62
Simulation is the imitation of the operation of a real-world process or system over time. [1]  The act of simulating something first requires that a model be developed; this model represents the key characteristics or behaviors/ functions of the selected physical or abstract system or process. The model represents the system itself, whereas the simulation represents the operation of the system over time. Simulation is used in many contexts, such as simulation of technology for performance optimization, safety engineering, testing, training, education, and video games. Often, computer experiments are used to study  simulation models. Simulation is also used with scientific modelling of natural systems or human systems to gain insight into their functioning. [2]  Simulation can be used to show the eventual real effects of alternative conditions and courses of action. Simulation is also used when the real system cannot be engaged, because it may not be accessible, or it may be dangerous or unacceptable to engage, or it is being designed but not yet built, or it may simply not exist. [3] Key issues in simulation include acquisition of valid source information about the relevant selection of key characteristics and behaviours, the use of simplifying approximations and assumptions within the simulation, and fidelity and validity of the simulation outcomes. Contents [hide] 1 Classification and terminology 2 Computer simulation 2.1 Computer science 3 Simulation in education and training 4 Common user interaction systems for virtual simulations 4.1 Virtual simulation input hardware 4.2 Virtual simulation output hardware 5 Clinical healthcare simulators 5.1 Improving patient safety 5.2 History of simulation in healthcare 5.3 Type of models 6 Simulation in entertainment

SimulationsSystems-Wiki.pdf

Embed Size (px)

Citation preview

8/11/2019 SimulationsSystems-Wiki.pdf

http://slidepdf.com/reader/full/simulationssystems-wikipdf 1/62

Simulation is the imitation of the operation of a real-world process or system over time.[1] The

act of simulating something first requires that a model be developed; this model represents the

key characteristics or behaviors/functions of the selected physical or abstract system or

process. The model represents the system itself, whereas the simulation represents theoperation of the system over time.

Simulation is used in many contexts, such as simulation of technology for performance

optimization, safety engineering, testing, training, education, and video games. Often, computer

experiments are used to study simulation models. Simulation is also used with scientific

modelling of natural systems or human systems to gain insight into their functioning.[2]

Simulation can be used to show the eventual real effects of alternative conditions and courses of

action. Simulation is also used when the real system cannot be engaged, because it may not beaccessible, or it may be dangerous or unacceptable to engage, or it is being designed but not yet

built, or it may simply not exist. [3]

Key issues in simulation include acquisition of valid source information about the relevant

selection of key characteristics and behaviours, the use of simplifying approximations and

assumptions within the simulation, and fidelity and validity of the simulation outcomes.

Contents

[hide]

1 Classification and terminology

2 Computer simulation

2.1 Computer science

3 Simulation in education and training

4 Common user interaction systems for virtual simulations

4.1 Virtual simulation input hardware

4.2 Virtual simulation output hardware

5 Clinical healthcare simulators

5.1 Improving patient safety

5.2 History of simulation in healthcare

5.3 Type of models

6 Simulation in entertainment

8/11/2019 SimulationsSystems-Wiki.pdf

http://slidepdf.com/reader/full/simulationssystems-wikipdf 2/62

6.1 History

6.1.1 Early history (1940s and 1950s)

6.1.2 Modern simulation (1980s–present)

6.2 Examples of entertainment simulation

6.2.1 Computer and video games

6.2.2 Film

6.2.3 Theme park rides

7 Simulation and manufacturing

8 More examples of simulation

8.1 Automobiles

8.2 Biomechanics

8.3 City and urban

8.4 Classroom of the future

8.5 Communication satellites

8.6 Digital Lifecycle

8.7 Disaster preparedness

8.8 Economics

8.9 Engineering, technology, and processes

8.10 Equipment

8.11 Ergonomics

8.12 Finance

8.13 Flight

8.14 Marine

8.15 Military

8.16 Payment and securities settlement system

8.17 Project management

8.18 Robotics

8.19 Production

8.20 Sales process

8.21 Sports

8.22 Space shuttle countdown

8.23 Satellite navigation

8.24 Weather

8/11/2019 SimulationsSystems-Wiki.pdf

http://slidepdf.com/reader/full/simulationssystems-wikipdf 4/62

Visualization of a direct numerical simulation model.

Historically, simulations used in different fields developed largely independently, but 20th century

studies of systems theory and cybernetics combined with spreading use of computers across

all those fields have led to some unification and a more systematic view of the concept.

Physical simulation refers to simulation in which physical objects are substituted for the real

thing (some circles[4] use the term for computer simulations modelling selected laws of physics,

but this article doesn't). These physical objects are often chosen because they are smaller or

cheaper than the actual object or system.

Interactive simulation is a special kind of physical simulation, often referred to as a human in the

loop simulation, in which physical simulations include human operators, such as in a flight

simulator or a driving simulator .

Human in the loop simulations can include a computer simulation as a so-called synthetic

environment .[5]

Simulation in failure analysis refers to simulation in which we create environment/conditions to

identify the cause of equipment failure. This was the best and fastest method to identify the

failure cause.

Computer simulation[edit]

Main article: Computer simulation

A computer simulation (or "sim") is an attempt to model a real-life or hypothetical situation on a

computer so that it can be studied to see how the system works. By changing variables in the

8/11/2019 SimulationsSystems-Wiki.pdf

http://slidepdf.com/reader/full/simulationssystems-wikipdf 5/62

simulation, predictions may be made about the behaviour of the system. It is a tool to virtually

investigate the behaviour of the system under study.[1]

Computer simulation has become a useful part of modeling many natural systems in physics,

chemistry and biology,[6]

and human systems in economics and social science (the

computational sociology) as well as in engineeringto gain insight into the operation of those

systems. A good example of the usefulness of using computers to simulate can be found in the

field of network traffic simulation. In such simulations, the model behaviour will change each

simulation according to the set of initial parameters assumed for the environment.

Traditionally, the formal modeling of systems has been via a mathematical model, which

attempts to find analytical solutions enabling the prediction of the behaviour of the system from a

set of parameters and initial conditions. Computer simulation is often used as an adjunct to, orsubstitution for, modeling systems for which simple closed form analytic solutions are not

possible. There are many different types of computer simulation, the common feature they all

share is the attempt to generate a sample of representative scenarios for a model in which a

complete enumeration of all possible states would be prohibitive or impossible.

Several software packages exist for running computer-based simulation modeling (e.g. Monte

Carlo simulation, stochastic modeling, multimethod modeling) that makes all the modeling

almost effortless.

Modern usage of the term "computer simulation" may encompass virtually any computer-based

representation.

Computer science[edit]

In computer science, simulation has some specialized meanings: Alan Turing used the term

"simulation" to refer to what happens when a universal machine executes a state transition table

(in modern terminology, a computer runs a program) that describes the state transitions, inputs

and outputs of a subject discrete-state machine[citation needed ]. The computer simulates the

subject machine. Accordingly, in theoretical computer science the termsimulation is a relation

between state transition systems, useful in the study of operational semantics.

