74
SINTEF Petroleum Research The strength of fractured rock Erling Fjær SINTEF Petroleum Research 1

SINTEF Petroleum Research The strength of fractured rock Erling Fjær SINTEF Petroleum Research 1

Embed Size (px)

Citation preview

Page 1: SINTEF Petroleum Research The strength of fractured rock Erling Fjær SINTEF Petroleum Research 1

SINTEF Petroleum Research

The strength of fractured rock

Erling Fjær

SINTEF Petroleum Research

1

Page 2: SINTEF Petroleum Research The strength of fractured rock Erling Fjær SINTEF Petroleum Research 1

SINTEF Petroleum Research 2

Porosity, Density, Sonic, . . . .

Challenge: Estimation of rock strength from log data

Strength

Available Wanted

Traditional approach:

correlations

bPUCS a t

Page 3: SINTEF Petroleum Research The strength of fractured rock Erling Fjær SINTEF Petroleum Research 1

SINTEF Petroleum Research 3

Porosity, Density, Sonic, . . . .

Challenge: Estimation of rock strength from log data

Strength

Available WantedBrandås et al. (2012)

Page 4: SINTEF Petroleum Research The strength of fractured rock Erling Fjær SINTEF Petroleum Research 1

SINTEF Petroleum Research 4

Alternative approach:

1.Establish a constitutive model for static and dynamic moduli of rocks

2.Use the measured dynamic moduli (i.e. velocities) to calibrate the model

3.Use the calibrated model to simulate a test where strength can be measured

Page 5: SINTEF Petroleum Research The strength of fractured rock Erling Fjær SINTEF Petroleum Research 1

SINTEF Petroleum Research 5

0

20

40

60

80

100

120

140

160

0.005 0.010 0.015 0.020 0.025

Str

ess

(MP

a)

Peak stress

Axial

Radial

static moduli vs dynamic moduli

Rock mechanical testincluding acoustic measurementson a dry sandstone

static moduli dynamic moduli

The differences changes with stress and strain

Dry, weak sandstone

-5

0

5

10

15

20

0.005 0.010 0.015 0.020 0.025

Axial strain

You

ng's

mod

ulus

(G

Pa)

Dynamic

Static

Page 6: SINTEF Petroleum Research The strength of fractured rock Erling Fjær SINTEF Petroleum Research 1

SINTEF Petroleum Research 6

0

20

40

60

80

100

120

140

160

0.005 0.010 0.015 0.020 0.025

Str

ess

(MP

a)

Peak stress

Axial

Radial

static moduli vs dynamic moduli

Rock mechanical testincluding acoustic measurementson a dry sandstone

static moduli dynamic moduli

The differences changes with stress and strain

Dry, weak sandstone

-5

0

5

10

15

20

0.005 0.010 0.015 0.020 0.025

Axial strain

You

ng's

mod

ulus

(G

Pa)

Dynamic

Static

We are seeking mathematical relations between the static and the dynamic moduli

Page 7: SINTEF Petroleum Research The strength of fractured rock Erling Fjær SINTEF Petroleum Research 1

SINTEF Petroleum Research 7

We introduce a parameter P, defined as:

P is a measure of the inelastic part of the deformation caused by a compressive

hydrostatic stress increment.

Building relations

,

3v v eP

,v e

eK

v - total volumetric strain

Hydrostatic test

- elastic strain

Page 8: SINTEF Petroleum Research The strength of fractured rock Erling Fjær SINTEF Petroleum Research 1

SINTEF Petroleum Research 8

We introduce a parameter P, defined as:

P is a measure of the inelastic part of the deformation caused by a compressive

hydrostatic stress increment.

Building relations

,

3v v eP

,v e

eK

v - total volumetric strain

Hydrostatic test

- elastic strain

K = Static bulk modulusKe = Dynamic bulk modulusK

K

PKe

e

1 3

Page 9: SINTEF Petroleum Research The strength of fractured rock Erling Fjær SINTEF Petroleum Research 1

SINTEF Petroleum Research 9

Observations

0

5

10

15

20

25

0 5 10 15 20 25 30

Hydrastatic stress [MPa]

1/P

[G

Pa-1

]Hydrostatic test

Page 10: SINTEF Petroleum Research The strength of fractured rock Erling Fjær SINTEF Petroleum Research 1

SINTEF Petroleum Research 10

Observations

0

5

10

15

20

25

0 5 10 15 20 25 30

Hydrastatic stress [MPa]

1/P

[G

Pa-1

]Hydrostatic test

gPT

Page 11: SINTEF Petroleum Research The strength of fractured rock Erling Fjær SINTEF Petroleum Research 1

SINTEF Petroleum Research 11

We introduce a parameter F, defined as:

F is a measure of the inelastic part of the deformation caused by a shear stress

increment.

