides for Presentation

pn junctions• a semiconductor device with the

properties of a diode (we will consider semiconductors and diodes later)

• inexpensive, linear and easy to use• limited temperature range (perhaps

-50C to 150 C) due to nature of semiconductor material

pn-junction sensor

Page 14: Slides for Presentation

Light SensorsLight Sensors Photovoltaic

• light falling on a pn-junction can be used to generate electricity from light energy (as in a solar cell)

• small devices used as sensors are called photodiodes

• fast acting, but the voltage produced is not linearly related to light intensity

A typical photodiode

Page 15: Slides for Presentation

Photoconductive• such devices do not produce

electricity, but simply change their resistance

• photodiode (as described earlier) can be used in this way to produce a linear device

• phototransistors act like photodiodes but with greater sensitivity

• light-dependent resistors (LDRs) are slow, but respond like the human eye

A light-dependent resistor (LDR)

Page 16: Slides for Presentation

Force SensorsForce Sensors Strain gauge

• stretching in one direction increases the resistance of the device, while stretching in the other direction has little effect

• can be bonded to a surface to measure strain• used within load cells and pressure sensors

A strain gauge

Direction of sensitivity

Page 17: Slides for Presentation

Displacement SensorsDisplacement Sensors Potentiometers

• resistive potentiometers are one of the most widely used forms of position sensor

• can be angular or linear• consists of a length of resistive material with a

sliding contact onto the resistive track• when used as a position transducer a potential is

placed across the two end terminals, the voltage on the sliding contact is then proportional to its position

• an inexpensive and easy to use sensor

Page 18: Slides for Presentation

Inductive proximity sensorsInductive proximity sensors

Inductive proximity sensors

– coil inductance is greatly affected by the presence of ferromagnetic materials

– here the proximity of a ferromagnetic plate is determined by measuring the inductance of a coil

Page 19: Slides for Presentation

Switches• simplest form of digital displacement sensorsimplest form of digital displacement sensor

many forms: lever or push-rod operated many forms: lever or push-rod operated microswitches; float switches; pressure microswitches; float switches; pressure switches; etc.switches; etc.

A limit switch A float switch

Page 20: Slides for Presentation

Opto-switches• consist of a light source and a light sensor within a consist of a light source and a light sensor within a

single unitsingle unit 2 common forms are the reflective and slotted 2 common forms are the reflective and slotted

typestypes

A reflective opto-switch A slotted opto-switch

Page 21: Slides for Presentation

Absolute position encoders• a pattern of light and dark strips is printed on to a a pattern of light and dark strips is printed on to a

strip and is detected by a sensor that moves along strip and is detected by a sensor that moves along itit

• the pattern takes the form of a series of lines as the pattern takes the form of a series of lines as shown belowshown below

• it is arranged so that the combination is unique at it is arranged so that the combination is unique at each pointeach point

• sensor is an array of photodiodessensor is an array of photodiodes

Page 22: Slides for Presentation

Incremental position encoder• uses a single line that alternates black/whiteuses a single line that alternates black/white

two slightly offset sensors produce outputs as two slightly offset sensors produce outputs as shown belowshown below

detects motion in either direction, pulses are detects motion in either direction, pulses are counted to determine absolute position (which counted to determine absolute position (which must be initially resetmust be initially reset))

Page 23: Slides for Presentation

Other counting techniques• several methods use counting to determine several methods use counting to determine

positionposition two examples are given belowtwo examples are given below

Opto-switch sensorInductive sensor

Page 24: Slides for Presentation

Motion SensorsMotion Sensors Motion sensors measure quantities such as velocity and Motion sensors measure quantities such as velocity and

accelerationacceleration• can be obtained by differentiating displacementcan be obtained by differentiating displacement• differentiation tends to amplify high-frequency noisedifferentiation tends to amplify high-frequency noise

Alternatively can be measured directlyAlternatively can be measured directly• some sensors give velocity directlysome sensors give velocity directly

e.g. measuring frequency of pulses in the counting e.g. measuring frequency of pulses in the counting techniques described earlier gives speed rather than techniques described earlier gives speed rather than positionposition

• some sensors give acceleration directlysome sensors give acceleration directly e.g. accelerometers usually measure the force on a masse.g. accelerometers usually measure the force on a mass

Page 25: Slides for Presentation

Sound SensorsSound Sensors Microphones

• a number of forms are availablea number of forms are available e.g. carbon (resistive), capacitive, piezoelectric e.g. carbon (resistive), capacitive, piezoelectric

and and moving-coil microphonesmoving-coil microphones

moving-coil devices use a magnet and a coil moving-coil devices use a magnet and a coil attached to a diaphragm – we will discuss attached to a diaphragm – we will discuss electromagnetism laterelectromagnetism later

Page 26: Slides for Presentation

Sensor InterfacingSensor Interfacing Resistive devices

• can be very simplecan be very simple e.g. in a potentiometer, with a fixed voltage across the outer e.g. in a potentiometer, with a fixed voltage across the outer

terminals, the voltage on the third is directly related to positionterminals, the voltage on the third is directly related to position

where the resistance of the where the resistance of the device changes with the device changes with the quantity being measured, quantity being measured, this change can be this change can be converted into a voltage converted into a voltage signal using a potential signal using a potential divider – as shown divider – as shown

the output of this the output of this arrangement is not linearly arrangement is not linearly related to the change in related to the change in resistanceresistance

Page 27: Slides for Presentation

Switches• switch interfacing is also simpleswitch interfacing is also simple• can use a single resistor as below to produce a can use a single resistor as below to produce a

voltage outputvoltage output• all mechanical switches suffer from switch bounceall mechanical switches suffer from switch bounce

Page 28: Slides for Presentation

Capacitive and inductive sensors• sensors that change their capacitance or inductance sensors that change their capacitance or inductance

in response to external influences normally require in response to external influences normally require the use of alternating current (AC) circuitrythe use of alternating current (AC) circuitry

• such circuits need not be complicatedsuch circuits need not be complicated• we will consider AC circuits in later lectureswe will consider AC circuits in later lectures

Page 29: Slides for Presentation

Key PointsKey Points A wide range of sensors is availableA wide range of sensors is available Some sensors produce an output voltage related Some sensors produce an output voltage related

to the measured quantity and therefore supply to the measured quantity and therefore supply powerpower

Other devices simply change their physical Other devices simply change their physical propertiesproperties

Some sensors produce an output that is linearly Some sensors produce an output that is linearly related to the quantity being measured, others do related to the quantity being measured, others do notnot

Interfacing may be required to produce signals in Interfacing may be required to produce signals in the correct formthe correct form

Page 30: Slides for Presentation
Page 31: Slides for Presentation
Page 32: Slides for Presentation
Page 33: Slides for Presentation
Page 34: Slides for Presentation
Page 35: Slides for Presentation
Page 36: Slides for Presentation
Page 37: Slides for Presentation
Page 38: Slides for Presentation