95
Sistema de Endomembranas

Sistema de Endomembranas

  • Upload
    tayten

  • View
    526

  • Download
    2

Embed Size (px)

DESCRIPTION

Sistema de Endomembranas. RER REL. Aparato Reticular de Golgi. Retículo Endoplásmico Rugoso. RER. rugoso. RER El principal centro de síntesis proteica de la célula es la superficie del retículo endoplasmático rugoso (RER). - PowerPoint PPT Presentation

Citation preview

Sistema de Endomembranas

RER REL

Aparato Reticular de Golgi

Retículo Endoplásmico Rugoso

RER

rugoso

RER

El principal centro de síntesis proteica de la célula es la superficie del retículo endoplasmático rugoso (RER).

La síntesis de proteínas o traducción tiene lugar en los ribosomas, donde los aminoácidos son transportados por el RNA de transferencia (tRNA), específico para cada uno de ellos, y son llevados hasta el RNA mensajero (mRNA), dónde se aparean el codón de éste y el anticodón del RNA de transferencia, por complementariedad de bases, y de ésta forma se sitúan en la posición que les corresponde.

RER

Las proteínas que se sintetizan en los ribosomas del RE son proteínas de membrana, de secreción, proteínas con diferentes destinos intracelulares y proteínas que permanecen dentro de la célula para realizar funciones metabólicas.

EL RER transporta las proteínas producidas en los ribosomas hacia las regiones celulares en que sean necesarias o hacia el aparato de Golgi, desde donde se pueden exportar al exterior.

REL

REL

Interviene en la síntesis y metabolismo de casi todos los lípidos (ácidos grasos y fosfolípidos) que forman las membranas de la célula y de la base de hormonas esteroidales.

En el retículo de las células del hígado, tiene lugar la detoxificación, que consiste en modificar a una droga o metabolito insoluble en agua, en soluble en agua

Interviene en la absorción, almacenamiento y liberación de calcio para mediar en algunos tipos de actividad y equilibrio celular.

      Síntesis de lípidos. En las membranas del REL se sitúan las enzimas responsables de la síntesis de la mayor parte de los lípidos celulares: triglicéridos, fosfoglicéridos, ceramidas y esteroides.

Los precursores para la síntesis provienen del citosol, hacia el cual se orientan los sitios activos de las respectivas enzimas.

Por lo tanto, los lípidos recién sintetizados quedan incorporados en la monocapa citosólica del REL.

Gracias a la participación de las flipasas del retículo, se logra el movimiento hacia la monocapa luminal de los lípidos correspondientes, asegurándose de esta forma la asimetría entre ambas capas.

REL

    El REL en las células musculares. El REL actúa como reservorio de calcio, el cual frente a la llegada de un estímulo es liberado al citosol, donde dispara una respuesta específica.

Esta función es particularmente importante en las células musculares. (retículo sarcoplásmico).

El calcio es liberado frente al impulso nervioso desencadenado por la acetilcolina en la unión neuromuscular, y una vez en el citosol participa en la contracción muscular.

Cuando retorna al REL, por la acción de una bomba de calcio, se produce la miorrelajación.

REL

Retículo sarcoplasmático (bomba Ca2+ ATPasa)

El REL en las células hepáticas. Está involucrado en dos funciones:

a.- Detoxificación (transformación de metabolitos y drogas en compuestos hidrosolubles que puedan ser excretados por orina).

b.- Glucogenólisis (degradación del glucógeno) tiene lugar en el citosol, donde los gránulos de glucógeno se encuentran en íntima

relación con el REL.

El producto de la glucogenólisis, la glucosa 6-fosfato (glucosa 6-P), es atacada entonces por la glucosa 6-fosfatasa, enzima de la membranas del retículo. Ésta cataliza la hidrólisis del grupo fosfato, permitiendo así que la glucosa atraviese la membrana celular hacia el torrente circulatorio.

La glucosa 6-fosfatasa no se expresa en las células musculares, razón por la cual el glucógeno muscular no contribuye a la mantención de la glucemia.

