Sintering Behavior of Ultra Fine MoCu Composite Powders 1-s2.0-S0263436813002011-Main (1)

Embed Size (px)

Citation preview

  • 8/13/2019 Sintering Behavior of Ultra Fine MoCu Composite Powders 1-s2.0-S0263436813002011-Main (1)

    1/6

    The sintering behavior of ultra-ne MoCu composite powders and the sintering

    properties of the composite compacts

    Dezhi Wang a,b, Xiaojia Dong a, Pan Zhou a, Aokui Sun a, Bohua Duan a,b,a School of Materials Science and Engineering, Central South University, Changsha 410083, Chinab Key Laboratory of Nonferrous Metal Materials Science and Engineering, Ministry of Education, Central South University, Changsha 410083, China

    a b s t r a c ta r t i c l e i n f o

    Article history:

    Received 8 May 2013Accepted 16 September 2013

    Keywords:

    MoCu

    Ball-milling

    Sintering

    Microstructure

    Properties

    Nanocrystalline Mo25 wt.%Cu compositepowders were synthesizedby ball-milling, calcinating and subsequent

    hydrogen reduction process. MoO3and CuO powders were used as precursors. The sintering behavior of ultra-

    ne MoCu composite powders and the sintering properties of the composite compacts were investigated. The

    densication, microstructure, hardness, electrical conductivity, thermal conductivity and coefcient of thermal

    expansion were tested after solid phase sintering and liquid phase sintering. Relative density near 96% was

    achieved for the specimen which was compacted under a very low pressure of 32 MPa and sintered at

    1050 C. It reveals that high-energy ball milling increases the contribution of solid phase sintering of Mo and

    Cu particles on the densication. The microstructure of the sintered compacts observed by scanning electron

    microscopy showed homogenous dispersion of Mo and Cu phase. Thenal product showed good physical and

    mechanical properties.

    Crown Copyright 2013 Published by Elsevier Ltd. All rights reserved.

    1. Introduction

    Mo

    Cu composites with 20

    40% copper are widely used for theheavy dutyservice contacts dueto their excellent properties like lowco-

    efcient of thermal expansion, wear resistance, high temperature

    strength and prominent electrical and thermal conductivity [1]. The

    conventional processes for fabrication of the MoCu composites are in-

    ltration of copper to molybdenum skeleton and liquid phase sintering.

    However, it is difcult to obtain high-density MoCu composites as a

    resultof the mutual insolubility between Mo and Cu, or the high contact

    angle of liquid copper on molybdenum [2,3]. The sinterabilityof MoCu

    powders can be increased through an activated sintering process by

    addition of a small amount of metal such as Co, Ni, or Fe. However,

    such activators exhibit a negative inuence on the electrical and ther-

    mal properties of the MoCu alloys[4]. Recently, many investigations

    have been performed to synthesize the nanoscale MoCu powders,

    since the sinterability can be improved by decreasing the particle size

    and enhancing the homogeneity of the starting powders[58]. Modi-

    cation of particle size and distribution can be achieved by mechanical

    alloying (MA) [9]. Unlike conventional MoCu powders, the

    sintering of nanocrystalline MoCu mixtures synthesized by MA is

    signicantly enhanced at solid phase sintering temperature [4]. In

    the case of MoCu composites prepared by MA, solid phase sintering

    could have an adverse effecton therearrangement process duringliquid

    phase sintering.Although most reports showthat the maximum relative

    density is achieved during liquid phase sintering, it is undeniable that

    solid phase sintering plays an important role in the densication of the

    nanocrystalline materials[10,11].In our previous study [12], we have reported a simple route to

    synthesize ultra-ne and well-dispersed MoCu nanocomposites. The

    sintering behavior of ultra-ne composite powders and the sintering

    properties of the composite compacts are investigated at present re-

    search. It is conrmed that the contribution of solid phase sintering on

    the densication is signicant.

    2. Experimental procedures

    The characteristics of the starting powders are listed in Table 1.

    MoO3 and CuO powders with a mass radio of 3.6:1 were uniformly

    blended and then calcined in air atmosphere at 530 C to obtain

    CuMoO4MoO3mixtures. Ball milling was carried out in a Planet-Ball-

    Grinding machine at a rotational speed of 400 rpm for 20 h in air atmo-

    sphere. The ball milled CuMoO4MoO3 mixtures werenally reduced in

    hydrogen atmosphere (dew point 30 C to 40 C) at 650 C for

    1.5 h in a tube-type electrical furnace. The ow rate was 0.8 L min1,

    and the height of powder bed was 12 mm.

    The resultant MoCu nanocomposite powders were compacted in a

    steel die under the pressure of 32 MPa to produce green parts. Sintering

    was performed in a tube-type electrical furnace with a heating rate of

    10 C min1 at different temperatures, ranging from 950 C to

    1100 C, for 90 min under hydrogen atmosphere. The densities of the

    sintered compacts were measured according to Archimedes' principle.