Less theoretically, an interesting application of computer simulation is to simulate computers

using computers. In computer architecture, a type of simulator, typically called an emulator , is

8/11/2019 SimulationsSystems-Wiki.pdf

http://slidepdf.com/reader/full/simulationssystems-wikipdf 6/62

often used to execute a program that has to run on some inconvenient type of computer (for

example, a newly designed computer that has not yet been built or an obsolete computer that is

no longer available), or in a tightly controlled testing environment (see Computer architecture

simulator and Platform virtualization). For example, simulators have been used to debug a

microprogram or sometimes commercial application programs, before the program is

downloaded to the target machine. Since the operation of the computer is simulated, all of the

information about the computer's operation is directly available to the programmer, and the

speed and execution of the simulation can be varied at will.

Simulators may also be used to interpret fault trees, or test VLSI logic designs before they are

constructed. Symbolic simulation uses variables to stand for unknown values.

In the field of optimization, simulations of physical processes are often used in conjunction with

evolutionary computation to optimize control strategies.

Simulation in education and training[edit]

Main article: Adaptive educational hypermedia

Simulation is extensively used for educational purposes. It is frequently used by way of adaptive

hypermedia.

Simulation is often used in the training of civilian and military personnel.[7]

This usually occurs

when it is prohibitively expensive or simply too dangerous to allow trainees to use the real

equipment in the real world. In such situations they will spend time learning valuable lessons in a

"safe" virtual environment yet living a lifelike experience (or at least it is the goal). Often the

convenience is to permit mistakes during training for a safety-critical system. There is a

distinction, though, between simulations used for training andInstructional simulation.

Training simulations typically come in one of three categories:[8]

"live" simulation (where actual players use genuine systems in a real environment);

"virtual" simulation (where actual players use simulated systems in a synthetic

environment [5]), or

"constructive" simulation (where simulated players use simulated systems in a

synthetic environment). Constructive simulation is often referred to as "wargaming"

8/11/2019 SimulationsSystems-Wiki.pdf

http://slidepdf.com/reader/full/simulationssystems-wikipdf 7/62

since it bears some resemblance to table-top war games in which players command

armies of soldiers and equipment that move around a board.

In standardized tests, "live" simulations are sometimes called "high-fidelity", producing "samples

of likely performance", as opposed to "low-fidelity", "pencil-and-paper" simulations producing only

"signs of possible performance",[9] but the distinction between high, moderate and low fidelity

remains relative, depending on the context of a particular comparison.

Simulations in education are somewhat like training simulations. They focus on specific tasks.

The term 'microworld' is used to refer to educational simulations which model some abstract

concept rather than simulating a realistic object or environment, or in some cases model a real

world environment in a simplistic way so as to help a learner develop an understanding of the

key concepts. Normally, a user can create some sort of construction within the microworld that

will behave in a way consistent with the concepts being modeled.Seymour Papert was one of

the first to advocate the value of microworlds, and the Logo programming environment

developed by Papert is one of the most famous microworlds. As another example, the Global

Challenge Award online STEM learning web site uses microworld simulations to teach science

concepts related to global warming and the future of energy. Other projects for simulations in

educations are Open Source Physics, NetSim etc.

Project Management Simulation is increasingly used to train students and professionals in the

art and science of project management. Using simulation for project management training

improves learning retention and enhances the learning process.[10][11]

Social simulations may be used in social science classrooms to illustrate social and political

processes in anthropology, economics, history, political science, or sociology courses, typically

at the high school or university level. These may, for example, take the form of civics

simulations, in which participants assume roles in a simulated society, or international relations

simulations in which participants engage in negotiations, alliance formation, trade, diplomacy,

and the use of force. Such simulations might be based on fictitious political systems, or be

based on current or historical events. An example of the latter would be Barnard College's

Reacting to the Past series of historical educational games.[12] The National Science Foundation

has also supported the creation of reacting games that address science and math education.[13]

8/11/2019 SimulationsSystems-Wiki.pdf

http://slidepdf.com/reader/full/simulationssystems-wikipdf 8/62

In recent years, there has been increasing use of social simulations for staff training in aid and

development agencies. The Carana simulation, for example, was first developed by the United

Nations Development Programme, and is now used in a very revised form by the World Bank for

training staff to deal with fragile and conflict-affected countries.[14]

Common user interaction systems for virtual simulations[edit]

Virtual simulations represent a specific category of simulation that utilizes simulation equipment

to create a simulated world for the user. Virtual simulations allow users to interact with a virtual

world. Virtual worlds operate on platforms of integrated software and hardware components. In

this manner, the system can accept input from the user (e.g., body tracking, voice/sound

recognition, physical controllers) and produce output to the user (e.g., visual display, aural

display, haptic display) .[15] Virtual Simulations use the aforementioned modes of interaction to

produce a sense of immersion for the user.

Virtual simulation input hardware[edit]

Motorcycle simulator of Bienal do Automóvel exhibition, in Belo Horizonte, Brazil.

There is a wide variety of input hardware available to accept user input for virtual simulations.

The following list briefly describes several of them:

8/11/2019 SimulationsSystems-Wiki.pdf

http://slidepdf.com/reader/full/simulationssystems-wikipdf 9/62

Body tracking The motion capture method is often used to record the user’s movements and

translate the captured data into inputs for the virtual simulation. For example, if a user physically

turns their head, the motion would be captured by the simulation hardware in some way and

translated to a corresponding shift in view within the simulation.

Capture suits and/or gloves may be used to capture movements of users body parts.

The systems may have sensors incorporated inside them to sense movements of

different body parts (e.g., fingers). Alternatively, these systems may have exterior

tracking devices or marks that can be detected by external ultrasound, optical

receivers or electromagnetic sensors. Internal inertial sensors are also available on

some systems. The units may transmit data either wirelessly or through cables.

Eye trackers can also be used to detect eye movements so that the system can

determine precisely where a user is looking at any given instant.

Physical controllers Physical controllers provide input to the simulation only through direct

manipulation by the user. In virtual simulations, tactile feedback from physical controllers is

highly desirable in a number of simulation environments.

Omni directional treadmills can be used to capture the users locomotion as they walk

or run.

High fidelity instrumentation such as instrument panels in virtual aircraft cockpits

provides users with actual controls to raise the level of immersion. For example,

pilots can use the actual global positioning system controls from the real device in a

simulated cockpit to help them practice procedures with the actual device in the

context of the integrated cockpit system.

Voice/sound recognition This form of interaction may be used either to interact with agents

within the simulation (e.g., virtual people) or to manipulate objects in the simulation (e.g.,

information). Voice interaction presumably increases the level of immersion for the user.

