Slide001 Semiconductor Review

Embed Size (px)

Citation preview

  • 8/11/2019 Slide001 Semiconductor Review

    1/154

    Ana ogIntegrate E ectron cs

    EE 4223

  • 8/11/2019 Slide001 Semiconductor Review

    2/154

    Textbook:

    1. P. R. Gra P. J. Hurst S. H. Lewis R. G. Me er "Anal sis

    and Design of AnalogIntegrated Circuits," 4th Edition,WILEY.

    2. Sergio Franco,Design with Operational Amplifiers and

    Integrated Circuits, 2nd edition McGraw Hill.

    Reference Books:

    D. Johns & K. Martin,

    nalog Integrated Circuit Design, JohnWiley & Sons.

  • 8/11/2019 Slide001 Semiconductor Review

    3/154

    Review of BJTs and MOS models

    Op-amp stages and design:

    Stability compensation and slew rate of op-amp

    Op-amp as an amplifier

    Non-linear Circuits

    Monolithic Timers:

    Active and switched capacitor filters:

    Phase Locked Loop (PLL)

  • 8/11/2019 Slide001 Semiconductor Review

    4/154

    MidtermExams/Tests: 45

    %

    Fina : 40%

    Total: 100%

    Theremaybeminorchangeinthegrading

    olic .

  • 8/11/2019 Slide001 Semiconductor Review

    5/154

    Tutorials may be arranged to compensate for any deficiency.

    No any excuse will be accepted for any absence from theclass/test/quiz or late submission of homework/assignments.

    Maximum absentees allowed in the course are six. No

    You are expected to bring your text book/notes to class every

    me.

  • 8/11/2019 Slide001 Semiconductor Review

    6/154

    You are expected to read the appropriate sections of

    material.

    Assignments,noticesoranyotherinformationwillbe

    announced in the class or will be ut inJuweb

    Jinnah/MRiaz/AnalogICs.Youmustcheckit

    periodically.

    Turnoffallelectroniccommunicationdeviceswhen

    youentertheclassroom.

  • 8/11/2019 Slide001 Semiconductor Review

    7/154

    Academic

    integrity/honesty

    is

    expected

    ofstudents

    IfIsuspect

    you

    of

    cheating

    during

    a

    quiz/test

    nocreditwillbeawardedto ouandthecase

    maybereportedtohigherauthorities.

    workandfailuretocomplywiththis

    .

  • 8/11/2019 Slide001 Semiconductor Review

    8/154

  • 8/11/2019 Slide001 Semiconductor Review

    9/154

  • 8/11/2019 Slide001 Semiconductor Review

    10/154

  • 8/11/2019 Slide001 Semiconductor Review

    11/154

  • 8/11/2019 Slide001 Semiconductor Review

    12/154

  • 8/11/2019 Slide001 Semiconductor Review

    13/154

  • 8/11/2019 Slide001 Semiconductor Review

    14/154

  • 8/11/2019 Slide001 Semiconductor Review

    15/154

  • 8/11/2019 Slide001 Semiconductor Review

    16/154

  • 8/11/2019 Slide001 Semiconductor Review

    17/154

  • 8/11/2019 Slide001 Semiconductor Review

    18/154

  • 8/11/2019 Slide001 Semiconductor Review

    19/154

  • 8/11/2019 Slide001 Semiconductor Review

    20/154

  • 8/11/2019 Slide001 Semiconductor Review

    21/154

  • 8/11/2019 Slide001 Semiconductor Review

    22/154

  • 8/11/2019 Slide001 Semiconductor Review

    23/154

  • 8/11/2019 Slide001 Semiconductor Review

    24/154

  • 8/11/2019 Slide001 Semiconductor Review

    25/154

  • 8/11/2019 Slide001 Semiconductor Review

    26/154

  • 8/11/2019 Slide001 Semiconductor Review

    27/154

  • 8/11/2019 Slide001 Semiconductor Review

    28/154

  • 8/11/2019 Slide001 Semiconductor Review

    29/154

  • 8/11/2019 Slide001 Semiconductor Review

    30/154

    -W1 W2FromPoissonsEquation:

    +

    +

    + +2

    2

    AqNd V

    dx

    = = 1 0W x

    Chargedensity

    x1AqNdV

    x Cdx = +

    Efield( )1

    AqNdV

    E x W= = +

    1, at x= =

    x

    10,V at x W = =

    22

    Potential11

    2 2A

    q xV W x

    = + +

    x11

    2

    AqV

    = 0at x=

  • 8/11/2019 Slide001 Semiconductor Review

    31/154

    Depletionwidths2

    11

    2

    AqN WV

    = Fromconservationofcharge

    ( )1A

    x

    qNdVE x W= =

    2similarly for 0

  • 8/11/2019 Slide001 Semiconductor Review

    32/154

    JunctionCapacitance

    1dWdQ dQC = = A

    P N

    1R RdV dW dV

    = dW

    12

    12

    Depletion

    region

    ( )

    ( )