    The hardness of the specimens was determined by a Vickers hardness

    tester. The scanning electron microscope was used for microstructure

    Int. Journal of Refractory Metals and Hard Materials 42 (2014) 240245

    Corresponding author at: School of Materials Science and Engineering, Central South

    University, Changsha 410083, China. Tel.: +86 731 88877221; fax: +86 731 88830202.

    E-mail address:[email protected](B. Duan).

    0263-4368/$ see front matter. Crown Copyright 2013 Published by Elsevier Ltd. All rights reserved.

    http://dx.doi.org/10.1016/j.ijrmhm.2013.09.012

    Contents lists available at ScienceDirect

    Int. Journal of Refractory Metals and Hard Materials

    j o u r n a l h o m e p a g e : w w w . e l s e v i e r . c o m / l o c a t e / I J R M H M

    http://dx.doi.org/10.1016/j.ijrmhm.2013.09.012http://dx.doi.org/10.1016/j.ijrmhm.2013.09.012http://dx.doi.org/10.1016/j.ijrmhm.2013.09.012mailto:[email protected]://dx.doi.org/10.1016/j.ijrmhm.2013.09.012http://www.sciencedirect.com/science/journal/02634368http://www.sciencedirect.com/science/journal/02634368http://dx.doi.org/10.1016/j.ijrmhm.2013.09.012mailto:[email protected]://dx.doi.org/10.1016/j.ijrmhm.2013.09.012
  • 8/13/2019 Sintering Behavior of Ultra Fine MoCu Composite Powders 1-s2.0-S0263436813002011-Main (1)

    2/6

    evaluation of the sintered samples. Electrical conductivity was exam-

    ined using a four wire method by a micro-ohmmeter. Thermal conduc-

    tivity and coefcient of thermal expansion were measured by thermal

    diffusivity analyzer.

    3. Results and discussion

    The characteristics of the ultra-ne Mo25 wt.%Cu nanocomposite

    powders synthesized by ball-milling have been reported in detail else-

    where[12].Fig. 1 and Fig. 2show SEM and TEM images of the MoCu

    composite powders. It can be seen that the MoCu powders compose

    of superne spherical nanoparticles, with particle size ranging from 60

    to 180 nm. These spherical particles exhibit high specic surfaces area,

    regular shape and uniform size distribution, which make the MoCu

    powders have excellent capability in sintering. Sintering behavior and

    sintering properties are discussed in this work.

    3.1. Sintering behavior

    Fig. 3 shows the inuence of sintering temperature on shrinkage. As

    sintering temperature rises, both radial and axial shrinkage of the

    sintered specimens increase. Moreover, radial shrinkage is always higher

    than axial shrinkage. This is because radial pressure is invariably lower

    than axial pressure during the uniaxial pressing process. Hence the

    green density in compact-pressing direction is higher than that in per-

    pendicular to compact-pressing direction. When sintered at the same

    temperature, radial shrinkage is always higher than axial shrinkage.

    Theeffect of sintering temperature on density andrelative density ofsintered compacts are shown inFig. 4. It appears that the density and

    the relative density of the specimens are increased by raising the

    sintering temperature when sintered under 1100 C. At the tempera-

    ture of 950 C, 1000 C and 1050 C, which are below the melting

    point of copper, the sintering process is known as solid phase sintering.

    During solid phase sintering, atomic diffusion ability was enhanced and

    pores tended to decrease while the formation and growing of sintering

    necks were accelerated. Meanwhile Cu element diffused from the bulk

    to the surface of the composite particlesand linked to the other diffused

    Cu elements from other particles to form a copper network all over the

    structure. Formation of this network could improve the densication

    [13,14]. So that an obvious increment in the densication was noticed

    as the temperature increased. In contrast to solid phase sintering, densi-

    ty and relative density are decreased when sintered at 1100 C (liquid

    phase sintering). Nevertheless, both radial and axial shrinkage of the

    MoCu samples are increased at 1100 C (Fig. 3). This phenomenon is

    quite different from other researches [5,7,13,15]. Reasons for the re-

    verse densication are concluded as follows. Firstly, some impurities

    existing in powders vaporized into gases at the high temperature.

    Then the gases were packaged in the specimens under the compacting

    pressure. During sintering process, expands of these gasses resulted in

    reverse densication. Secondly, pores which are resulted from the

    large seepage of liquid copper increased during liquid phase sintering;

    hence the density decreased, though the shrinkage increased.

    Under the very low pressure of 32 MPa (most researches choose the

    pressure of about 100 MPa), relative density of near 96% was achieved

    for the compacts sintered at 1050 C by using MoCu composite pow-ders which were synthesized by coreduction of mechanical-activated

    CuMoO4MoO3 mixtures. Owing to thenerMoCu nanoscale particles,

    composite powders possess large specic surface area, high surface en-

    ergy and high sinterability. Pores between particles are smaller; this

    promotes diffusion rate and further facilitates the densication[16]. In

    addition, the unique coated structure of MoCu composite powders

    Table 1

    Characteristics of raw powders.