Users may use headsets with boom microphones, lapel microphones or the room

may be equipped with strategically located microphones.

Current research into user input systems Research in future input systems hold a great deal

of promise for virtual simulations. Systems such as brain-computer interfaces

(BCIs)Brain-computer interface offer the ability to further increase the level of immersion for

8/11/2019 SimulationsSystems-Wiki.pdf

http://slidepdf.com/reader/full/simulationssystems-wikipdf 10/62

virtual simulation users. Lee, Keinrath, Scherer, Bischof, Pfurtscheller [16] proved that naïve

subjects could be trained to use a BCI to navigate a virtual apartment with relative ease. Using

the BCI, the authors found that subjects were able to freely navigate the virtual environment with

relatively minimal effort. It is possible that these types of systems will become standard input

modalities in future virtual simulation systems. Simulation is a one of the part of an engineering

students and also imp for main electrical students its come in form of education purpose.

Virtual simulation output hardware[edit]

There is a wide variety of output hardware available to deliver stimulus to users in virtual

simulations. The following list briefly describes several of them:

Visual display Visual displays provide the visual stimulus to the user.

Stationary displays can vary from a conventional desktop display to 360-degree wrap

around screens to stereo three-dimensional screens. Conventional desktop displays

can vary in size from 15 to 60+ inches. Wrap around screens are typically utilized in

what is known as a Cave Automatic Virtual Environment (CAVE) Cave Automatic

Virtual Environment. Stereo three-dimensional screens produce three-dimensional

images either with or without special glasses—depending on the design.

Head mounted displays (HMDs) have small displays that are mounted on headgear

worn by the user. These systems are connected directly into the virtual simulation toprovide the user with a more immersive experience. Weight, update rates and field of

view are some of the key variables that differentiate HMDs. Naturally, heavier HMDs

are undesirable as they cause fatigue over time. If the update rate is too slow, the

system is unable to update the displays fast enough to correspond with a quick head

turn by the user. Slower update rates tend to cause simulation sickness and disrupt

the sense of immersion. Field of view or the angular extent of the world that is seen at

a given moment Field of view can vary from system to system and has been found to

affect the users sense of immersion.

Aural display Several different types of audio systems exist to help the user hear and localize

sounds spatially. Special software can be used to produce 3D audio effects 3D audio to create

8/11/2019 SimulationsSystems-Wiki.pdf

http://slidepdf.com/reader/full/simulationssystems-wikipdf 11/62

the illusion that sound sources are placed within a defined three-dimensional space around the

user.

Stationary conventional speaker systems may be used provide dual or multi-channel

surround sound. However, external speakers are not as effective as headphones in

producing 3D audio effects.[15]

Conventional headphones offer a portable alternative to stationary speakers. They

also have the added advantages of masking real world noise and facilitate more

effective 3D audio sound effects.[15]

Haptic display These displays provide sense of touch to the user Haptic technology. This type

of output is sometimes referred to as force feedback.

Tactile tile displays use different types of actuators such as inflatable bladders,

vibrators, low frequency sub-woofers, pin actuators and/or thermo-actuators to

produce sensations for the user.

End effector displays can respond to users inputs with resistance and force.[15]

These systems are often used in medical applications for remote surgeries that

employ robotic instruments.[17]

Vestibular display These displays provide a sense of motion to the user Motion simulator . They

often manifest as motion bases for virtual vehicle simulation such as driving simulators or flight

simulators. Motion bases are fixed in place but use actuators to move the simulator in ways that

can produce the sensations pitching, yawing or rolling. The simulators can also move in such a

way as to produce a sense of acceleration on all axes (e.g., the motion base can produce the

sensation of falling).

Clinical healthcare simulators[edit]

Main article: Medical simulation

Medical simulators are increasingly being developed and deployed to teach therapeutic and

diagnostic procedures as well as medical concepts and decision making to personnel in the

health professions. Simulators have been developed for training procedures ranging from the

basics such as blood draw, to laparoscopic surgery [18] and trauma care. They are also

8/11/2019 SimulationsSystems-Wiki.pdf

http://slidepdf.com/reader/full/simulationssystems-wikipdf 12/62

important to help on prototyping new devices[19] for biomedical engineering problems. Currently,

simulators are applied to research and develop tools for new therapies,[20] treatments[21] and

early diagnosis[22] in medicine.

Many medical simulators involve a computer connected to a plastic simulation of the relevant

anatomy.[citation needed ] Sophisticated simulators of this type employ a life size mannequin that

responds to injected drugs and can be programmed to create simulations of life-threatening

emergencies. In other simulations, visual components of the procedure are reproduced by

computer graphics techniques, while touch-based components are reproduced by haptic

feedback devices combined with physical simulation routines computed in response to the

user's actions. Medical simulations of this sort will often use 3D CT or MRI scans of patient data

to enhance realism. Some medical simulations are developed to be widely distributed (such asweb-enabled simulations and procedural simulationsthat can be viewed via standard web

browsers) and can be interacted with using standard computer interfaces, such as the keyboard

and mouse.

Another important medical application of a simulator — although, perhaps, denoting a slightly

different meaning of simulator — is the use of a placebo drug, a formulation that simulates the

active drug in trials of drug efficacy (see Placebo (origins of technical term)).

Improving patient safety[edit]

Patient safety is a concern in the medical industry. Patients have been known to suffer injuries

and even death due to management error, and lack of using best standards of care and training.

According to Building a National Agenda for Simulation-Based Medical Education (Eder-Van

Hook, Jackie, 2004), “A health care provider’s ability to react prudently in an unexpected situation

is one of the most critical factors in creating a positive outcome in medical emergency,

regardless of whether it occurs on the battlefield, freeway, or hospital emergency room.”

simulation. Eder-Van Hook (2004) also noted that medical errors kill up to 98,000 with anestimated cost between $37 and $50 million and $17 to $29 billion for preventable adverse

events dollars per year. “Deaths due to preventable adverse events exceed deaths attributable to

motor vehicle accidents, breast cancer, or AIDS” Eder-Van Hook (2004). With these types of

statistics it is no wonder that improving patient safety is a prevalent concern in the industry.

8/11/2019 SimulationsSystems-Wiki.pdf

http://slidepdf.com/reader/full/simulationssystems-wikipdf 13/62

Innovative simulation training solutions are now being used to train medical professionals in an

attempt to reduce the number of safety concerns that have adverse effects on the patients.

However, according to the article Does Simulation Improve Patient Safety? Self-efficacy,

Competence, Operational Performance, and Patient Safety (Nishisaki A., Keren R., and

Nadkarni, V., 2007), the jury is still out. Nishisaki states that “There is good evidence that

simulation training improves provider and team self-efficacy and competence on manikins.