    21 0

    1

    02 1

    VR

    NAqNR R AA ND A R

    dW d

    dV dV NqN V

    + +

    = =

    + + D

    12

    1A Dq N NC

    =0

    2 A D RN N V+ +

  • 8/11/2019 Slide001 Semiconductor Review

    33/154

    JunctionCapacitance

    12

    N N

    ( )00

    2 1

    j

    A D D

    C

    N N V

    =

    +

    12

    02

    A D

    j

    A D

    q N NC

    N N

    =

    + 0

    1

    j

    j

    D

    CC

    V=

    0

  • 8/11/2019 Slide001 Semiconductor Review

    34/154

    GradedJunction ax=

    apac ance

    x

    0j

    j

    D

    CCV

    =

    0

  • 8/11/2019 Slide001 Semiconductor Review

    35/154

    MinorityCarriersconcentrations

    PN-Junction under

    no as

    pn

    np

    x=-W1xn=0

    x=W2xp=0

    0px nx

    : equilibrium concentration of electrons in P-regionpn

    : equilibrium concentration of holes in N-regionnp

  • 8/11/2019 Slide001 Semiconductor Review

    36/154

    PNJunction

    PN-Junction under

    Reversed Biased( )pn x ( )np x

    Depletionregion

    npRV V=

    pn

    x=-W1 x=W20px nx

    ( )1R TV Vp p pn n e n =

    xn= xp=n n

    V V0 0=

  • 8/11/2019 Slide001 Semiconductor Review

    37/154

    1( ) pp W p =Minority Carriers Concentration

    PN Junction Forward Biased

    2( np W p=

    10 atpx x W= = n p

    TV

    kT

    = ( ) p nx Lp p

    n x n e =

    ( ) n px L

    n np x p e

    = pn

    2n

    ( )Excess carriers N side =

    x=-W1xp=0

    x=W2xn=0

    0px

    nxpL

    Depletionregion

    nL

    0

    T

    V V

    p Vnp n

    e

    = =( )Excess carriers P side =

    ( )0( ) 1TV Vn n n np p x p p e = = Theequilibriumconcentrationof

    holesandelectrons

    n p

    ( )0( ) 1T

    V V

    p p p pn n x n n e = =

    oneither

    side

    is

    1TV VI I e= ( ) 1 p nT

    x LV V

    p pn x n e e =

    ( )( ) 1 n pT x LV Vn np x p e e =

  • 8/11/2019 Slide001 Semiconductor Review

    38/154

    Junction Forward Biased Static Diffusion Capacitance

    ThediffusioncapacitanceCDistherateofchangeofinjectedchargew.r.t.

    voltage.Largechargeispresentacrossthejunctionduetoforwardbiased.

    Staticdiffusion

    Capacitance DynamicdiffusionCapacitance

    DC gdV dV r

    = = = =

    1TV VI I e=

    n

    DC

    =

    g

    AtLowfrequency

    D

    T

    IC

    V

    =

    g=Lowfreqconductance

    At hi h fre uenc

    DC I1

    2n =

    2D

    oean e t me o carr ers=

  • 8/11/2019 Slide001 Semiconductor Review

    39/154

    Junction Forward Biased Static Diffusion Capacitance

    For transistors, the diffusion capacitance CD is measured from unity current

    gain frequencyfTas

    2D

    Tf

  • 8/11/2019 Slide001 Semiconductor Review

    40/154

    Junction breakdown

    I( )

    12

    max

    2A D R

    A D

    qN N VE

    N N

    =

    +

    At a critical field (3x105 V/cm) the carrierstraversing the depletion region acquire sufficient

    ener to create new holeelectron airs in

    V

    collisions with silicon atoms. This is called

    avalanche process. The newly created carriers

    are also capable of producing avalanche.

    RA RI MI=

    1n

    MV

    =

    veryheavily

    doped

    junction

    where

    theelectric fieldbecomeslarge

    enoughtostriptheelectronsaway

    BV

    fromvalenceband.Thisiscalled

    tunneling.

  • 8/11/2019 Slide001 Semiconductor Review

    41/154

    Concentration Profile n-p-n Transistor

    Active re ion

    x=0

    x=WB

    CBV

    n p n CC

    BEV

    CEV

    BEV

    V

    B

    nDepletion

    Carrier Concentration

    0p p= nnEpp(x)

    p

    np(0)

    Region

    Depletion Region NANDBE Tn po V VqAD n

    =

    Base CollectorEmitter

    xx=0 x=WB

    n

    pnE np(x)A ABE T

    B A

    V V

    C S

    W NI I e=

    n po

    S

    B A

    qAD nI

    W N

    =

  • 8/11/2019 Slide001 Semiconductor Review

    42/154

    1BE T

    B po p V ViqAW n qAD n

    I e

    = +2 b p D

    C

    B

    L N

    II

    =F

    1n po

    B

    qAD n

    W = =

    2 2

    B po p i pB B A

    b p D b n n p D

    q n q n

    L N D D L N + +

    1 I+E C B C

    F F

    I I I I

    = + = =

    211 12

    FpF B B A

    F b n n p D

    DW W N

    D D L N

    = = =+ + +

  • 8/11/2019 Slide001 Semiconductor Review

    43/154

    svery arge,t an

    Where

    F T

    2

    1

    2

    T

    B

    b n

    W

    D

    =

    +

    1

    1 p B AD W N

    =

    +n p D

  • 8/11/2019 Slide001 Semiconductor Review

    44/154

    NPN Transistors Large Signal Model

    B C B C

    VI I

    B B

    E E

    BE T

    BFI e=

  • 8/11/2019 Slide001 Semiconductor Review

    45/154

    PNP Transistors Large Signal Model

    B C B CBI

    BI

    BEV ( )BE onVF BI F BI

    E E

    BE TV VS

    B

    II e

    =

    O tp t Characteristics of CE Amplifier

  • 8/11/2019 Slide001 Semiconductor Review

    46/154

    Output Characteristics of CE Amplifier

    C

    4BEV

    5BEV

    2BEV

    3BEVxtrapo ate

    xtics

    Earl volta e

    0 CEVAV

    1BEV

    1 B E TV VC E

    C S

    A

    VI I e

    V

    = +

    Thedecreaseineffectivebase

    reversevoltage

    is

    called

    early

    effectofbasewidthmodulation.