    Material Supplier Average particle

    size (m)

    Morphology Purity

    (%)

    MoO3 Tianjin Chemical

    Development, China

    1 Polygon 99.95

    CuO Sinopharm Chemical

    Reagent, China

    5 Polygon 99.0

    Fig. 1.SEM image of Mo

    Cu composite powders.

    Fig. 2.TEM image of MoCu composite powders.

    Fig. 3.Effect of sintering temperature on shrinkage of sintered compacts.

    241D. Wang et al. / Int. Journal of Refractory Metals and Hard Materials 42 (2014) 240245

    http://localhost/var/www/apps/conversion/tmp/scratch_7/image%20of%20Fig.%E0%B3%80http://localhost/var/www/apps/conversion/tmp/scratch_7/image%20of%20Fig.%E0%B2%80
  • 8/13/2019 Sintering Behavior of Ultra Fine MoCu Composite Powders 1-s2.0-S0263436813002011-Main (1)

    3/6

    causes a homogeneous distribution of Mo phase and Cu phase, which is

    benecial to sintering densication. Therefore, a maximum density of

    near 96% was obtained at solid phase sintering temperature.

    3.2. Microstructure of MoCu compacts

    Fig. 5presents the cross-section microstructure of MoCu compacts

    sintered for 1.5 h at the temperature of 950 C, 1000 C, 1050 C, and

    1100 C. Large interparticle pores can be seen on the cross-section of

    the specimen sintered at 950 C (Fig. 5a). The diffusion of Cu phase is

    enhanced by increasing the sintering temperature to 1000 C, and the

    distribution of Cu tends to be more uniform (Fig. 5b). The amount and

    size of the pores are reduced, and a relatively dense and homogenousmicrostructure of the MoCu compacts is observed when sintered at

    1050 C (Fig. 5c). Increasing the sintering temperature to 1100 C

    results in signicant copper evaporation, generation of massive pores

    and a decrease in density of the composite compacts (Fig. 5d).

    Fig. 6shows the fractograph of MoCu samples sintered for 1.5 h at

    1050 C and 1100 C. A dense and homogenous microstructure can be

    seen apparently fromFig. 6(a), (c). On the whole, every Mo particle is

    capsulated in continuous network structure of Cu. This network struc-

    ture, an ideal sintering state, is favorable to strength, electrical conduc-

    tivity and thermal conductivity of MoCu alloys.Fig. 6(b) andFig. 6(d)

    reveal that the size of particles sintered at 1100 C is larger than that

    sintered at 1050 C. In addition, a mass of pores come out as a result

    of the loss of copper. When increasing the copper content, higher tem-

    perature (over the melting point of copper) may cause a larger loss of

    liquid copper.

    Sintering properties of MoCu compacts.

    Fig. 4. Effect of sintering temperature on density andrelativedensity of sintered compacts:

    (a) density; (b) relative density.

    Fig. 5.Cross-section microstructure of Mo

    Cu compacts at different sintering temperature: (a) 950 C; (b) 1000 C; (c) 1050 C; (d) 1100 C.

    242 D. Wang et al. / Int. Journal of Refractory Metals and Hard Materials 42 (2014) 240245

    http://localhost/var/www/apps/conversion/tmp/scratch_7/image%20of%20Fig.%E0%B5%80http://localhost/var/www/apps/conversion/tmp/scratch_7/image%20of%20Fig.%E0%B4%80
  • 8/13/2019 Sintering Behavior of Ultra Fine MoCu Composite Powders 1-s2.0-S0263436813002011-Main (1)

    4/6

    3.2.1. Hardness

    The effect of sintering temperature on the hardness is shown in

    Fig. 7. It has been found that the tendency of Vickers hardness withdifferent temperature is similar to that of density (Fig. 4). Evidently,

    the high density of the sintered samples is the main reason for high

    hardness. During solid phase sintering, porosity of the sintered samples

    decreases, and grain size grows as sintering temperature increases.

    Hence the maximum value of hardness (214 HV) is achieved at the

    temperature of 1050 C.

    3.2.2. Electrical and thermal conductivity

    Fig. 8 presents theelectrical and thermal conductivity of the sintered

    compacts at different temperature. The electrical conductivity analysisresults present that the electrical conductivity increases gradually

    from 950 C to 1050 C,and themaximum value of electrical conductiv-

    ity (22.4 MS/m) is gained at 1050 C. When sintered at 1100 C (liquid

    phase sintering), electrical conductivity of the compacts is lower than

    that of those samples processed by solid phase sintering. The reason

    Fig. 6.Fractograph of MoCu compacts at different sintering temperature: (a), (c) 1050 C; (b), (d) 1100 C.

    Fig. 7.Effect of sintering temperature on the hardness of the sintered specimens.

    Fig. 8. Effect of sintering temperature on electrical and thermal conductivity of the

    sintered compacts.