Building relations

, ,z z e z p

z

F

,z eeE

,z p z zP

z - total axial strain

Uniaxial loading test

- elastic strain

Page 12: SINTEF Petroleum Research The strength of fractured rock Erling Fjær SINTEF Petroleum Research 1

SINTEF Petroleum Research 12

We introduce a parameter F, defined as:

F is a measure of the inelastic part of the deformation caused by a shear stress

increment.

Building relations

, ,z z e z p

z

F

,z eeE

,z p z zP

z - total axial strain

Uniaxial loading test

- elastic strain

E = Static Young’s modulusEe = Dynamic Young’s modulus 1

1e

z e

EE F

P E

Page 13: SINTEF Petroleum Research The strength of fractured rock Erling Fjær SINTEF Petroleum Research 1

SINTEF Petroleum Research 13

Observations

0.00

0.01

0.02

0.03

0.04

0.000 0.005 0.010 0.015

Shear strain

F*

* z rF F S

Uniaxial loading test

Page 14: SINTEF Petroleum Research The strength of fractured rock Erling Fjær SINTEF Petroleum Research 1

SINTEF Petroleum Research 14

Observations

0.00

0.01

0.02

0.03

0.04

0.000 0.005 0.010 0.015

Shear strain

F*

* z rF F S

z r o

z r

F AS

Uniaxial loading test

Page 15: SINTEF Petroleum Research The strength of fractured rock Erling Fjær SINTEF Petroleum Research 1

SINTEF Petroleum Research 15

Discussion: the F - parameter

Since E (1 - F)

when F =1 then E = 0

peak stress

11

e

z e

EE F

P E

0

20

40

60

80

100

120

140

160

0.005 0.010 0.015 0.020 0.025

Str

ess

(MP

a)

Peak stress

Axial

Radial

Note:

F = 1 rock strength

Page 16: SINTEF Petroleum Research The strength of fractured rock Erling Fjær SINTEF Petroleum Research 1

SINTEF Petroleum Research 16

Griffith’s failure criterion:

If we can assume that: (1 - 3) (1 - 3)

then we could state that

F = 1 Fulfilment of the Griffith criterion

Our model:

2

1 3

1 3

18 oT

2

1 32 2

1 3

oA FS

Discussion: the F - parameter

Page 17: SINTEF Petroleum Research The strength of fractured rock Erling Fjær SINTEF Petroleum Research 1

SINTEF Petroleum Research 17

(1 - 3) (1 - 3) ?

OK for a purely elastic material

Also OK at the intact parts of the material even after local failure has occurred elsewhere

Local (1 - 3) Global (1 - 3) !

Discussion: the F - parameter

Page 18: SINTEF Petroleum Research The strength of fractured rock Erling Fjær SINTEF Petroleum Research 1

SINTEF Petroleum Research 18

0.00

0.10

0.20

0.30

0.40

0.000 0.005 0.010 0.015 0.020 0.025

Shear strain

F*

Peak stress

The development of F can be seen as a gradual fulfillment of the Griffith criterion

May be associated with local failure at various places in the rock,

triggered at different stress levels due to variable local strength

Discussion: the F - parameter

Page 19: SINTEF Petroleum Research The strength of fractured rock Erling Fjær SINTEF Petroleum Research 1

SINTEF Petroleum Research 19

We have a set of equations……

These represent a constitutive model for the rock

We may use it to predict rock behavior, and thereby derive mechanical properties for the rock

gPT

11

e

z e

EE F

P E

KK

PKe

e

1 3

z r o

z r

F AS

Page 20: SINTEF Petroleum Research The strength of fractured rock Erling Fjær SINTEF Petroleum Research 1

SINTEF Petroleum Research 20

Porosity, Density, Sonic, . . . .