There is also good evidence that procedural simulation improves actual operational performance

in clinical settings.[23] However, no evidence yet shows that crew resource management training

through simulation, despite its promise, improves team operational performance at the bedside.

Also, no evidence to date proves that simulation training actually improves patient outcome.

Even so, confidence is growing in the validity of medical simulation as the training tool of the

future.” This could be because there are not enough research studies yet conducted to

effectively determine the success of simulation initiatives to improve patient safety. Examples of

[recently implemented] research simulations used to improve patient care [and its funding] can

be found at Improving Patient Safety through Simulation Research (US Department of Human

Health Services) http://www.ahrq.gov/qual/simulproj.htm.

One such attempt to improve patient safety through the use of simulations training is pediatric

care to deliver just-in-time service or/and just-in-place. This training consists of 20 minutes of

simulated training just before workers report to shift. It is hoped that the recentness of thetraining will increase the positive and reduce the negative results that have generally been

associated with the procedure. The purpose of this study is to determine if just-in-time training

improves patient safety and operational performance of orotracheal intubation and decrease

occurrences of undesired associated events and “to test the hypothesis that high fidelity

simulation may enhance the training efficacy and patient safety in simulation settings.” The

conclusion as reported in Abstract P38: Just-In-Time Simulation Training Improves ICU

Physician Trainee Airway Resuscitation Participation without Compromising Procedural

Success or Safety (Nishisaki A., 2008), were that simulation training improved resident

participation in real cases; but did not sacrifice the quality of service. It could be therefore

hypothesized that by increasing the number of highly trained residents through the use of

simulation training, that the simulation training does in fact increase patient safety. This

8/11/2019 SimulationsSystems-Wiki.pdf

http://slidepdf.com/reader/full/simulationssystems-wikipdf 14/62

hypothesis would have to be researched for validation and the results may or may not generalize

to other situations.

History of simulation in healthcare[edit]

The first medical simulators were simple models of human patients. [24]

Since antiquity, these representations in clay and stone were used to demonstrate clinical

features of disease states and their effects on humans. Models have been found from many

cultures and continents. These models have been used in some cultures (e.g., Chinese culture)

as a "diagnostic" instrument, allowing women to consult male physicians while maintaining

social laws of modesty. Models are used today to help students learn the anatomy of the

musculoskeletal system and organ systems.[24]

Type of models[edit]

Active models

Active models that attempt to reproduce living anatomy or physiology are recent

developments. The famous “Harvey” mannequin was developed at the University of Miami

and is able to recreate many of the physical findings of the cardiology examination,

includingpalpation, auscultation, and electrocardiography.[25]

Interactive models

More recently, interactive models have been developed that respond to actions taken by a

student or physician.[25] Until recently, these simulations were two dimensional computer

programs that acted more like a textbook than a patient. Computer simulations have the

advantage of allowing a student to make judgments, and also to make errors. The process of

iterative learning through assessment, evaluation, decision making, and error correction

creates a much stronger learning environment than passive instruction.

Computer simulators

8/11/2019 SimulationsSystems-Wiki.pdf

http://slidepdf.com/reader/full/simulationssystems-wikipdf 15/62

3DiTeams learner is percussing the patient's chest in virtual field hospital

Simulators have been proposed as an ideal tool for assessment of students for clinical

skills.[26] For patients, "cybertherapy" can be used for sessions simulating traumatic

expericences, from fear of heights to social anxiety. [27]

Programmed patients and simulated clinical situations, including mock disaster drills, have

been used extensively for education and evaluation. These “lifelike” simulations are

expensive, and lack reproducibility. A fully functional "3Di" simulator would be the most

specific tool available for teaching and measurement of clinical skills. Gaming platforms have

been applied to create these virtual medical environments to create an interactive method for

learning and application of information in a clinical context.[28][29]

Immersive disease state simulations allow a doctor or HCP to experience what a disease

actually feels like. Using sensors and transducers symptomatic effects can be delivered to a

participant allowing them to experience the patients disease state.

Such a simulator meets the goals of an objective and standardized examination for clinical

competence.[30] This system is superior to examinations that use "standard patients"

because it permits the quantitative measurement of competence, as well as reproducing the

same objective findings.[31]

8/11/2019 SimulationsSystems-Wiki.pdf

http://slidepdf.com/reader/full/simulationssystems-wikipdf 16/62

Simulation in entertainment[edit]

Simulation in entertainment encompasses many large and popular industries such as film,

television, video games (including serious games) and rides in theme parks. Although modern

simulation is thought to have its roots in training and the military, in the 20th century it also

became a conduit for enterprises which were more hedonistic in nature. Advances in technology

in the 1980s and 1990s caused simulation to become more widely used and it began to appear

in movies such as Jurassic Park (1993) and in computer-based games such as Atari’s

Battlezone (1980).

History[edit]

Early history (1940s and 1950s)[edit]

The first simulation game may have been created as early as 1947 by Thomas T. Goldsmith Jr.

and Estle Ray Mann. This was a straightforward game that simulated a missile being fired at a

target. The curve of the missile and its speed could be adjusted using several knobs. In 1958 a

computer game called “Tennis for Two” was created by Willy Higginbotham which simulated a

tennis game between two players who could both play at the same time using hand controls and

was displayed on an oscilloscope.[32] This was one of the first electronic video games to use a

graphical display.

Modern simulation (1980s–present)[edit]

Advances in technology in the 1980s made the computer more affordable and more capable

than they were in previous decades [33] which facilitated the rise of computer such as the Xbox

gaming. The first video game consoles released in the 1970s and early 1980s fell prey to the

industry crash in 1983, but in 1985, Nintendo released the Nintendo Entertainment System

(NES) which became one of the best selling consoles in video game history.[34] In the 1990s,

computer games became widely popular with the release of such game as The Sims and

Command & Conquer and the still increasing power of desktop computers. Today, computer

simulation games such as World of Warcraft are played by millions of people around the world.

Computer-generated imagery was used in film to simulate objects as early as 1976, though in

1982, the film Tron was the first film to use computer-generated imagery for more than a couple

8/11/2019 SimulationsSystems-Wiki.pdf

http://slidepdf.com/reader/full/simulationssystems-wikipdf 17/62

of minutes. However, the commercial failure of the movie may have caused the industry to step

away from the technology.[35] In 1993, the film Jurassic Park became the first popular film to use

computer-generated graphics extensively, integrating the simulated dinosaurs almost

seamlessly into live action scenes. This event transformed the film industry; in 1995, the film Toy

Story was the first film to use only computer-generated images and by the new millennium

computer generated graphics were the leading choice for special effects in films.[36]

Simulators have been used for entertainment since the Link Trainer in the 1930s.[37] The first

modern simulator ride to open at a theme park was Disney’s Star Tours in 1987 soon followed

by Universal’s The Funtastic World of Hanna-Barbera in 1990 which was the first ride to be done

entirely with computer graphics.[38]

Examples of entertainment simulation[edit]

Computer and video games[edit]

Simulation games, as opposed to other genres of video and computer games, represent or

simulate an environment accurately. Moreover, they represent the interactions between the

playable characters and the environment realistically. These kinds of games are usually more

complex in terms of game play.[39] Simulation games have become incredibly popular among

people of all ages.[40] Popular simulation games include SimCity , Tiger Woods PGA Tour and

Virtonomics. There are also Flight Simulation and Driving Simulation games.