    243D. Wang et al. / Int. Journal of Refractory Metals and Hard Materials 42 (2014) 240245

    http://localhost/var/www/apps/conversion/tmp/scratch_7/image%20of%20Fig.%E0%B8%80http://localhost/var/www/apps/conversion/tmp/scratch_7/image%20of%20Fig.%E0%B7%80http://localhost/var/www/apps/conversion/tmp/scratch_7/image%20of%20Fig.%E0%B6%80
  • 8/13/2019 Sintering Behavior of Ultra Fine MoCu Composite Powders 1-s2.0-S0263436813002011-Main (1)

    5/6

    for this phenomenon is that the Cu phase inherently has a much higher

    electricalconductivity than molybdenum.During liquid phasesintering,

    a large number of pores reemerge inside the sintered compacts on

    account of massive losses of copper. Thermal conductivity exhibits a

    similar trend. From optical micrograph (Fig. 6c), we can clearly nd

    out thatCu particles are connected together and almost every Mo parti-

    cle is capsulated in continuous network structure of Cu. Consequently,

    the heat can be fast transferred between Mo and Cu. Maximum value

    of thermal conductivity is 147 Wm1 K1 for the samples sintered at

    1050 C.

    3.2.3. Coefcient of thermal expansion

    Fig. 9 shows the coefcient of thermal expansion (CTE) of the

    sintered samples at different temperature. The CTE analysis results indi-

    cate that the CTE is unstable before 200 C because the temperature of

    the samples is lower than the actual temperature during the primary

    heating stage. Obviously, the CTE increases gradually from 200 C to

    300 C, and the curves become at when the temperature is above300 C. It is known that the CTE of Cu is higher than that of Mo. Never-

    theless, the higher CTE of Cu is constrained by the lower CTE of Mo in

    MoCu composite[6]. Particles transportations and interdiffusion are

    more easily occurring in nanoscaled MoCu composite obtained by

    MA than those in conventional composite during solid phase sintering.

    The distribution of Cu phase tends to be homogenous with the increas-

    ing of solid phase sintering temperature; hence the CTE increases

    gradually owing to the effect of Cu. When sintered at 1100 C (liquid

    phase sintering), the sintered specimens reveal the lower CTE due to

    the loss of Cu.

    In summary, the overall performance of the Mo25 wt.%Cu compos-

    ite sintered at 1050 C is improved slightly compared with other re-

    searches [1719]. The comparison of the processing conditions and

    properties of the composite from the present study to the prior researchstudies is listed in Table 2. However, it is worth reminding that the

    compacting pressure in this study is 32 MPa, far lower than that

    (100380 MPa) of other reports [8,16,20]. Supporting that we raise

    the compacting pressure to a conventional degree, the density and the

    relative density of MoCu composite may increase substantially. Then

    other properties dependent on the relative density could have a corre-

    sponding improvement.

    4. Conclusion

    In this work, we synthesized ultra-ne MoCu composite powders,

    with nely dispersion and homogenous distribution of Mo and Cu

    components. The following results were obtained:1. The superne MoCu powders showed remarkable sinterability at

    1050 C which is below the melting point of copper (solid phase

    sintering).

    2. Maximum relative density (near 96%) of Mo25 wt.%Cu composites

    compacted at the very low pressure of 32 MPa can be achieved at

    low sintering temperature (1050 C). Homogeneous microstructure

    and other excellent properties of sintered products were obtained

    as well. Hardness, electrical conductivity, thermal conductivity and

    coefcient of thermal expansion of the MoCu composites sintered

    at 1050 C for 1.5 h are 214 HV, 22.4 MS/m, 147 Wm1 K1 and

    8.5 106 K1, respectively.

    3. Homogeneous microstructure could contribute to enhancing diffu-

    sion rate of solid phase densication while the whole densication

    process is controlled by solid phase diffusion. On the contrary, liquidcopper contributes little to densication of the Mo25 wt.%Cu com-

    pacts, even produces some adverse effects, such as evaporation and

    enhanced grain growth.

    Acknowledgement

    This work is supported by National Natural Science Foundation of

    China (No. 51274246).

    References

    [1] Hong SH, Kim BK, Munir ZA. Synthesis and consolidation of nanostructured W1040 wt.% Cu powders. Mater Sci Eng A 2005;405:32532.

    [2] Cheng J, Song P, Gong Y, Cai Y, Xia Y. Fabrication and characterization of W15Cu

    composite powders by a novel mechano-chemical process. Mater Sci Eng A2008;488:4537.

    [3] Da Costa FA, da Silvab AGP, Gomes UU. Theinuence of the dispersion technique onthe characteristics of the WCu powders and on the sintering behavior. PowderTechnol 2003;134:12332.

    [4] Ryu SS, Kim YD, Moon IH. Dilatometric analysis on the sintering behaviorof nanocrystalline WCu prepared by mechanical alloying. J Alloys Compd2002;335:23340.

    [5] Kim DG, Lee KW, Oh ST, Kim YD. Preparation of WCu nanocomposite powder byhydrogen-reduction of ball-milled W and CuO powder mixture. Mater Lett2004;58:1199203.

    [6] Yang N, Wang Zh, Chen L, Wang Y, Zhu Y. A new process for fabricating W15wt.%Cu sheet by sintering, cold rolling and re-sintering. Int J Refract Met Hard Mater2010;28:198200.