Constitutive model

Application for logging purposes

Simulates rock mechanical test on fictitious core

0

2

4

6

8

10

12

-5 0 5 10 15

Strain (mStrain)

Str

ess

(MP

a)

Strength

Page 21: SINTEF Petroleum Research The strength of fractured rock Erling Fjær SINTEF Petroleum Research 1

SINTEF Petroleum Research 21

0

50

100

150

200

0 25 50 75 100 125

Strength (MPa) @ 2MPa

Dep

th (m

- fr

om

a r

efer

ence

po

int)

Courtesy of Statoil

Prediction from logs

Core measurements

… an example:

Page 22: SINTEF Petroleum Research The strength of fractured rock Erling Fjær SINTEF Petroleum Research 1

SINTEF Petroleum Research 22

In the lab

2 = 3

1 2 3

in general

In the field

Challenge: What is the impact of the intermediate principal stress on rock strength?

Page 23: SINTEF Petroleum Research The strength of fractured rock Erling Fjær SINTEF Petroleum Research 1

SINTEF Petroleum Research

Most convenient description:

-plane cross sections(planes normal to the

hydrostatic axis)

-plane Hydrostatic axis

Projections of the principal axes

Cross section of the failure surface

Page 24: SINTEF Petroleum Research The strength of fractured rock Erling Fjær SINTEF Petroleum Research 1

SINTEF Petroleum Research 24

Failure criteria (-plane):

Assumption: Rotational symmetry in -plane (No physical argument)

No impact of the intermediate stress

Empirical

Page 25: SINTEF Petroleum Research The strength of fractured rock Erling Fjær SINTEF Petroleum Research 1

SINTEF Petroleum Research 25

Basic theory on shear failure:

Shear failure occurs when the shear stress over some plane within the rock exceeds the shear strength of the rock

123

The intermediate principal stress (2) has no impact

Stress symmetry is not important

Page 26: SINTEF Petroleum Research The strength of fractured rock Erling Fjær SINTEF Petroleum Research 1

SINTEF Petroleum Research 26

Experimental observations:

0

50

100

150

200

250

300

350

0 50 100 150 200 250 300 350

Intermediate principal stress 2 [MPa]

La

rge

st

pri

nc

ipa

l s

tre

ss

1 [

MP

a]

2 = 1

2 = 3

No impact of intermediate stress

Page 27: SINTEF Petroleum Research The strength of fractured rock Erling Fjær SINTEF Petroleum Research 1

SINTEF Petroleum Research 27

Experimental observations:

0

50

100

150

200

250

300

350

0 50 100 150 200 250 300 350

Intermediate principal stress 2 [MPa]

La

rge

st

pri

nc

ipa

l s

tre

ss

1 [

MP

a]

2 = 1

2 = 3

Takahashi & Koide (1989)

Page 28: SINTEF Petroleum Research The strength of fractured rock Erling Fjær SINTEF Petroleum Research 1

SINTEF Petroleum Research 28

Numerical simulations:

0

0.5

1

1.5

2

2.5

3

0 0.5 1 1.5 2 2.5 3

Intermediate principal stress 2 [MPa]

La

rge

st

pri

nc

ipa

l s

tre

ss

1 [

MP

a]

2 = 1

2 = 3

Fjær & Ruistuen (2002)

Page 29: SINTEF Petroleum Research The strength of fractured rock Erling Fjær SINTEF Petroleum Research 1

SINTEF Petroleum Research 29

Experimental observations:

0

50

100

150

200

250

300

350

0 50 100 150 200 250 300 350

Intermediate principal stress 2 [MPa]

La

rge

st

pri

nc

ipa

l s

tre

ss

1 [

MP

a] 2 = 1

2 = 3

-plane

Mohr-Coulomb

Drucker-Prager

Page 30: SINTEF Petroleum Research The strength of fractured rock Erling Fjær SINTEF Petroleum Research 1

SINTEF Petroleum Research 30

Question:

0

0.5

1

1.5

2

2.5

3

0 0.5 1 1.5 2 2.5 3

Intermediate principal stress 2 [MPa]

La

rge

st

pri

nc

ipa

l s

tre

ss

1 [

MP

a]

2 = 1

2 = 3

What is similar when

2 = 3

and

2 = 1

but different when

1 > 2 > 3

?