Film[edit]

Computer-generated imagery is “the application of the field of 3D computer graphics to special

effects”. This technology is used for visual effects because they are high in quality, controllable,

and can create effects that would not be feasible using any other technology either because of

cost, resources or safety.[41] Computer-generated graphics can be seen in many live action

movies today, especially those of the action genre. Further, computer generated imagery hasalmost completely supplanted hand-drawn animation in children's movies which are increasingly

computer-generated only. Examples of movies that use computer-generated imagery include

Finding Nemo, 300 and Iron Man.

8/11/2019 SimulationsSystems-Wiki.pdf

http://slidepdf.com/reader/full/simulationssystems-wikipdf 18/62

Theme park rides[edit]

Simulator rides are the progeny of military training simulators and commercial simulators, but

they are different in a fundamental way. While military training simulators react realistically to the

input of the trainee in real time, ride simulators only feel like they move realistically and move

according to prerecorded motion scripts.[38] One of the first simulator rides, Star Tours, which

cost $32 millon, used a hydraulic motion based cabin. The movement was programmed by a

joystick. Today’s simulator rides, such as The Amazing Adventures of Spider-Man include

elements to increase the amount of immersion experienced by the riders such as: 3D imagery,

physical effects (spraying water or producing scents), and movement through an

environment.[42] Examples of simulation rides includeMission Space and The Simpsons Ride.

There are many simulation rides at themeparks like Disney, Universal etc., Examples are Flint

Stones, Earth Quake, Time Machine, King Kong.

Simulation and manufacturing[edit]

Manufacturing represents one of the most important applications of Simulation. This technique

represents a valuable tool used by engineers when evaluating the effect of capital investment in

equipments and physical facilities like factory plants, warehouses, and distribution centers.

Simulation can be used to predict the performance of an existing or planned system and to

compare alternative solutions for a particular design problem. [43]

Another important goal of manufacturing-simulations is to quantify system performance.

Common measures of system performance include the following:[44]

Throughput under average and peak loads;

System cycle time (how long it take to produce one part);

Utilization of resource, labor, and machines;

Bottlenecks and choke points; Queuing at work locations;

Queuing and delays caused by material-handling devices and systems;

WIP storages needs;

Staffing requirements;

8/11/2019 SimulationsSystems-Wiki.pdf

http://slidepdf.com/reader/full/simulationssystems-wikipdf 19/62

Effectiveness of scheduling systems;

Effectiveness of control systems.

More examples of simulation[edit]

Automobiles[edit]

A soldier tests out a heavy-wheeled-vehicle driver simulator.

An automobile simulator provides an opportunity to reproduce the characteristics of real vehicles

in a virtual environment. It replicates the external factors and conditions with which a vehicle

interacts enabling a driver to feel as if they are sitting in the cab of their own vehicle. Scenarios

and events are replicated with sufficient reality to ensure that drivers become fully immersed in

the experience rather than simply viewing it as an educational experience.

The simulator provides a constructive experience for the novice driver and enables more

complex exercises to be undertaken by the more mature driver. For novice drivers, truck

simulators provide an opportunity to begin their career by applying best practice. For mature

drivers, simulation provides the ability to enhance good driving or to detect poor practice and to

suggest the necessary steps for remedial action. For companies, it provides an opportunity to

educate staff in the driving skills that achieve reduced maintenance costs, improved productivity

and, most importantly, to ensure the safety of their actions in all possible situations.

Biomechanics[edit]

Main articles: ArtiSynth, simtk-opensim and AnimatLab (software)

8/11/2019 SimulationsSystems-Wiki.pdf

http://slidepdf.com/reader/full/simulationssystems-wikipdf 20/62

An open-source simulation platform for creating dynamic mechanical models built from

combinations of rigid and deformable bodies, joints, constraints, and various force actuators. It is

specialized for creating biomechanical models of human anatomical structures, with the

intention to study their function and eventually assist in the design and planning of medical

treatment.

A biomechanics simulator is used to analyze walking dynamics, study sports performance,

simulate surgical procedures, analyze joint loads, design medical devices, and animate human

and animal movement.

A neuromechanical simulator that combines biomechanical and biologically realistic neural

network simulation. It allows the user to test hypotheses on the neural basis of behavior in a

physically accurate 3-D virtual environment.

City and urban[edit]

A city simulator can be a city-building game but can also be a tool used by urban planners to

understand how cities are likely to evolve in response to various policy decisions. AnyLogic is an

example of modern, large-scale urban simulators designed for use by urban planners. City

simulators are generally agent-based simulations with explicit representations for land use and

transportation. UrbanSim and LEAM are examples of large-scale urban simulation models that

are used by metropolitan planning agencies and military bases for land use and transportation

planning.

Classroom of the future[edit]

The "classroom of the future" will probably contain several kinds of simulators, in addition to

textual and visual learning tools. This will allow students to enter the clinical years better

prepared, and with a higher skill level. The advanced student or postgraduate will have a more

concise and comprehensive method of retraining — or of incorporating new clinical procedures

into their skill set — and regulatory bodies and medical institutions will find it easier to assess the

proficiency and competency of individuals.

The classroom of the future will also form the basis of a clinical skills unit for continuing

education of medical personnel; and in the same way that the use of periodic flight training

assists airline pilots, this technology will assist practitioners throughout their career. [citation needed ]

8/11/2019 SimulationsSystems-Wiki.pdf

http://slidepdf.com/reader/full/simulationssystems-wikipdf 21/62

The simulator will be more than a "living" textbook, it will become an integral a part of the practice

of medicine.[citation needed ] The simulator environment will also provide a standard platform for

curriculum development in institutions of medical education.

Communication satellites[edit]

Modern satellite communications systems (SatCom) are often large and complex with many

interacting parts and elements. In addition, the need for broadband connectivity on a moving

vehicle has increased dramatically in the past few years for both commercial and military

applications. To accurately predict and deliver high quality of service, satcom system designers

have to factor in terrain as well as atmospheric and meteorological conditions in their planning.