    [7] Wang Z, Li X, Zhu J, Mo F, Zhao C, Wang L. Dynamic consolidation of WCu nano-composites from WCuO mixture. Mater Sci Eng A 2010;527:6098101.

    [8] Amirjan M, Parvin N, Zangeneh-Madar K. Mutual dependency of mechan-ical properties and contiguity in WCu composites. Mater Sci Eng A2010;527:69229.

    [9] Li Z, Jia C, He Y, Chen L. Kinetic characteristicsof liquidphase sintering of mechanicallyactivated W15wt%Cu powder. J Univ Sci Technol Beijing 2006;13:33845.

    [10] Kim JC, Moon IH. Sintering of nanostructured WCu alloys prepared by mechanicalalloying. Nanostruct Mater 1988;10:28390.

    [11] Maneshian MH, Simchi A. Solid state and liquid phase sintering of mechanically ]ac-tivated W20 wt.% Cu powder mixture. J Alloys Compd 2008;463:1539.

    Fig. 9. Coefcientof thermal expansion of the sintered compacts at different temperature.

    Table 2

    Comparison of the processing conditions and properties of the composite from the present study to the prior research studies.

    Composition Processing conditions Properties of nal products

    Sintering temperature

    (C)

    Sintering time

    (min)

    Atmosphere Relative density

    (%)

    Hardness Thermal conductivity

    (Wm1 K1)

    Electrical conductivity

    (Ms/m)

    CTE

    (106 K1)