    Asaresult,therecombinationin

    thebasedecreasesandand

    henceIC=IBincreases.

  • 8/11/2019 Slide001 Semiconductor Review

    47/154

    NPN transistor in saturation region

    ( )C satIBI

    B C

    Vsat

  • 8/11/2019 Slide001 Semiconductor Review

    48/154

    Common Base Configuration

    CI

    EI

    CBV

    C E itt C fi ti

  • 8/11/2019 Slide001 Semiconductor Review

    49/154

    Common Emitter Configuration

    Basic BJT Small Signal Model

  • 8/11/2019 Slide001 Semiconductor Review

    50/154

    Basic BJT Small Signal Model

    cbB C

    r or1mg vC vv

    +

    Basechar in E

    0

    i iv v

    r = = C C

    o

    I I

    r

    = C

    m

    I

    =g

    Capacitance

    change in base charge

    change in BE voltage

    h

    b

    i

    qC

    v

    = =

    0

    b c

    i

    i

    vr

    v =

    mg

    1

    CE CE

    C C

    CE A o

    I I

    V V r

    = =

    BE T

    BE

    V V

    m S

    BE

    I eV

    =

    g

    e h C F

    h c F

    Q Q I

    q i

    i

    = =

    =

    0r

    =mg

    A

    or

    kT

    kT

    = =

    =

    m mg g

    C

    m

    T

    C

    m

    V

    qI

    =

    =

    g

    g b F mC = g

    b F F m

    i iv v

    = = = g

    Fis the base transit time of the

    carriers in the forward direction.

  • 8/11/2019 Slide001 Semiconductor Review

    51/154

    Vertical PNP BJT

  • 8/11/2019 Slide001 Semiconductor Review

    52/154

    VerticalPNPBJT

    Lateral PNP BJT

  • 8/11/2019 Slide001 Semiconductor Review

    53/154

    LateralPNPBJT

  • 8/11/2019 Slide001 Semiconductor Review

    54/154

    Parasitic Elements in the Small-Signal Model

    C B E

    C

    n+ n+

    C C

    je

    3cr b

    rp

    csC csC1c

    2cr n

    +

    n

    cs p

    Complete BJT Small Signal Model

  • 8/11/2019 Slide001 Semiconductor Review

    55/154

    Complete BJT Small Signal Model

    B Cbr C

    r

    cr

    r 1mvgC csC1v or

    exr

    m

    r

    =g

    1o

    m

    r

    =g A

    kT

    qV= CEVr

    =

    CollectorBaseResistance

    0

    n

    CC

    =

    je bC C C= +

    1

    1

    B

    CE C

    C B

    V IrI I

    =

    =

    0

    1

    0 o

    Complete BJT Small Signal Model

  • 8/11/2019 Slide001 Semiconductor Review

    56/154

    Complete BJT Small Signal Model

    B Cbr C

    r

    cr

    r 1mvgC csC1v

    exr

    m

    r

    =g

    1o

    m

    r

    =g

    A

    kT

    qV= CEVr

    =

    CollectorBaseResistance

    0

    n

    CC

    =

    je bC C C= +

    1

    1

    B

    CE C

    C B

    V IrI I

    =

    =

    0

    1

    0 o

  • 8/11/2019 Slide001 Semiconductor Review

    57/154

    1 kTCqI=m

    r=g

    o

    m

    r

    =g

    AqV

    =

    0C

    je b= + 0 or r =m

    kTb F m

    C = g

    0

    1

    n

    V

    =

  • 8/11/2019 Slide001 Semiconductor Review

    58/154

    Complete Small Signal Model

  • 8/11/2019 Slide001 Semiconductor Review

    59/154

    Complete Small Signal Model

    20M

    B C300 5.6 fF 50

    2.6k10.038v0.4pF

    10.5fF1v 20k

    5

    E

    Short Circuit unity gain frequency and forward current

  • 8/11/2019 Slide001 Semiconductor Review

    60/154

    transfer ratio sin le Pole a oximation

    B Cbr C cr

    r

    1mvgC csC

    1

    v

    E

    B C

    r

    oi

    Neglecting rc

    1o mi vgr 1mvgC C

    1vii

    ( )1 1

    ii

    v

    j C C

    =+ +

    0

    1 m

    C C

    =+

    gE

    ( ) ( )1 1

    i i

    o m m

    i ii r

    j r C Cj C Cr

    =+ ++ +

    g g

    1

    2

    m

    Tf

    C C =

    +

    g

    ( )

    ( )

    1

    1

    o

    m

    i

    ij r

    i j r C C

    = =

    + +

    g ( )

    ( )

    11o m

    i T

    ij r

    i j r C C

    = = =

    +

    g

  • 8/11/2019 Slide001 Semiconductor Review

    61/154

    ( ) ( )0

    1 1mj sj r C C

    = =+ + + ( )

    0 0m

    Half Power frequencyr C C

    A r

    = = +

    = =g

    ( )10log j mT

    gUnityGain frequency

    C C = =

    +

    60

    020log

    40

    0

    20

    0.1T T 0.01T

  • 8/11/2019 Slide001 Semiconductor Review

    62/154

    TheMetal

    Insulator

    Semiconductor

    FET

    62

  • 8/11/2019 Slide001 Semiconductor Review

    63/154

    AnenhancementtypenchannelMOSFET:(a)isometricviewofdeviceand

    equilibriumbanddiagramalongchannel;(b)draincurrentvoltageoutput

    characteristicsasafunctionofgatevoltage.