To deal with such complexity, system designers and operators increasingly turn towards

computer models of their systems to simulate real world operational conditions and gain insightsinto usability and requirements prior to final product sign-off. Modeling improves the

understanding of the system by enabling the SatCom system designer or planner to simulate

real world performance by injecting the models with multiple hypothetical atmospheric and

environmental conditions. Simulation is often used in the training of civilian and military

personnel. This usually occurs when it is prohibitively expensive or simply too dangerous to allow

trainees to use the real equipment in the real world. In such situations they will spend time

learning valuable lessons in a "safe" virtual environment yet living a lifelike experience (or at least

it is the goal). Often the convenience is to permit mistakes during training for a safety-critical

system.

Digital Lifecycle[edit]

8/11/2019 SimulationsSystems-Wiki.pdf

http://slidepdf.com/reader/full/simulationssystems-wikipdf 22/62

Simulation of airflow over an engine

Simulation solutions are being increasingly integrated with CAx (CAD, CAM, CAE....) solutions

and processes. The use of simulation throughout the product lifecycle, especially at the earlier

concept and design stages, has the potential of providing substantial benefits. These benefitsrange from direct cost issues such as reduced prototyping and shorter time-to-market, to better

performing products and higher margins. However, for some companies, simulation has not

provided the expected benefits.

The research firm Aberdeen Group has found that nearly all best-in-class manufacturers use

simulation early in the design process as compared to 3 or 4 laggards who do not.

The successful use of simulation, early in the lifecycle, has been largely driven by increased

integration of simulation tools with the entire CAD, CAM and PLM solution-set. Simulationsolutions can now function across the extended enterprise in a multi-CAD environment, and

include solutions for managing simulation data and processes and ensuring that simulation

results are made part of the product lifecycle history. The ability to use simulation across the

entire lifecycle has been enhanced through improved user interfaces such as tailorable user

interfaces and "wizards" which allow all appropriate PLM participants to take part in the

simulation process.

Disaster preparedness[edit]

Simulation training has become a method for preparing people for disasters. Simulations can

replicate emergency situations and track how learners respond thanks to a lifelike experience.

Disaster preparedness simulations can involve training on how to handleterrorism attacks,

natural disasters, pandemic outbreaks, or other life-threatening emergencies.

One organization that has used simulation training for disaster preparedness is CADE (Center

for Advancement of Distance Education). CADE[45] has used a video game to prepare

emergency workers for multiple types of attacks. As reported by News-Medical.Net, ”The video

game is the first in a series of simulations to address bioterrorism, pandemic flu, smallpox and

other disasters that emergency personnel must prepare for.[46]” Developed by a team from the

University of Illinois at Chicago (UIC), the game allows learners to practice their emergency skills

in a safe, controlled environment.

8/11/2019 SimulationsSystems-Wiki.pdf

http://slidepdf.com/reader/full/simulationssystems-wikipdf 23/62

The Emergency Simulation Program (ESP) at the British Columbia Institute of Technology

(BCIT), Vancouver, British Columbia, Canada is another example of an organization that uses

simulation to train for emergency situations. ESP uses simulation to train on the following

situations: forest fire fighting, oil or chemical spill response, earthquake response, law

enforcement, municipal fire fighting, hazardous material handling, military training, and response

to terrorist attack [47] One feature of the simulation system is the implementation of “Dynamic

Run-Time Clock,” which allows simulations to run a 'simulated' time frame, 'speeding up' or

'slowing down' time as desired”[47] Additionally, the system allows session recordings,

picture-icon based navigation, file storage of individual simulations, multimedia components, and

launch external applications.

At the University of Québec in Chicoutimi, a research team at the outdoor research and

expertise laboratory (Laboratoire d'Expertise et de Recherche en Plein Air - LERPA) specializes

in using wilderness backcountry accident simulations to verify emergency response

coordination.

Instructionally, the benefits of emergency training through simulations are that learner

performance can be tracked through the system. This allows the developer to make adjustments

as necessary or alert the educator on topics that may require additional attention. Other

advantages are that the learner can be guided or trained on how to respond appropriately before

continuing to the next emergency segment—this is an aspect that may not be available in the

live-environment. Some emergency training simulators also allows for immediate feedback,

while other simulations may provide a summary and instruct the learner to engage in the learning

topic again.

In a live-emergency situation, emergency responders do not have time to waste.

Simulation-training in this environment provides an opportunity for learners to gather as much

information as they can and practice their knowledge in a safe environment. They can make

mistakes without risk of endangering lives and be given the opportunity to correct their errors to

prepare for the real-life emergency.

8/11/2019 SimulationsSystems-Wiki.pdf

http://slidepdf.com/reader/full/simulationssystems-wikipdf 24/62

Economics[edit]

In economics and especially macroeconomics, the effects of proposed policy actions, such as

fiscal policy changes or monetary policy changes, are simulated to judge their desirability. A

mathematical model of the economy, having been fitted to historical economic data, is used as aproxy for the actual economy; proposed values of government spending, taxation, open market

operations, etc. are used as inputs to the simulation of the model, and various variables of

interest such as the inflation rate, the unemployment rate, thebalance of trade deficit, the

government budget deficit, etc. are the outputs of the simulation. The simulated values of these

variables of interest are compared for different proposed policy inputs to determine which set of

outcomes is most desirable.

Engineering, technology, and processes[edit]

Simulation is an important feature in engineering systems or any system that involves many

processes. For example in electrical engineering, delay lines may be used to simulate

propagation delay and phase shift caused by an actual transmission line. Similarly,dummy loads

may be used to simulate impedance without simulating propagation, and is used in situations

where propagation is unwanted. A simulator may imitate only a few of the operations and

functions of the unit it simulates. Contrast with: emulate.[48]

Most engineering simulations entail mathematical modeling and computer assisted investigation.

There are many cases, however, where mathematical modeling is not reliable. Simulation of fluid

dynamics problems often require both mathematical and physical simulations. In these cases

the physical models require dynamic similitude. Physical and chemical simulations have also

direct realistic uses, rather than research uses; in chemical engineering, for example, process

simulations are used to give the process parameters immediately used for operating chemical

plants, such as oil refineries.

Equipment[edit]

Due to the dangerous and expensive nature of training on heavy equipment, simulation has

become a common solution across many industries. Types of simulated equipment include

cranes, mining reclaimers and construction equipment, among many others. Often the

simulation units will include pre-built scenarios by which to teach trainees, as well as the ability

8/11/2019 SimulationsSystems-Wiki.pdf

http://slidepdf.com/reader/full/simulationssystems-wikipdf 25/62

to customize new scenarios. Such equipment simulators are intended to create a safe and cost

effective alternative to training on live equipment.[49]

Ergonomics[edit]

Ergonomic simulation involves the analysis of virtual products or manual tasks within a virtual

environment. In the engineering process, the aim of ergonomics is to develop and to improve the

design of products and work environments.[50] Ergonomic simulation utilizes an anthropometric

virtual representation of the human, commonly referenced as a mannequin or Digital Human

Models (DHMs), to mimic the postures, mechanical loads, and performance of a human

operator in a simulated environment such as an airplane, automobile, or manufacturing facility.