    Mo25Cu 1050 90 H2 96 214HV 147 22.4 8.5

    Mo30Cu[17] 1350 60 H2 90.12 68HRB 143.3 24.7 9.3

    Mo30Cu[18] 1250 90 H2 92 52.8HRB 164.36 22.27

    Mo18Cu1.5Ni[19] 1250 120 H2 99.2 72.5HRA 139 7.4

    244 D. Wang et al. / Int. Journal of Refractory Metals and Hard Materials 42 (2014) 240245

    http://refhub.elsevier.com/S0263-4368(13)00201-1/rf0005http://refhub.elsevier.com/S0263-4368(13)00201-1/rf0005http://refhub.elsevier.com/S0263-4368(13)00201-1/rf0005http://refhub.elsevier.com/S0263-4368(13)00201-1/rf0005http://refhub.elsevier.com/S0263-4368(13)00201-1/rf0005http://refhub.elsevier.com/S0263-4368(13)00201-1/rf0005http://refhub.elsevier.com/S0263-4368(13)00201-1/rf0005http://refhub.elsevier.com/S0263-4368(13)00201-1/rf0010http://refhub.elsevier.com/S0263-4368(13)00201-1/rf0010http://refhub.elsevier.com/S0263-4368(13)00201-1/rf0010http://refhub.elsevier.com/S0263-4368(13)00201-1/rf0010http://refhub.elsevier.com/S0263-4368(13)00201-1/rf0010http://refhub.elsevier.com/S0263-4368(13)00201-1/rf0010http://refhub.elsevier.com/S0263-4368(13)00201-1/rf0010http://refhub.elsevier.com/S0263-4368(13)00201-1/rf0015http://refhub.elsevier.com/S0263-4368(13)00201-1/rf0015http://refhub.elsevier.com/S0263-4368(13)00201-1/rf0015http://refhub.elsevier.com/S0263-4368(13)00201-1/rf0015http://refhub.elsevier.com/S0263-4368(13)00201-1/rf0015http://refhub.elsevier.com/S0263-4368(13)00201-1/rf0015http://refhub.elsevier.com/S0263-4368(13)00201-1/rf0015http://refhub.elsevier.com/S0263-4368(13)00201-1/rf0015http://refhub.elsevier.com/S0263-4368(13)00201-1/rf0015http://refhub.elsevier.com/S0263-4368(13)00201-1/rf0020http://refhub.elsevier.com/S0263-4368(13)00201-1/rf0020http://refhub.elsevier.com/S0263-4368(13)00201-1/rf0020http://refhub.elsevier.com/S0263-4368(13)00201-1/rf0020http://refhub.elsevier.com/S0263-4368(13)00201-1/rf0020http://refhub.elsevier.com/S0263-4368(13)00201-1/rf0020http://refhub.elsevier.com/S0263-4368(13)00201-1/rf0020http://refhub.elsevier.com/S0263-4368(13)00201-1/rf0025http://refhub.elsevier.com/S0263-4368(13)00201-1/rf0025http://refhub.elsevier.com/S0263-4368(13)00201-1/rf0025http://refhub.elsevier.com/S0263-4368(13)00201-1/rf0025http://refhub.elsevier.com/S0263-4368(13)00201-1/rf0025http://refhub.elsevier.com/S0263-4368(13)00201-1/rf0025http://refhub.elsevier.com/S0263-4368(13)00201-1/rf0025http://refhub.elsevier.com/S0263-4368(13)00201-1/rf0030http://refhub.elsevier.com/S0263-4368(13)00201-1/rf0030http://refhub.elsevier.com/S0263-4368(13)00201-1/rf0030http://refhub.elsevier.com/S0263-4368(13)00201-1/rf0030http://refhub.elsevier.com/S0263-4368(13)00201-1/rf0030http://refhub.elsevier.com/S0263-4368(13)00201-1/rf0030http://refhub.elsevier.com/S0263-4368(13)00201-1/rf0030http://refhub.elsevier.com/S0263-4368(13)00201-1/rf0035http://refhub.elsevier.com/S0263-4368(13)00201-1/rf0035http://refhub.elsevier.com/S0263-4368(13)00201-1/rf0035http://refhub.elsevier.com/S0263-4368(13)00201-1/rf0035http://refhub.elsevier.com/S0263-4368(13)00201-1/rf0035http://refhub.elsevier.com/S0263-4368(13)00201-1/rf0035http://refhub.elsevier.com/S0263-4368(13)00201-1/rf0035http://refhub.elsevier.com/S0263-4368(13)00201-1/rf0035http://refhub.elsevier.com/S0263-4368(13)00201-1/rf0040http://refhub.elsevier.com/S0263-4368(13)00201-1/rf0040http://refhub.elsevier.com/S0263-4368(13)00201-1/rf0040http://refhub.elsevier.com/S0263-4368(13)00201-1/rf0040http://refhub.elsevier.com/S0263-4368(13)00201-1/rf0040http://refhub.elsevier.com/S0263-4368(13)00201-1/rf0040http://refhub.elsevier.com/S0263-4368(13)00201-1/rf0040http://refhub.elsevier.com/S0263-4368(13)00201-1/rf0045http://refhub.elsevier.com/S0263-4368(13)00201-1/rf0045http://refhub.elsevier.com/S0263-4368(13)00201-1/rf0045http://refhub.elsevier.com/S0263-4368(13)00201-1/rf0045http://refhub.elsevier.com/S0263-4368(13)00201-1/rf0045http://refhub.elsevier.com/S0263-4368(13)00201-1/rf0045http://refhub.elsevier.com/S0263-4368(13)00201-1/rf0050http://refhub.elsevier.com/S0263-4368(13)00201-1/rf0050http://refhub.elsevier.com/S0263-4368(13)00201-1/rf0050http://refhub.elsevier.com/S0263-4368(13)00201-1/rf0050http://refhub.elsevier.com/S0263-4368(13)00201-1/rf0050http://refhub.elsevier.com/S0263-4368(13)00201-1/rf0050http://refhub.elsevier.com/S0263-4368(13)00201-1/rf0055http://refhub.elsevier.com/S0263-4368(13)00201-1/rf0055http://refhub.elsevier.com/S0263-4368(13)00201-1/rf0055http://refhub.elsevier.com/S0263-4368(13)00201-1/rf0055http://refhub.elsevier.com/S0263-4368(13)00201-1/rf0055http://refhub.elsevier.com/S0263-4368(13)00201-1/rf0055http://localhost/var/www/apps/conversion/tmp/scratch_7/image%20of%20Fig.%E0%B9%80http://refhub.elsevier.com/S0263-4368(13)00201-1/rf0055http://refhub.elsevier.com/S0263-4368(13)00201-1/rf0055http://refhub.elsevier.com/S0263-4368(13)00201-1/rf0050http://refhub.elsevier.com/S0263-4368(13)00201-1/rf0050http://refhub.elsevier.com/S0263-4368(13)00201-1/rf0045http://refhub.elsevier.com/S0263-4368(13)00201-1/rf0045http://refhub.elsevier.com/S0263-4368(13)00201-1/rf0040http://refhub.elsevier.com/S0263-4368(13)00201-1/rf0040http://refhub.elsevier.com/S0263-4368(13)00201-1/rf0040http://refhub.elsevier.com/S0263-4368(13)00201-1/rf0035http://refhub.elsevier.com/S0263-4368(13)00201-1/rf0035http://refhub.elsevier.com/S0263-4368(13)00201-1/rf0030http://refhub.elsevier.com/S0263-4368(13)00201-1/rf0030http://refhub.elsevier.com/S0263-4368(13)00201-1/rf0030http://refhub.elsevier.com/S0263-4368(13)00201-1/rf0025http://refhub.elsevier.com/S0263-4368(13)00201-1/rf0025http://refhub.elsevier.com/S0263-4368(13)00201-1/rf0025http://refhub.elsevier.com/S0263-4368(13)00201-1/rf0020http://refhub.elsevier.com/S0263-4368(13)00201-1/rf0020http://refhub.elsevier.com/S0263-4368(13)00201-1/rf0020http://refhub.elsevier.com/S0263-4368(13)00201-1/rf0015http://refhub.elsevier.com/S0263-4368(13)00201-1/rf0015http://refhub.elsevier.com/S0263-4368(13)00201-1/rf0015http://refhub.elsevier.com/S0263-4368(13)00201-1/rf0010http://refhub.elsevier.com/S0263-4368(13)00201-1/rf0010http://refhub.elsevier.com/S0263-4368(13)00201-1/rf0010http://refhub.elsevier.com/S0263-4368(13)00201-1/rf0005http://refhub.elsevier.com/S0263-4368(13)00201-1/rf0005
  • 8/13/2019 Sintering Behavior of Ultra Fine MoCu Composite Powders 1-s2.0-S0263436813002011-Main (1)

    6/6

    [12] Sun A, Wang D, Wu Z, Zan X. Synthesis of ultra- ne MoCu nanocomposites bycoreduction of mechanical-activated CuMoO4MoO3 mixtures at low temperature.