    63

  • 8/11/2019 Slide001 Semiconductor Review

    64/154

    oxox

    oxt=12

    0

    1

    1

    R

    AA

    D

    W

    NqNN

    =

    +

    0GS TV V

    2

    D A

    SiX

    =

    0

    A

    RV = +

    IdealizedNMOSdevice crosssectionwithpositivevoltageappliedshowing

    depletionregionsandtheinducedchannel.

    64

    MOSFET Threshold VoltageNq

  • 8/11/2019 Slide001 Semiconductor Review

    65/154

    ANq

    2

    g

    fi

    E

    kTf i c v

    kT n

    n N N e

    =

    MOS threshold voltage (sufficient

    large VGS for strong inversion):

    0

    2

    2

    A A Si

    b A Si f

    Q qN X qN

    Q qN

    = =

    =. ms ga esu s ra e wor

    function difference;2. Qss oxide and interface

    charge;

    ( )2

    2

    b A Si f SB

    b ss

    T ms

    Q qN V

    Q Q

    V

    = +

    = + + . b sur ace po en a aninduced depletionlayer charge offset;

    4. f Fermi potential0 02

    ox ox

    b ss b bms f

    ox ox ox

    Q Q Q Q

    C C C

    = + + +

    .

    6. VSB substrate-bias( )0 2 2

    2

    t f SB f

    Si A

    V V

    q N

    = + +

    =ox

    C

    65

    MOS Substrate Bias Effect Example Plot - 2N t HJS E mple 2 5 (pp 51 52)

  • 8/11/2019 Slide001 Semiconductor Review

    66/154

    NoteHJS Example 2.5 (pp. 5152).

    For the example we have been working, plot VT versus VSB.

    [Calculate VT0 at VSB = 0 V for a polysilicon gate NMOS transistor with the followingparameters: NA (substrate) = 1 x 1016 cm-3; ND (gate) = 2 x 1020 cm-3; tox = 500 , oxide-

    10 -2ox . . .

    66

    MOSFET Operation

  • 8/11/2019 Slide001 Semiconductor Review

    67/154

    p

    67

    NMOS FET Regions of Operation

  • 8/11/2019 Slide001 Semiconductor Review

    68/154

    VGS > VT0 shifts Ei below Ef,making s positive andinverting the surface.

    Linear region

    VDS > 0

    IDS (drift current)

    V

    Source-drainsubstrate

    ,sa

    junction never forward-biased.

    68

    NMOS FET Gradual Channel Approximation

    V V hif E b l E ki

  • 8/11/2019 Slide001 Semiconductor Review

    69/154

    V > V shifts E below E makin

    s positive and inverting the surface. VDS > 0 IDS (drift current).

    VDS wider depletion region atdrain, but we assume that thedifference is small.

    Source-drainsubstratejunction never forward-biased.

    ra ua c anne approximation 1D I-V :VT0 is constant from y = 0 to y = LE >> EVGD = VGS VDS VT0

    69

    NMOS FET Gradual Channel Approximation

  • 8/11/2019 Slide001 Semiconductor Review

    70/154

    ( ) ( )n ox GS T Q y C V V y V = ; Vchannel-to-source = V(y); 0 V(y) VDS; VGC = VGS V(y)

    ( ) ( )( )

    DS nI xWJ xW v x vW Q y vWdV y

    v E

    = = = == =

    ; charge/unit area (yz) x carrier velocity x channel width

    - -

    ( )DS ox GS T y

    y

    I C V V y V W E= ; drain current in long channel approximation

    70

    NMOS FET Linear Region, First Order

  • 8/11/2019 Slide001 Semiconductor Review

    71/154

    I C V V V W E= Only V(y) on the rhs depends on y ( )DS ox GS T

    L V

    I dy W C V V y V dV=

    0 0

    2

    DS ox

    DS

    GS TI dy

    VW

    W VC V V dV =

    =

    V(y=0) = 0; V(y=L) = VDS

    Drain current: linear region;radual lon -channel a roximation

    2DS ox GS T DS

    L

    71

    NMOS FET Linear Region, First Order

  • 8/11/2019 Slide001 Semiconductor Review

    72/154

    2

    DSVW

    I C V V V

    = 2

    ' ox

    L

    k C

    = =Process transconductance parameter (A/V2)

    'k k L=Device transconductance parameter

    22

    DS GS T DS DSI V V V V=

    Drain current: linear region;gradual, long-channel approximation

    72

    NMOS FET Saturation Region, First Order

  • 8/11/2019 Slide001 Semiconductor Review

    73/154

    What happens as VDS isincreased?