DHMs are recognized as evolving and valuable tool for performing proactive ergonomics

analysis and design.[51] The simulations employ 3D-graphics and physics-based models to

animate the virtual humans. Ergonomics software uses inverse kinematics (IK) capability for

posing the DHMs.[50] Several ergonomic simulation tools have been developed including Jack,

SAFEWORK, RAMSIS, and SAMMIE.

The software tools typically calculate biomechanical properties including individual muscle

forces, joint forces and moments. Most of these tools employ standard ergonomic evaluation

methods such as the NIOSH lifting equation and Rapid Upper Limb Assessment (RULA). Some

simulations also analyze physiological measures including metabolism, energy expenditure, and

fatigue limits Cycle time studies, design and process validation, user comfort, reachability, and

line of sight are other human-factors that may be examined in ergonomic simulation

packages.[52]

Modeling and simulation of a task can be performed by manually manipulating the virtual human

in the simulated environment. Some ergonomics simulation software permits interactive,

real-time simulation and evaluation through actual human input via motion capture technologies.

However, motion capture for ergonomics requires expensive equipment and the creation of

props to represent the environment or product.

Some applications of ergonomic simulation in include analysis of solid waste collection, disaster

management tasks, interactive gaming,[53] automotive assembly line,[54] virtual prototyping of

rehabilitation aids,[55] and aerospace product design.[56] Ford engineers use ergonomics

8/11/2019 SimulationsSystems-Wiki.pdf

http://slidepdf.com/reader/full/simulationssystems-wikipdf 26/62

simulation software to perform virtual product design reviews. Using engineering data, the

simulations assist evaluation of assembly ergonomics. The company uses Siemen’s Jack and

Jill ergonomics simulation software in improving worker safety and efficiency, without the need to

build expensive prototypes.[57]

Finance[edit]

Main articles: Monte Carlo methods in finance and Mathematical finance

In finance, computer simulations are often used for scenario planning. Risk-adjusted net present

value, for example, is computed from well-defined but not always known (or fixed) inputs. By

imitating the performance of the project under evaluation, simulation can provide a distribution of

NPV over a range of discount rates and other variables.

Simulations are frequently used in financial training to engage participants in experiencing

various historical as well as fictional situations. There are stock market simulations, portfolio

simulations, risk management simulations or models and forex simulations. Such simulations

are typically based on stochastic asset models. Using these simulations in a training program

allows for the application of theory into a something akin to real life. As with other industries, the

use of simulations can be technology or case-study driven.

Flight[edit]

Main article: Flight simulation

Flight Simulation Training Devices (FSTD) are used to train pilots on the ground. In comparison

to training in an actual aircraft, simulation based training allows for the training of maneuvers or

situations that may be impractical (or even dangerous) to perform in the aircraft, while keeping

the pilot and instructor in a relatively low-risk environment on the ground. For example, electrical

system failures, instrument failures, hydraulic system failures, and even flight control failures can

be simulated without risk to the pilots or an aircraft.

Instructors can also provide students with a higher concentration of training tasks in a given

period of time than is usually possible in the aircraft. For example, conducting multiple

instrument approaches in the actual aircraft may require significant time spent repositioning the

aircraft, while in a simulation, as soon as one approach has been completed, the instructor can

8/11/2019 SimulationsSystems-Wiki.pdf

http://slidepdf.com/reader/full/simulationssystems-wikipdf 27/62

immediately preposition the simulated aircraft to an ideal (or less than ideal) location from which

to begin the next approach.

Flight simulation also provides an economic advantage over training in an actual aircraft. Once

fuel, maintenance, and insurance costs are taken into account, the operating costs of an FSTD

are usually substantially lower than the operating costs of the simulated aircraft. For some large

transport category airplanes, the operating costs may be several times lower for the FSTD than

the actual aircraft.

Some people who use simulator software, especially flight simulator software, build their own

simulator at home. Some people — to further the realism of their homemade simulator — buy

used cards and racks that run the same software used by the original machine. While this

involves solving the problem of matching hardware and software — and the problem that

hundreds of cards plug into many different racks — many still find that solving these problems is

well worthwhile. Some are so serious about realistic simulation that they will buy real aircraft

parts, like complete nose sections of written-off aircraft, at aircraft boneyards. This permits

people to simulate a hobby that they are unable to pursue in real life.

Marine[edit]

Bearing resemblance to flight simulators, marine simulators train ships' personnel. The most

common marine simulators include:

Ship's bridge simulators

Engine room simulators

Cargo handling simulators

Communication / GMDSS simulators

ROV simulators

Simulators like these are mostly used within maritime colleges, training institutions and navies.

They often consist of a replication of a ships' bridge, with operating console(s), and a number ofscreens on which the virtual surroundings are projected.

Military[edit]

Main article: Military simulation

8/11/2019 SimulationsSystems-Wiki.pdf

http://slidepdf.com/reader/full/simulationssystems-wikipdf 28/62

Military simulations, also known informally as war games, are models in which theories of

warfare can be tested and refined without the need for actual hostilities. They exist in many

different forms, with varying degrees of realism. In recent times, their scope has widened to

include not only military but also political and social factors (for example, the NationLab series of

strategic exercises in Latin America).[58] While many governments make use of simulation, both

individually and collaboratively, little is known about the model's specifics outside professional

circles.

Payment and securities settlement system[edit]

Simulation techniques have also been applied to payment and securities settlement systems.

Among the main users are central banks who are generally responsible for the oversight of

market infrastructure and entitled to contribute to the smooth functioning of the paymentsystems.

Central banks have been using payment system simulations to evaluate things such as the

adequacy or sufficiency of liquidity available ( in the form of account balances and intraday credit

limits) to participants (mainly banks) to allow efficient settlement of payments. [59][60] The need for

liquidity is also dependent on the availability and the type of netting procedures in the systems,

thus some of the studies have a focus on system comparisons.[61]

Another application is to evaluate risks related to events such as communication network

breakdowns or the inability of participants to send payments (e.g. in case of possible bank

failure).[62] This kind of analysis falls under the concepts of Stress testing or scenario analysis.

A common way to conduct these simulations is to replicate the settlement logics of the real

payment or securities settlement systems under analysis and then use real observed payment

data. In case of system comparison or system development, naturally also the other settlement

logics need to be implemented.

To perform stress testing and scenario analysis, the observed data needs to be altered, e.g.

some payments delayed or removed. To analyze the levels of liquidity, initial liquidity levels are

varried. System comparisons (benchmarking)or evaluations of new netting algorithms or rules

8/11/2019 SimulationsSystems-Wiki.pdf

http://slidepdf.com/reader/full/simulationssystems-wikipdf 29/62

are performed by running simulations with a fixed set of data and varying only the system

setups.