It’s the stress symmetry!

Tetragonal

Tetragonal

Orthorhombic

Page 31: SINTEF Petroleum Research The strength of fractured rock Erling Fjær SINTEF Petroleum Research 1

SINTEF Petroleum Research 31

How can stress symmetry affect the strength?

- It’s because it affects the probability for failure!

123

Page 32: SINTEF Petroleum Research The strength of fractured rock Erling Fjær SINTEF Petroleum Research 1

SINTEF Petroleum Research 32

Classical picture

123

Probability for failure

0

1

m

Page 33: SINTEF Petroleum Research The strength of fractured rock Erling Fjær SINTEF Petroleum Research 1

SINTEF Petroleum Research 33

Classical picture

123

Probability for failure

0

1

m

Page 34: SINTEF Petroleum Research The strength of fractured rock Erling Fjær SINTEF Petroleum Research 1

SINTEF Petroleum Research 34

Classical picture

123

Probability for failure

0

1

m

Page 35: SINTEF Petroleum Research The strength of fractured rock Erling Fjær SINTEF Petroleum Research 1

SINTEF Petroleum Research 35

Classical picture

123

Probability for failure

0

1

m

Page 36: SINTEF Petroleum Research The strength of fractured rock Erling Fjær SINTEF Petroleum Research 1

SINTEF Petroleum Research 36

Classical picture

123

Probability for failure

0

1

m

Page 37: SINTEF Petroleum Research The strength of fractured rock Erling Fjær SINTEF Petroleum Research 1

SINTEF Petroleum Research 37

Classical picture

123

Probability for failure

0

1

m

Page 38: SINTEF Petroleum Research The strength of fractured rock Erling Fjær SINTEF Petroleum Research 1

SINTEF Petroleum Research 38

Classical picture

123

Probability for failure

0

1

m

Page 39: SINTEF Petroleum Research The strength of fractured rock Erling Fjær SINTEF Petroleum Research 1

SINTEF Petroleum Research 39

Classical picture

Probability for failure

0

1

Classical picture:

Failure occurs if the shear stress

across any plane in the rock sample

exceeds So + – otherwise not.

Introducing fluctuations:The shear strength varies

from plane to plane.

The rock fails when exceeds the shear strength for one of them.

The probability for failure

increases when So +

So +

Page 40: SINTEF Petroleum Research The strength of fractured rock Erling Fjær SINTEF Petroleum Research 1

SINTEF Petroleum Research 40

Classical picture

12

3

All planes oriented at an angle relative to the 1 axis

2

Many potential failure planes in a critical state

High probability for failure

Page 41: SINTEF Petroleum Research The strength of fractured rock Erling Fjær SINTEF Petroleum Research 1

SINTEF Petroleum Research 41

Classical picture

123

Only planes oriented at an angle relative to the 1 axis,

and parallel to the 2 axis

2

Few potential failure planes in a critical state

Low probability for failure

Page 42: SINTEF Petroleum Research The strength of fractured rock Erling Fjær SINTEF Petroleum Research 1

SINTEF Petroleum Research 42

Classical picture

3 2

1

All planes oriented at an angle /2 -

relative to the 3 axis

2

Many potential failure planes in a critical state

High probability for failure

Page 43: SINTEF Petroleum Research The strength of fractured rock Erling Fjær SINTEF Petroleum Research 1

SINTEF Petroleum Research 43

Mathematical model

Probability for failure of a plane with orientation specified by (,):

(n classical Mohr-Coulomb)

,n

f nno

pS

Overall probability for failure:

failureall ,

1 1 ,N

TfP p

Expected strength of the material:failure

exp 1 11

dP

Page 44: SINTEF Petroleum Research The strength of fractured rock Erling Fjær SINTEF Petroleum Research 1

SINTEF Petroleum Research 44

Mathematical model

Probability for failure of a plane with orientation specified by (,):

(n classical Mohr-Coulomb)

,n

f nno

pS

Overall probability for failure:

failureall ,

1 1 ,N

TfP p

Expected strength of the material:

failureexp 1 1

1

dP

0

0.005

0.01

0.015

0.75 1 1.25 1.5

1/ M-C

Pro

bab

ility

dis

trib

uti

on

f

(1,

1+

1)