    Drain current saturatesand "rolls over" with

    increasing drain voltage.

    us, D,sat an D,sat.

    ( )[ ]222

    DSDSTGSDS VVVVk

    I =

    2

    , TGSsatD

    kVVV

    =

    ,2

    TGSsatDS

    73

    NMOS FET Saturation Region, First Order

  • 8/11/2019 Slide001 Semiconductor Review

    74/154

    pinchoff (no inversion layer) when VDS VGS VT0 ( )2

    ,2

    DS sat GS T

    kI V V=

    ( ),2

    DS sat GS TkI V V= ( ) ( )[ ]TGSoxn VyVVCyQ =[Vchannel-to-source = V(y); 0 V(y) VDS; VGC = VGS V(y)]

    74

    NMOS FET I-VIDS versus VDS

  • 8/11/2019 Slide001 Semiconductor Review

    75/154

    IDS versus VGS

    ( )[ ]DSDSTGSDS VVVVk

    I = 2 2

    ( )TGSsatDS VVkI =2

    2

    , ; (Ids)0.5 versus VDS is linear

    ; slope = k/2, x-intercept = VT

    ( )TGSsatDS VVk

    I =

    2

    ,

    75

    NMOS FET Channel Length Modulation

  • 8/11/2019 Slide001 Semiconductor Review

    76/154

    ID,sat

    is in fact dependent on VDS

    :

    1. Depletion region shortens

    k 2

    effective channel length;

    2. Channel charge densityincreases.

    TGSsatDS

    VVVk

    I +=

    =

    1

    2

    2

    ,

    2,

    ; lambda channel length modulation parameter(empirical approximation); units are V-1

    76

    NMOS FET Channel Length Modulation

  • 8/11/2019 Slide001 Semiconductor Review

    77/154

    IDS versus VDS

    ( ) DSDSTGSDSk

    VVVVI = 22

    2

    2

    DSTGSsatDS =2

    ,

    77

  • 8/11/2019 Slide001 Semiconductor Review

    78/154

    interact

    with

    one

    another.

    velocitysaturation)earlythanpredictedby

    .

    78

  • 8/11/2019 Slide001 Semiconductor Review

    79/154

    =

    The

    horizontal

    field

    was

    105

    V/cm

    up

    to

    1995.

    theirvelocitylimitandmobilityofcarriers

    decreases. Theverticalfieldcanbeapproximatedas

    E =V t .

    Exproducesmore

    carriers

    at

    oxide

    interface,

    where the mobilit is reduced.

    79

  • 8/11/2019 Slide001 Semiconductor Review

    80/154

    3.3V 1.2V10 /

    5y

    E V cmm

    = = .0.35

    y cmm

    = = .0.1

    y cm

    m= =

    45 50 10 /x o

    VE V cm= = 63.3 4.4 10 /

    x o

    VE V cm= =

    61.2 5.5 10 /x o

    VE V cm= =

    75A

    80

  • 8/11/2019 Slide001 Semiconductor Review

    81/154

    0

    +

    =

    ox

    TGS

    e

    t

    VV

    1

    0isnominalmobilityforlongchannel.

    .

    thehorizontalfieldactstoreducethemobilityevenfurther.

    7

    10 /satv V cm=

    81

    Short-Channel Devices (< 1 m) --- A New Regime

  • 8/11/2019 Slide001 Semiconductor Review

    82/154

    VT0 is constant from y = 0 to y = LEy >> ExVGD = VGS VDS VT0

    submicron devices.

    Ex is larger relative to Ey, and Eyapproaches 10 MV/m, the limit of

    Saturation occurs before pinchoff.High fields velocity saturation.

    effxj

    1980 1995 2005

    Ey 5.0 V / 5.0 m 3.3 V / 0.35 m 1.0 V / 0.07 m1 MV/m 10 MV/m 14 MV/m

    Ex

    5.0 V / 100 nm 3.3 V / 75 nm 1.0 V / 1.7 nm50 MV/m 440 MV/m 590 MV/m

    VGD = VGS VDS VT0

    Ex produces more carriers at oxide interface, where themobility is reduced.

    Ey, exceeds Ecritical where velocity saturates. 82

    Carrier Velocity SaturationMobility reduction at high vertical field (Ex)

    .

  • 8/11/2019 Slide001 Semiconductor Review

    83/154

    =

    TGS

    e

    VV

    0

    oxt

    Mobility reduction at high lateral field (Ey)results from velocit saturation which we canrepresent in a piecewise linear function of Ey.

    Cy

    y

    e EE

    E

    Ev

  • 8/11/2019 Slide001 Semiconductor Review

    84/154

    DS nI WQ v=

    ( )( ) e yDS ox GS T EI WC V V V y E

    =

    ( )

    CE

    dV y

    E

    +

    =y dy

    DSI =

    DS

    DS e ox GS T

    e C

    L VDS

    W E

    II d W C V V V dV

    =

    84

    0 0e ox

    e CW E

    NMOS FET Linear Region, Short Channel

  • 8/11/2019 Slide001 Semiconductor Review

    85/154

    DSL V DSI

    = 0

    2

    0

    2e ox

    DS e ox GS T

    e C

    CWI V V V V

    W E

    =

    ; drain current in linear region with velocity saturation2 1 DS

    C

    L V

    E L+

    85

    NMOS FET Saturation Region, Short Channel

  • 8/11/2019 Slide001 Semiconductor Review

    86/154

    ( )DS n sat

    DS ox GS T DS sat

    I WQ vI WC V V V v

    ==

    ( )

    , ,DS linear DS sat

    GS T c

    I I

    V V E LV

    =

    =

    ( )

    ,

    2

    GS T c

    GS T

    V V E L

    V V

    +

    =

    ( ),

    1

    cD sat GS T

    GS T c

    c

    V V VV V E L

    E L

    = +

    >

    Very short channel device linear, not quadratic

    VVLE

  • 8/11/2019 Slide001 Semiconductor Review

    87/154

    . ,

    Low-Field MobilityNMOS PMOS Units

    cm - s-

    87

    0.13 m NMOS, PMOS Saturation Currents

    . .