REL

Degradación del Glucógeno en Células Hepáticas

Sustancias tóxicas liposolubles se degradan en el R.E.L. (hígado, intestino, riñón, piel y pulmón)

• Sustancias exógenas de la dieta• fármacos o contaminantes:

barbitúricosetanolinsecticidasherbicidasconservantesmedicamentosdesechos industriales, etc.

• Productos tóxicos liposolubles del metabolismo.

Las sustancias tóxicas se inactivan en las membranas del REL por la acción de oxigenasas.

Detoxificación

Aparato Reticular de Golgi

Aparato Reticular de Golgi

Aparato Reticular de Golgi

Morfológicamente el AG está compuesto por membranas aplanadas que encierran sacos y túbulos (cisternas) asociados con vesículas de secreción y de transición.

La unidad básica del orgánulo es el sáculo, que consiste en una vesícula o cisterna aplanada. Cuando una serie de sáculos se apilan, forman un dictiosoma (en vegetales).

Además, pueden observarse toda una serie de vesículas más o menos esféricas a ambos lados y entre los sáculos.

Las proteínas que vienen del RE entran al AG en su fase cis o fase de entrada por “endocitosis” de la vesícula transportadora, fusionando las membranas de la vesículas y la de la fase cis, permitiendo la entrada de la proteína. 

Posteriormente por “gemación”, sale de la fase cis y entra a la intermedia. Nuevamente por gemación sale de la fase intermedia y entra a la fase trans.

Finalmente por gemación sale la proteína, generándose una vesícula que saldrá a un destino final. Esta última vesícula lleva el direccionamiento o la ruta que debe seguir para depositar la proteína que transporta.

Aparato Reticular de Golgi

Una de las funciones más importantes de las vesículas es transportar materiales hacia la membrana plasmática y desde ella hacia el interior de la célula; constituyendo de este modo un medio de comunicación entre el interior y el exterior celular.

Hay un intercambio continuo de materiales entre el retículo endoplasmático, el aparato de Golgi, los lisosomas y el exterior celular.

Aparato Reticular de Golgi

Componentes del aparato de Golgi

El aparato de Golgi esta subdividido en tres regiones o fases:

1.- la región cis: orientada hacia el núcleo celular

2.- la región intermedia y la región trans

3.- fase de maduración.

En la cara cis se encuentran las vesículas de transición,

en la cara trans, se localizan las vesículas de secreción.

Funciones del Aparato de Golgi

Dentro de las funciones que posee el aparato de Golgi se encuentran la glicosilación de las proteínas y lípidos para producir glucoproteínas y glucolípidos, selección (sorting), destinación (targeting) y la síntesis de polisacáridos de la matriz extracelular.

El proceso de glicosilación, que la mayoría de las veces se inicia en el retículo endoplásmico posee una suma importancia, pues permite darle a la molécula procesada propiedades especiales.

En el caso de las proteínas, por ejemplo, su glicosilación da lugar a los componentes básicos del glicocálix.

En otros casos permite otorgarle a la molécula una resistencia mecánica adicional, como es común cuando se trata de hormonas o mensajeros a distancia.

Desde la cisterna trans  se originan vesículas con productos maduros, ya sea a la membrana plasmática o a otros organelos tales como los lisosomas.

Funciones del Aparato de Golgi

Tráfico intracelular de membranas

Tráfico intracelular de membranas

El tráfico intracelular de membranas es el proceso por el que los lípidos y proteínas son enviados a los compartimentos de destino.

I.- La ruta secretora, biosintética o exocítica. Es la ruta por la que los componentes recién sintetizados son transportados desde el compartimiento de síntesis o retículo endoplasmático (RE) hasta:

a) otros orgánelos (aparato de Golgi, lisosomas, cloroplastos,)

b) la membrana plasmática

c) al medio extracelular

1.- Secreción constitutiva. A medida que los lípidos y las proteínas son sintetizados, se transportan y secretan sin pausa alguna hasta el destino final. Esta secreción tiene lugar en todas las células.