2 =

2 = 1

2 = 0.5( 1 + 3)

Page 45: SINTEF Petroleum Research The strength of fractured rock Erling Fjær SINTEF Petroleum Research 1

SINTEF Petroleum Research 45

Mathematical model

failure1 1 1 1

1

,Pf

0

0.005

0.01

0.015

0.75 1 1.25 1.5

1/ M-C

Pro

bab

ility

dis

trib

uti

on

f

(1,

1+

1)

2 =

2 = 1

2 = 0.5( 1 + 3)

Page 46: SINTEF Petroleum Research The strength of fractured rock Erling Fjær SINTEF Petroleum Research 1

SINTEF Petroleum Research 46

Mathematical model

0

2

4

6

8

0 2 4 6 8

2

exp

2 = 1

2 = 3

n = 30n = 175n = 1000Mohr-Coulomb

The impact of the intermediate principal stress is directly linked to the non-sharpness of

the failure criterion(represented by 1/n)

i.e. to the rock heterogeneity

Page 47: SINTEF Petroleum Research The strength of fractured rock Erling Fjær SINTEF Petroleum Research 1

SINTEF Petroleum Research 47

Comparing model and observations

0

50

100

150

200

250

300

350

0 50 100 150 200 250 300 350

Intermediate principal stress 2 [MPa]

La

rge

st

pri

nc

ipa

l s

tre

ss

1 [

MP

a]

2 = 1

Takahashi and Koide, 1989

n = 30

Page 48: SINTEF Petroleum Research The strength of fractured rock Erling Fjær SINTEF Petroleum Research 1

SINTEF Petroleum Research 48

Comparing model and observations

Numerical model

n = 25

0

0.5

1

1.5

2

2.5

3

0 0.5 1 1.5 2 2.5 3

Intermediate principal stress 2 [MPa]

La

rge

st

pri

nc

ipa

l s

tre

ss

1 [

MP

a]

2 = 1

Page 49: SINTEF Petroleum Research The strength of fractured rock Erling Fjær SINTEF Petroleum Research 1

SINTEF Petroleum Research

Outcrop from a Marcellus shale

formation

Han, 2011

Fractures are planes with

largely reduced or no strength

Page 50: SINTEF Petroleum Research The strength of fractured rock Erling Fjær SINTEF Petroleum Research 1

SINTEF Petroleum Research

Borehole breakouts in a non-fractured rock

Page 51: SINTEF Petroleum Research The strength of fractured rock Erling Fjær SINTEF Petroleum Research 1

SINTEF Petroleum Research

Shear failure planes

Borehole breakouts in a non-fractured rock

Page 52: SINTEF Petroleum Research The strength of fractured rock Erling Fjær SINTEF Petroleum Research 1

SINTEF Petroleum Research

Borehole breakouts in a non-fractured rock

Shear failure planes

Page 53: SINTEF Petroleum Research The strength of fractured rock Erling Fjær SINTEF Petroleum Research 1

SINTEF Petroleum Research 53

Simple example

1500

1505

1510

1515

1520

1525

1530

1 1.2 1.4 1.6 1.8Mudweight [sg]

No fractures

Page 54: SINTEF Petroleum Research The strength of fractured rock Erling Fjær SINTEF Petroleum Research 1

SINTEF Petroleum Research 54

Simple example

1500

1505

1510

1515

1520

1525

1530

1 1.2 1.4 1.6 1.8Mudweight [sg]

No fractures

Sealed fractures|| borehole

Page 55: SINTEF Petroleum Research The strength of fractured rock Erling Fjær SINTEF Petroleum Research 1

SINTEF Petroleum Research 55

Simple example

1500

1505

1510

1515

1520

1525

1530

1 1.2 1.4 1.6 1.8Mudweight [sg]

No fractures

Sealed fractures|| borehole

Open fractures|| borehole

Page 56: SINTEF Petroleum Research The strength of fractured rock Erling Fjær SINTEF Petroleum Research 1

SINTEF Petroleum Research

Several fracture sets complicates the situation.Blocks may become detached at washed away by the circulating mud.More fractures will be exposed to the drilling fluid.