  • 8/11/2019 Slide001 Semiconductor Review

    88/154

    technology. Assume a channel length of 100 nm, tox = 22 , VTN = 0.4 V, VTP = -0.4 V,VDD = 1.2 V, vsat= 8 x 106 cm/s.

    ( )2

    4.2104.260.0100.6

    =

    ==

    VVCv

    I

    VcmVEVcmVE

    TGSDS

    CPCN

    ( )226116 40.02.1

    106.1100.8

    =

    +

    VV

    cmFscmNMOS

    LEVVW CTGS

    1590

    ...=

    +mA

    [ ] ( )( )( )26116

    4.240.02.1

    40.02.1

    106.1100.8

    +

    = VVVVV

    cmFscmPMOS

    = m

    88

    NMOS FET Subthreshold Region

  • 8/11/2019 Slide001 Semiconductor Review

    89/154

    1

    =

    eeII Tk

    qV

    Tnk

    VVVq

    ssubB

    DS

    B

    offsetTGS

    ( )10ln==q

    TnkVS BGS

    ; slope factor, mV/decade89

    e a van age o av ng e ga e op ng e n+ or an p+ or

    could be seen from analysis above Doping the gates in such a way leads to

  • 8/11/2019 Slide001 Semiconductor Review

    90/154

    could be seen from analysis above. Doping the gates in such a way leads to

    devices with lower threshold voltages, but enables the implant adjustment with

    the same kind of impurities that used in the bulk (ptype for NMOS and ntype for

    PMOS). If we were to use the same kind of doping in gate as in the body (i.e. n+

    for PMOS and p+ for NMOS) that would lead to higher unimplanted threshold

    voltages. Adjusting them to the required lower threshold voltage would

    interface. This is not desirable. Also, the doping of the poly gate can be carried out

    at the same time as the source and drain and therefore does not require an extra

    step.

    90

  • 8/11/2019 Slide001 Semiconductor Review

    91/154

    = 0

    +

    ox

    TGS

    e

    t

    VV1

    91

    MOS Capacitance

    , , .

    For digital designs almost all capacitances are parasitic and each individual

  • 8/11/2019 Slide001 Semiconductor Review

    92/154

    For digital designs, almost all capacitances are parasitic, and each individualelement is small femtofarads or attofarads. Interconnect capacitances tend to bevoltage-independent. MOS capacitances are voltage-dependent (and non-linear).

    Thin-oxide capacitances Cg(Cgs, Cgd, Cgb)

    Gate overlap capacitances Col

    Junction capacitances Cj(Csb, Cdb)

    Depletion layercapacitance Cjc

    92

    MOS Capacitance

  • 8/11/2019 Slide001 Semiconductor Review

    93/154

    Junction capacitanceGate-channel capacitance

    Gate overlap capacitance

    93

    MOS C-V Measurement Gate Oxider A0

    CGCGoxoxg

    t

  • 8/11/2019 Slide001 Semiconductor Review

    94/154

    CGCG

    Accumulation AccumulationInversion

    Low frequency

    High frequency

    Deep depletion

    VG

    n-Si

    VG

    -Si

    - " - "G ,frequencies with a superimposed small AC signal (< 100mV, 0.110 MHz).

    94

    MOS C-V Measurement Gate Oxide

  • 8/11/2019 Slide001 Semiconductor Review

    95/154

    CGLow frequency

    Cox

    Cox Cs / (Cox+Cs)

    VG

    High frequency

    p-Si

    T

    95

    DiffusionCa acitance

    ( ) ( )Q Q V Q V

  • 8/11/2019 Slide001 Semiconductor Review

    96/154

    Channel-stop implantNocapacitance

    forconducting

    ( ) ( )j j high j low

    eq jo

    D high low

    Q Q V Q V Ceq K C

    V V V

    = = =

    AN+

    Side wall

    Source

    s e

    Bottom

    ND

    Side wall

    Channel

    Substrate N

    xj

    LD oR

    jo

    jV

    CC

    /1 +=

    Capacitanceis

    ( )1

    100 0( )

    mm

    m

    eq high lowK V V

    =

    voltage

    high low m

    96

    Dynamic Behavior of MOS Transistor

  • 8/11/2019 Slide001 Semiconductor Review

    97/154

    DynamicBehavior

    of

    MOS

    Transistor

    C C C C C C = + = +

    ; ;GB GCB SB Sdiff DB Ddiff C C C C C C = = =

    DS

    CGDCGS

    CSB CDBCGB

    B

    97

    Ca acitance

  • 8/11/2019 Slide001 Semiconductor Review

    98/154

    98

    MOS Gate Capacitance In Operating Regions

    CC 0

    , ,connection from channel surface to source and drain.