I. Tipos de Secreción

2.- Secreción regulada. Sólo tiene lugar cuando aparece una señal específica, como la entrada de algunos iones (calcio) o como consecuencia de la interacción entre una hormona y su receptor.

Los productos susceptibles de secreción regulada, una vez sintetizados, se almacenan en gránulos de secreción, a la espera de que aparezca la señal de disparo de la secreción.

La secreción regulada sucede en las células de tejidos endocrinos y exocrinos, los macrófagos, algunos tipos de leucocitos y las neuronas.

Secreción Constitutiva y Regulada

Secresión constitutiva

Páncreas exocrino

Becker,W.M. y col. 2000

Sinápsis química

Axón presináptico

Dirección del impulso nervioso presináptico

Vesículas sinápticas conteniendo moléculas de neurotransmisor

MitocondriaVesícula sináptica

Espacio sináptico

Membrana presináp-tica

Espacio sinápticoMoléculas de

neurotransmisorDendrita postsináptica

Protuberancia sináptica

Membrana presináp-tica

Membrana postsináp-tica

Receptores de membrana

postsináp-tica

Secreción Regulada:

Liberación deneurotransmisores

Clases de proteínas de secreción en vertebrados

II. Ruta endocítica

1. Internalización mediada por un receptor. Las moléculas exógenas se unen a un receptor que generalmente se encuentra en la membrana plasmática,

en compartimientos intracelulares localizados inmediatamente por debajo de la superficie celular y a la que se incorporan rápida y sincrónicamente cuando llega una señal específica (ej. GLUT4).

Cuando suben los niveles de glucosa en sangre, se produce la secreción de insulina, que se une a su vez a sus receptores presentes en la membrana plasmática.

Esta unión dispara la fusión de las vesículas que contienen el receptor GLUT4 con la membrana plasmática, captando rápidamente la glucosa del medio extracelular.

Inmediatamente, los receptores con la glucosa son internalizados y la glucosa se desliga del receptor. Los receptores ya vacíos, esperan el inicio de un nuevo ciclo funcional, El desacoplamiento en la secuencia de este proceso produce la aparición de la diabetes mellitus independiente de insulina.

II. Ruta endocítica

2. La pinocitosis. Es la vía por la que se internalizan macromoléculas y fluidos. Además, es el mecanismo empleado para el recambio constante de la membrana plasmática. En función del tipo celular, la membrana plasmática se renueva completamente cada 30-60 min.

3. La internalización mediada por caveolas. Es una ruta de internalización que emplea unas vesículas que contienen mayoritariamente una proteína denominada caveolina. A través de estas vesículas se captan las moléculas de pequeño tamaño y de naturaleza hidrofóbica como el colesterol y el ácido fólico y parecen estar implicadas en la señalización intracelular.

II. Ruta endocítica

Caveolas

4. La fagocitosis. La fagocitosis es un tipo especializado de endocitosis por el que se internalizan grandes partículas como virus, bacterias, parásitos intracelulares y complejos inertes. Se encuentra sólo en determinados tipos celulares como los macrófagos y los neutrófilos.

II. Ruta endocítica

Fagocitosis de bacteria Fagocitosis de material no biológico

III. La ruta de reciclaje.

Algunos componentes de membrana se internalizan, pero una vez liberada la carga de unión son devueltos a la membrana plasmática para volver a ejercer su función.

Esta ruta la emplean la mayoría de los receptores de membrana

Es una combinación de la ruta endocítica (internalización) y de la secretora (vuelta a la superficie celular).

El tráfico secretor y endocítico están muy equilibrados en cuanto a la cantidad de membrana intracelular. Cualquier alteración en este equilibrio comporta anomalías que comprometen la supervivencia de la célula.

Receptor ligando

El receptor se recicla y el ligando se degrada

Receptor ligando

Tanto el receptor como el ligando se reciclan

Receptor ligando

Tanto el receptor como el ligando se degradan.