Page 57: SINTEF Petroleum Research The strength of fractured rock Erling Fjær SINTEF Petroleum Research 1

SINTEF Petroleum Research

Other possible failure modes – bedding plane splitting

Page 58: SINTEF Petroleum Research The strength of fractured rock Erling Fjær SINTEF Petroleum Research 1

SINTEF Petroleum Research

Other possible failure modes – bedding plane splitting

Page 59: SINTEF Petroleum Research The strength of fractured rock Erling Fjær SINTEF Petroleum Research 1

SINTEF Petroleum Research

Other possible failure modes – bedding plane splitting

Page 60: SINTEF Petroleum Research The strength of fractured rock Erling Fjær SINTEF Petroleum Research 1

SINTEF Petroleum Research

Other possible failure modes – bedding plane splitting

Page 61: SINTEF Petroleum Research The strength of fractured rock Erling Fjær SINTEF Petroleum Research 1

SINTEF Petroleum Research

Other possible failure modes – bedding plane splitting

Page 62: SINTEF Petroleum Research The strength of fractured rock Erling Fjær SINTEF Petroleum Research 1

SINTEF Petroleum Research

Other possible failure modes – bedding plane splitting

Page 63: SINTEF Petroleum Research The strength of fractured rock Erling Fjær SINTEF Petroleum Research 1

SINTEF Petroleum Research

Other possible failure modes – bedding plane splitting

Page 64: SINTEF Petroleum Research The strength of fractured rock Erling Fjær SINTEF Petroleum Research 1

SINTEF Petroleum Research

Økland and Cook 1998

Page 65: SINTEF Petroleum Research The strength of fractured rock Erling Fjær SINTEF Petroleum Research 1

SINTEF Petroleum Research

Økland and Cook 1998

To avoid the problem:

The “angle of attack” between the well and the bedding plane should be at least

20.

20

Well

Page 66: SINTEF Petroleum Research The strength of fractured rock Erling Fjær SINTEF Petroleum Research 1

SINTEF Petroleum Research 66

Challenge: What is the strength of a fractured rock (if we consider it as homogeneous)?

Available alternative:

Hoek-Brown

Purely empirical criterion

Hoek & Brown (1980)

Page 67: SINTEF Petroleum Research The strength of fractured rock Erling Fjær SINTEF Petroleum Research 1

SINTEF Petroleum Research 67

Geologocal Strength Index - GSI

Page 68: SINTEF Petroleum Research The strength of fractured rock Erling Fjær SINTEF Petroleum Research 1

SINTEF Petroleum Research 68

Rocks are heterogeneous –

treating them as homogeneous comes at a price…..

Page 69: SINTEF Petroleum Research The strength of fractured rock Erling Fjær SINTEF Petroleum Research 1

SINTEF Petroleum Research 69

Hoek & Brown (1980)

The strength of a homogeneous material is size invariant.

Rocks, on the other hand, -

Page 70: SINTEF Petroleum Research The strength of fractured rock Erling Fjær SINTEF Petroleum Research 1

SINTEF Petroleum Research 70

Current work: Relate the failure probability model to Hoek-Brown

Page 71: SINTEF Petroleum Research The strength of fractured rock Erling Fjær SINTEF Petroleum Research 1

SINTEF Petroleum Research 71

Data from Hoek; Kaiser (2008)

Challenge: Match with observations

0

10

20

30

40

50

60

0 5 10 15 20 1

3

Failure probability model

Page 72: SINTEF Petroleum Research The strength of fractured rock Erling Fjær SINTEF Petroleum Research 1

SINTEF Petroleum Research 72

Kaiser (2008)

Consideravble scatter in measured strength

Page 73: SINTEF Petroleum Research The strength of fractured rock Erling Fjær SINTEF Petroleum Research 1

SINTEF Petroleum Research 73

0

10

20

30

40

50

60

0 5 10 15 20 1

3

Failure probability model

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0 10 20 30 40 50

Prob

abili

ty d

istr

ibuti

on

1

Page 74: SINTEF Petroleum Research The strength of fractured rock Erling Fjær SINTEF Petroleum Research 1

SINTEF Petroleum Research 74

Conclusions:

Physics helps us to make better tools for rock mechanics applications

There is still room for more physics in rock mechanics