  • 8/11/2019 Slide001 Semiconductor Review

    99/154

    CC gdgs == 0

    oxgb =

    Linear region, conducting inversion layer shields substrate

    0Cgb=

    from gate charge; source and drain "share" the distributedoxide capacitance.

    Linear

    2CC oxgdgs

    0CC bd ==

    Saturation region, inversion layer does not extend to

    drain, which is pinched off. As an approximation...Saturation

    3

    2 LWCC oxgs

    99

    MOS Gate Capacitance In Operating Regions

  • 8/11/2019 Slide001 Semiconductor Review

    100/154

    Worst case (from Cgc,sat = 0.66 CoxWL and Cgc,linear = Cgc,cutoff= CoxWL) will beC C C C C C= + + = +

    ( )j jsw ox DC Area C Perimeter C W L 2L= + = +100

  • 8/11/2019 Slide001 Semiconductor Review

    101/154

    MOS Capacitor in Depletion

    Depletion condition: M O S

  • 8/11/2019 Slide001 Semiconductor Review

    102/154

    pVG > 0 p-type Si

    CG

    is Cox

    in series

    with Cs where Cs can

    G

    WQM

    be defined as

    semiconductor

    Depletion of

    holesCo Cs

    Cox=ox A /xox

    2 SiW

    =

    x

    s Si

    CG = Cox Cs/(Cox + CS)

    s

    AqN

    where s is surface potential

    In this case, the gate capacitance decreases as the gate voltage is

    increased. Why? 102

    MOS Capacitor in Inversion

    M O SG=

    T

    anG

    >T

    Inversion condition = 2 F

  • 8/11/2019 Slide001 Semiconductor Review

    103/154

    p-SiInversion condition s 2 F

    VG >>021

    FA

    Si

    T2

    2

    qNWW

    ==

    Depletion of

    WQMAt high frequency, inversion

    electrons are not able to respond

    o esInversion electrons

    - function

    . ,charge on the metal, the depletion

    layer width will vary with the ac.

    Co

    x

    Cs

    Cox

    =ox

    A/xox

    Cs = SiA/WTCG ( ) = Cox Cs / (Cox + CS)

    So, CG will be constant for VG VT103

    Example n

    - = 16 3 .

    thickness is 100 nm. Plot the CG vs. VG characteristics when VG isvaried slowly from 5 V to +5 V Assume MOS has area of 1 cm2

  • 8/11/2019 Slide001 Semiconductor Review

    104/154

    varied slowly from 5 V to +5 V. Assume MOS has area of 1 cm2,= 0.357 V.

    Find Cox.

    F1047.3cm1

    cm101000

    F/cm109.89.3 828

    14

    =

    =oxC

    n s m n w enxd=xd,T. o e a s ecreases as edepletion layer width increases. It is minimum when the depletionlayer width is maximum, i.e. whenxd=xd,T).

    2/1

    m298.0357.02cm10C106.1

    F/cm1085.89.11231619,

    =

    =

    Vx thresholdd

    12

    F1035.3cm1

    cm10298.0

    (min) 824s

    =

    =C

    CG(min) = (3.4710

    8

    3.35) / (3.47+3.35) F = 1.7 108

    F

    CG = Cs in series with Cox.

    104

    21

    Example n, continued

    FssSi

    AoxSioxsTG 2when =

    +== qxVV

  • 8/11/2019 Slide001 Semiconductor Review

    105/154

    Siox

    = .

    Plot the C-V characteristics 34.7 nF

    CG

    34.7nFow-

    Explain why CG does notvary for VG > VT.

    17nFhigh-fQuestion: How will you calculate

    VG2.17 V

    G w en G =

    Answer: Calculate s when VG =1 V using the equation above.-s ,

    Cs. Then, calculateCG = (Cox Cs) / (Cox + Cs) 105

    MOS Junction Capacitance

    , - ,

    and three-dimensional view

  • 8/11/2019 Slide001 Semiconductor Review

    106/154

    swjswbjb ACACC +=

    Bsw

    J

    Bb

    J VV

    11

    ( )mj

    swbjb

    J

    jswjb

    AACC +=

    B

    J

    1

    106

    MOS Junction Capacitance

    , -

    ( ) ( )2 1j jQ V Q V QC

    = =

  • 8/11/2019 Slide001 Semiconductor Review

    107/154

    2 1

    eqCV V V

    = =

    ( )2 2

    1 1

    1

    mV V

    jbV V

    B

    VQ C V dV C dV

    = =

    ( ) ( )

    1 1

    2 1

    2 1

    1 11

    m m

    jb B eq

    eq

    B B

    C A V VC

    V V m

    =

    1 21 2 1 2

    1

    2

    2eq B

    m

    C

    =

    ( ) ( )

    2 1

    2 1

    eq B B

    jb

    J eq jb jb j eq jb j

    C V V

    C K C WY C Wx K C Y x W

    = =

    = + = +

    107

  • 8/11/2019 Slide001 Semiconductor Review

    108/154

    Cutoff Linear Saturation

    0GSC 12 oxC WL 2

    3 oxC WL

  • 8/11/2019 Slide001 Semiconductor Review

    109/154

    3

    0 0

    GDC

    C C WL

    2 oxC WL

    109

    Transconductancegm

    ( )