    J Alloys Compd 2010;505:58891.[13] Ardestani M, Rezaie HR, Arabi H, Razavizadeh H. The effect of sintering temperature

    on densication of nanoscale dispersed W2040%wt Cu composite powders. Int JRefract Met Hard Mater 2009;27:8627.

    [14] Kim DG, Kim GS, OhST,Kim YD. The initialstageof sintering for WCu nanocompos-ite powder prepared from WCuO mixture. Mater Lett 2004;58:57881.

    [15] Li Y, Qu X, Zheng Z, Lei C, Zou Z, Yu S. Properties of WCu composite powderproduced by a thermo-mechanical method. Int J Refract Met Hard Mater2003;21:25964.

    [16] Kim DG, Lee BH, Oh ST, Kim YD, Kang SG. Mechanochemical process for W15wt.%Cu nanocomposite powders with WO3-CuO powder mixture and its sinteringcharacteristics. Mater Sci Eng A 2005;395:3337.

    [17] Zou A, Hua X, Zhou X, Zhang J. Effect of Co on the properties of the MoCu alloys.Spec cast Nonferr Alloys 2009;29:6824 (in Chinese).

    [18] Zhou X, Zou A, Hua X, Zhang J, Rao Y. Sintering characteristics of mechanicallyalloyed MoCu powder. Met Sci Heat Treat 2009;30:248 (in Chinese).

    [19] GuoS, Kang Q, CaiC, Qu X.Mechanicalpropertiesand expansioncoefcientof MoCucomposites with different Ni contents. Rare Met 2012;31:36871.

    [20] Jia C, He Z, Su X, YangZ, Zhao J, Xie Z. Microstructures of sintered MoCu alloys withmechanically activated powder. Rare Met 2001;20:1123.

    245D. Wang et al. / Int. Journal of Refractory Metals and Hard Materials 42 (2014) 240245