Receptor ligando

Tanto el receptor como el ligando son transportados a través de la célula

Lisosomas

Comunicación Golgi - Lisosoma

• Exceso de actividad lítica debido al aumento y a la falta de control de la autofagia

• Daño y cambios en la permeabilidad de la membrana del lisosoma

• Excesiva liberación de hidrolasas hacia el exterior de la célula.

• Actividad lítica inadecuada

Enfermedades - Lisosomas

Enfermedades por actividad lítica inadecuada:

SILICOSIS y ASBETOSIS

GOTA

Mucopolisacaridosis

• Enfermedad de Tay Sachs: falta hexosaminidasa

• Síndrome de Hurler (gargolismo): (Falta -fucosidasa, -galactosidasa)

• Enfermedad de Gaucher: ausencia de glucosidasa

• Síndrome de Hunter: falta sulfatasa del iduronato

• Enfermedad de Fabry: -galactosidasa

Mucopolisacaridosis

Peroxisoma

Reacciones que tienen lugar en el peroxisoma.

Respiración celular basada en el peróxido de hidrógeno

Catabolismo de las poliaminas

Catabolismo de las purinas

Oxidación del etanol

Oxidación del ácido L-pipecólico

Beta-oxidación

Reacciones que tienen lugar en el peroxisoma.

Cadena lateral del colesterol

Alfa-oxidación Reacciones anabólicas

Biosíntesis del colesterol

Biosíntesis de los ácidos biliares *

Gluconeogénesis

Biogénesis de los peroxisomas

Enfermedades - peroxisomas

• ADRENOLEUCODISTROFIA: Falla en la b-oxidación de los ácidos grasos, almacenamiento anormal de lípidos en cerebro, médula, glándulas adrenales)

• Diversas sustancias químicas (drogas, contaminantes

• industriales) inducen una proliferación marcada de peroxisomas.

• El estradiol parece tener un efecto depresivo sobre los peroxisomas.

ADRENOLEUCODISTROFIA

Mitocondria

Mecanismos de transporte vesicular

Una de las funciones más importantes de las vesículas es transportar materiales hacia la membrana plasmática y desde ella hacia el interior de la célula; constituyen de este modo un medio de comunicación entre el interior celular y el medio externo.

Hay un intercambio continuo de materiales entre el retículo endoplasmático, el aparato de Golgi, los lisosomas y el exterior célula.  

El intercambio está mediado por pequeñas vesículas delimitadas por membrana que se forman por gemación a partir de una membrana y se fusionan con otra. Así, en la superficie celular siempre hay porciones de membrana plasmática que se invaginan y separan para formar vesículas que transportan hacia el interior de la célula materiales capturados en el medio externo; endocitosis.

El fenómeno opuesto, secreción o exocitosis, es la fusión de las vesículas internas con la membrana plasmática seguida de la liberación de su contenido al medio externo; es también común en muchas células.

Mecanismos de transporte vesicular

Glicosilación

RER

Los ribosomas libres y unidos a RE forman un pool común

Glicolisación en RER

Desde el RER, las proteínas son trasladadas mediante vesículas hasta el Complejo de Golgi

Modificación de las proteínas de secreción en el Complejo de Golgi

Procesamiento ordenado de los oligosacáridos en RE y Golgi

Pasos de la compartamentalización de Glucosilación y posterior Modificación de Proteínas

Oligosacaridos de manosa

Oligosacaridos Complejos

Glucansintetasas

Glucosil transferasas

Becker,W.M. y col. 2000

•Biosíntesis del oligosacarido por

do a un residuo de asparagina•Adición del núceo del oligosacari-

glucosilación -N

Adición de N-acetilgalactosaminaa serina o treonina

proteínas lisosomales

•Primer paso de fosforilación de

•Remoción de manosa

proteínas lisosomales•Segunda fosforilación de

•Remoción de manosa•Adición de N-acetilgalactosamina

•Adición de ac. siálico•Adición de galactosamina

•Adición de ac. siálico•Adición de sulfato a tirosina

CGN

TGN

Mig

raci

ón a

trav

és d

el A

G

RE

Cisterna media

Distribución intracelular de macromoléculas a través del RER, vesículas y del Golgi