    2

    2DS GS TI V V

    I W=

  • 8/11/2019 Slide001 Semiconductor Review

    110/154

    DI W= = m ox

    GSV L

    Body

    transconductance

    gmb

    0 2 2

    2

    t t f SB f

    Si A

    V V V

    q N

    = + +

    =

    ( )( )1

    ox

    tDmb ox GS T DS

    BS BS

    VI WC V V V

    V L V

    = = +

    g

    ( )2 2t

    BSf SB

    V

    V V

    =

    +

    ( )2 2ox DD

    mb

    BS f SB

    C W L I I

    V V

    = =

    +g

  • 8/11/2019 Slide001 Semiconductor Review

    111/154

  • 8/11/2019 Slide001 Semiconductor Review

    112/154

  • 8/11/2019 Slide001 Semiconductor Review

    113/154

  • 8/11/2019 Slide001 Semiconductor Review

    114/154

  • 8/11/2019 Slide001 Semiconductor Review

    115/154

  • 8/11/2019 Slide001 Semiconductor Review

    116/154

  • 8/11/2019 Slide001 Semiconductor Review

    117/154

  • 8/11/2019 Slide001 Semiconductor Review

    118/154

  • 8/11/2019 Slide001 Semiconductor Review

    119/154

  • 8/11/2019 Slide001 Semiconductor Review

    120/154

  • 8/11/2019 Slide001 Semiconductor Review

    121/154

  • 8/11/2019 Slide001 Semiconductor Review

    122/154

  • 8/11/2019 Slide001 Semiconductor Review

    123/154

  • 8/11/2019 Slide001 Semiconductor Review

    124/154

  • 8/11/2019 Slide001 Semiconductor Review

    125/154

  • 8/11/2019 Slide001 Semiconductor Review

    126/154

  • 8/11/2019 Slide001 Semiconductor Review

    127/154

    TheSiliconWafer

    Waferissin lecr stalline li htl do edmaterial.

  • 8/11/2019 Slide001 Semiconductor Review

    128/154

    Diameterofwaferisbetween4and12inches.

    Thicknessat

    most

    1mm.

    Aptypedopedwaferisapproximately,21021 imputies/m3.

    Oftentheoppositetypeisgrownoverthesuffacebeforethe

    y.

    128

    ThewholeSiliconingot:

  • 8/11/2019 Slide001 Semiconductor Review

    129/154

    Siwafers

    sliced

    from

    ingot

    :

    129

  • 8/11/2019 Slide001 Semiconductor Review

    130/154

    Siliconcrystal.Thislargesinglecrystalingotprovides300mm(12in.)diameter

    waferswhen

    sliced

    using

    a

    saw.

    The

    ingot

    is

    about

    1.5

    m

    long

    (excluding

    the

    taperedregions),andweighsabout275kg.(PhotographcourtesyofMEMC

    130

    ElectronicsIntl.)

  • 8/11/2019 Slide001 Semiconductor Review

    131/154

    PatterningofSiO2

    SisubstrateHardenedresist

    Chemicalor

    plasma

    etch

    2

  • 8/11/2019 Slide001 Semiconductor Review

    132/154

    (a)Siliconbasematerial

    Photoresist

    SiO 2

    Sisubstrate

    (d)Afterdevelopmentandetchingofresist,

    (b)Afteroxidationanddepositionofnegativephotoresist

    Sisubstrate

    SiO2

    chemicalorplasmaetchofSiO2

    Hardenedresist

    UVlight

    Patternedopticalmask

    su s ra e

    (e)Afteretching

    Si

    substrate Sisubstrate

    SiO2

    (f)Finalresultafterremovalofresist

    132

    c epperexposure

  • 8/11/2019 Slide001 Semiconductor Review

    133/154

    IntegratedcircuitLateralPNPTransistor

  • 8/11/2019 Slide001 Semiconductor Review

    134/154

  • 8/11/2019 Slide001 Semiconductor Review

    135/154

  • 8/11/2019 Slide001 Semiconductor Review

    136/154

  • 8/11/2019 Slide001 Semiconductor Review

    137/154

  • 8/11/2019 Slide001 Semiconductor Review

    138/154

  • 8/11/2019 Slide001 Semiconductor Review

    139/154

  • 8/11/2019 Slide001 Semiconductor Review

    140/154

  • 8/11/2019 Slide001 Semiconductor Review

    141/154

  • 8/11/2019 Slide001 Semiconductor Review

    142/154

  • 8/11/2019 Slide001 Semiconductor Review

    143/154

  • 8/11/2019 Slide001 Semiconductor Review

    144/154

  • 8/11/2019 Slide001 Semiconductor Review

    145/154

  • 8/11/2019 Slide001 Semiconductor Review

    146/154

  • 8/11/2019 Slide001 Semiconductor Review

    147/154

  • 8/11/2019 Slide001 Semiconductor Review

    148/154

  • 8/11/2019 Slide001 Semiconductor Review

    149/154

  • 8/11/2019 Slide001 Semiconductor Review

    150/154

  • 8/11/2019 Slide001 Semiconductor Review

    151/154

  • 8/11/2019 Slide001 Semiconductor Review

    152/154

  • 8/11/2019 Slide001 Semiconductor Review

    153/154

  • 8/11/2019 Slide001 Semiconductor Review

    154/154