    http://refhub.elsevier.com/S0263-4368(13)00201-1/rf0060http://refhub.elsevier.com/S0263-4368(13)00201-1/rf0060http://refhub.elsevier.com/S0263-4368(13)00201-1/rf0060http://refhub.elsevier.com/S0263-4368(13)00201-1/rf0060http://refhub.elsevier.com/S0263-4368(13)00201-1/rf0060http://refhub.elsevier.com/S0263-4368(13)00201-1/rf0060http://refhub.elsevier.com/S0263-4368(13)00201-1/rf0060http://refhub.elsevier.com/S0263-4368(13)00201-1/rf0060http://refhub.elsevier.com/S0263-4368(13)00201-1/rf0060http://refhub.elsevier.com/S0263-4368(13)00201-1/rf0060http://refhub.elsevier.com/S0263-4368(13)00201-1/rf0060http://refhub.elsevier.com/S0263-4368(13)00201-1/rf0060http://refhub.elsevier.com/S0263-4368(13)00201-1/rf0060http://refhub.elsevier.com/S0263-4368(13)00201-1/rf0060http://refhub.elsevier.com/S0263-4368(13)00201-1/rf0065http://refhub.elsevier.com/S0263-4368(13)00201-1/rf0065http://refhub.elsevier.com/S0263-4368(13)00201-1/rf0065http://refhub.elsevier.com/S0263-4368(13)00201-1/rf0065http://refhub.elsevier.com/S0263-4368(13)00201-1/rf0065http://refhub.elsevier.com/S0263-4368(13)00201-1/rf0065http://refhub.elsevier.com/S0263-4368(13)00201-1/rf0065http://refhub.elsevier.com/S0263-4368(13)00201-1/rf0065http://refhub.elsevier.com/S0263-4368(13)00201-1/rf0065http://refhub.elsevier.com/S0263-4368(13)00201-1/rf0065http://refhub.elsevier.com/S0263-4368(13)00201-1/rf0065http://refhub.elsevier.com/S0263-4368(13)00201-1/rf0070http://refhub.elsevier.com/S0263-4368(13)00201-1/rf0070http://refhub.elsevier.com/S0263-4368(13)00201-1/rf0070http://refhub.elsevier.com/S0263-4368(13)00201-1/rf0070http://refhub.elsevier.com/S0263-4368(13)00201-1/rf0070http://refhub.elsevier.com/S0263-4368(13)00201-1/rf0070http://refhub.elsevier.com/S0263-4368(13)00201-1/rf0070http://refhub.elsevier.com/S0263-4368(13)00201-1/rf0070http://refhub.elsevier.com/S0263-4368(13)00201-1/rf0075http://refhub.elsevier.com/S0263-4368(13)00201-1/rf0075http://refhub.elsevier.com/S0263-4368(13)00201-1/rf0075http://refhub.elsevier.com/S0263-4368(13)00201-1/rf0075http://refhub.elsevier.com/S0263-4368(13)00201-1/rf0075http://refhub.elsevier.com/S0263-4368(13)00201-1/rf0075http://refhub.elsevier.com/S0263-4368(13)00201-1/rf0075http://refhub.elsevier.com/S0263-4368(13)00201-1/rf0080http://refhub.elsevier.com/S0263-4368(13)00201-1/rf0080http://refhub.elsevier.com/S0263-4368(13)00201-1/rf0080http://refhub.elsevier.com/S0263-4368(13)00201-1/rf0080http://refhub.elsevier.com/S0263-4368(13)00201-1/rf0080http://refhub.elsevier.com/S0263-4368(13)00201-1/rf0080http://refhub.elsevier.com/S0263-4368(13)00201-1/rf0080http://refhub.elsevier.com/S0263-4368(13)00201-1/rf0080http://refhub.elsevier.com/S0263-4368(13)00201-1/rf0080http://refhub.elsevier.com/S0263-4368(13)00201-1/rf0085http://refhub.elsevier.com/S0263-4368(13)00201-1/rf0085http://refhub.elsevier.com/S0263-4368(13)00201-1/rf0085http://refhub.elsevier.com/S0263-4368(13)00201-1/rf0085http://refhub.elsevier.com/S0263-4368(13)00201-1/rf0085http://refhub.elsevier.com/S0263-4368(13)00201-1/rf0085http://refhub.elsevier.com/S0263-4368(13)00201-1/rf0090http://refhub.elsevier.com/S0263-4368(13)00201-1/rf0090http://refhub.elsevier.com/S0263-4368(13)00201-1/rf0090http://refhub.elsevier.com/S0263-4368(13)00201-1/rf0090http://refhub.elsevier.com/S0263-4368(13)00201-1/rf0090http://refhub.elsevier.com/S0263-4368(13)00201-1/rf0090http://refhub.elsevier.com/S0263-4368(13)00201-1/rf0095http://refhub.elsevier.com/S0263-4368(13)00201-1/rf0095http://refhub.elsevier.com/S0263-4368(13)00201-1/rf0095http://refhub.elsevier.com/S0263-4368(13)00201-1/rf0095http://refhub.elsevier.com/S0263-4368(13)00201-1/rf0095http://refhub.elsevier.com/S0263-4368(13)00201-1/rf0095http://refhub.elsevier.com/S0263-4368(13)00201-1/rf0095http://refhub.elsevier.com/S0263-4368(13)00201-1/rf0095http://refhub.elsevier.com/S0263-4368(13)00201-1/rf0100http://refhub.elsevier.com/S0263-4368(13)00201-1/rf0100http://refhub.elsevier.com/S0263-4368(13)00201-1/rf0100http://refhub.elsevier.com/S0263-4368(13)00201-1/rf0100http://refhub.elsevier.com/S0263-4368(13)00201-1/rf0100http://refhub.elsevier.com/S0263-4368(13)00201-1/rf0100http://refhub.elsevier.com/S0263-4368(13)00201-1/rf0100http://refhub.elsevier.com/S0263-4368(13)00201-1/rf0100http://refhub.elsevier.com/S0263-4368(13)00201-1/rf0095http://refhub.elsevier.com/S0263-4368(13)00201-1/rf0095http://refhub.elsevier.com/S0263-4368(13)00201-1/rf0090http://refhub.elsevier.com/S0263-4368(13)00201-1/rf0090http://refhub.elsevier.com/S0263-4368(13)00201-1/rf0085http://refhub.elsevier.com/S0263-4368(13)00201-1/rf0085http://refhub.elsevier.com/S0263-4368(13)00201-1/rf0080http://refhub.elsevier.com/S0263-4368(13)00201-1/rf0080http://refhub.elsevier.com/S0263-4368(13)00201-1/rf0080http://refhub.elsevier.com/S0263-4368(13)00201-1/rf0080http://refhub.elsevier.com/S0263-4368(13)00201-1/rf0075http://refhub.elsevier.com/S0263-4368(13)00201-1/rf0075http://refhub.elsevier.com/S0263-4368(13)00201-1/rf0075http://refhub.elsevier.com/S0263-4368(13)00201-1/rf0070http://refhub.elsevier.com/S0263-4368(13)00201-1/rf0070http://refhub.elsevier.com/S0263-4368(13)00201-1/rf0065http://refhub.elsevier.com/S0263-4368(13)00201-1/rf0065http://refhub.elsevier.com/S0263-4368(13)00201-1/rf0065http://refhub.elsevier.com/S0263-4368(13)00201-1/rf0060http://refhub.elsevier.com/S0263-4368(13)00201-1/rf0060http://refhub.elsevier.com/S0263-4368(13)00201-1/rf0060http://refhub.elsevier.com/S0263-4368(13)00201-1/rf0060http://refhub.elsevier.com/S0263-4368(13)00201-1/rf0060