Inference is usually done by comparing the benchmark simulation results to the results of altered

simulation setups by comparing indicators such as unsettled transactions or settlement delays.

Project management[edit]

Main article: Project management simulation

Project management simulation is simulation used for project management training and

analysis. It is often used as training simulation for project managers. In other cases it is used for

what-if analysis and for supporting decision-making in real projects. Frequently the simulation is

conducted using software tools.

Robotics[edit]

Main article: Robotics simulator

A robotics simulator is used to create embedded applications for a specific (or not) robot without

being dependent on the 'real' robot. In some cases, these applications can be transferred to the

real robot (or rebuilt) without modifications. Robotics simulators allow reproducing situations that

cannot be 'created' in the real world because of cost, time, or the 'uniqueness' of a resource. A

simulator also allows fast robot prototyping. Many robot simulators feature physics engines to

simulate a robot's dynamics.

Production[edit]

Simulations of production systems is used mainly to examine the effect of improvements or

investments in a production system. Most often this is done using a static spreadsheet with

process times and transportation times. For more sophisticated simulations Discrete Event

Simulation (DES) is used with the advantages to simulate dynamics in the production system. A

production system is very much dynamic depending on variations in manufacturing processes,

assembly times, machine set-ups, breaks, breakdowns and small stoppages.[63] There are lots

of software commonly used for discrete event simulation. They differ in usability and markets but

do often share the same foundation.

8/11/2019 SimulationsSystems-Wiki.pdf

http://slidepdf.com/reader/full/simulationssystems-wikipdf 30/62

Sales process[edit]

Main article: Sales process engineering

Simulations are useful in modeling the flow of transactions through business processes, such

as in the field of sales process engineering, to study and improve the flow of customer ordersthrough various stages of completion (say, from an initial proposal for providing goods/services

through order acceptance and installation). Such simulations can help predict the impact of how

improvements in methods might impact variability, cost, labor time, and the quantity of

transactions at various stages in the process. A full-featured computerized process simulator

can be used to depict such models, as can simpler educational demonstrations using

spreadsheet software, pennies being transferred between cups based on the roll of a die, or

dipping into a tub of colored beads with a scoop. [64]

Sports[edit]

In sports, computer simulations are often done to predict the outcome of events and the

performance of individual sportspeople. They attempt to recreate the event through models built

from statistics. The increase in technology has allowed anyone with knowledge of programming

the ability to run simulations of their models. The simulations are built from a series of

mathematical algorithms, or models, and can vary with accuracy. Accuscore, which is licensed

by companies such as ESPN, is a well known simulation program for all major sports. It offersdetailed analysis of games through simulated betting lines, projected point totals and overall

probabilities.

With the increased interest in fantasy sports simulation models that predict individual player

performance have gained popularity. Companies like What If Sports and StatFox specialize in

not only using their simulations for predicting game results, but how well individual players will do

as well. Many people use models to determine who to start in their fantasy leagues.

Another way simulations are helping the sports field is in the use of biomechanics. Models arederived and simulations are run from data received from sensors attached to athletes and video

equipment. Sports biomechanics aided by simulation models answer questions regarding

training techniques such as: the effect of fatigue on throwing performance (height of throw) and

biomechanical factors of the upper limbs (reactive strength index; hand contact time).[65]

8/11/2019 SimulationsSystems-Wiki.pdf

http://slidepdf.com/reader/full/simulationssystems-wikipdf 31/62

Computer simulations allow their users to take models which before were too complex to run,

and give them answers. Simulations have proven to be some of the best insights into both play

performance and team predictability.

Space shuttle countdown[edit]

Firing Room 1 configured for space shuttlelaunches

Simulation is used at Kennedy Space Center (KSC) to train and certify Space Shuttle engineers

during simulated launch countdown operations. The Space Shuttle engineering community

participates in a launch countdown integrated simulation before each shuttle flight. This

simulation is a virtual simulation where real people interact with simulated Space Shuttle vehicle

and Ground Support Equipment (GSE) hardware. The Shuttle Final Countdown Phase

Simulation, also known as S0044, involves countdown processes that integrate many of the

Space Shuttle vehicle and GSE systems. Some of the Shuttle systems integrated in the

simulation are the main propulsion system, main engines, solid rocket boosters, ground liquid

hydrogen and liquid oxygen, external tank, flight controls, navigation, and avionics.[66] The

high-level objectives of the Shuttle Final Countdown Phase Simulation are:

To demonstrate Firing Room final countdown phase operations.

To provide training for system engineers in recognizing, reporting and evaluating

system problems in a time critical environment.

8/11/2019 SimulationsSystems-Wiki.pdf

http://slidepdf.com/reader/full/simulationssystems-wikipdf 32/62

To exercise the launch teams ability to evaluate, prioritize and respond to problems in

an integrated manner within a time critical environment.

To provide procedures to be used in performing failure/recovery testing of the

operations performed in the final countdown phase.[67]

The Shuttle Final Countdown Phase Simulation takes place at the Kennedy Space Center

Launch Control Center Firing Rooms. The firing room used during the simulation is the same

control room where real launch countdown operations are executed. As a result, equipment

used for real launch countdown operations is engaged. Command and control computers,

application software, engineering plotting and trending tools, launch countdown procedure

documents, launch commit criteria documents, hardware requirement documents, and any

other items used by the engineering launch countdown teams during real launch countdown

operations are used during the simulation. The Space Shuttle vehicle hardware and related GSE

hardware is simulated by mathematical models (written in Shuttle Ground Operations Simulator

(SGOS) modeling language [68]) that behave and react like real hardware. During the Shuttle

Final Countdown Phase Simulation, engineers command and control hardware via real

application software executing in the control consoles – just as if they were commanding real

vehicle hardware. However, these real software applications do not interface with real Shuttle

hardware during simulations. Instead, the applications interface with mathematical model

representations of the vehicle and GSE hardware. Consequently, the simulations bypass

sensitive and even dangerous mechanisms while providing engineering measurements detailing

how the hardware would have reacted. Since these math models interact with the command and

control application software, models and simulations are also used to debug and verify the

functionality of application software.[69]

Satellite navigation[edit]

The only true way to test GNSS receivers (commonly known as Sat-Nav's in the commercial

world)is by using an RF Constellation Simulator. A receiver that may for example be used on an

aircraft, can be tested under dynamic conditions without the need to take it on a real flight. The

test conditions can be repeated exactly, and there is full control over all the test parameters. this

is not possible in the 'real-world' using the actual signals. For testing receivers that will use the

new Galileo (satellite navigation) there is no alternative, as the real signals do not yet exist.

8/11/2019 SimulationsSystems-Wiki.pdf

http://slidepdf.com/reader/full/simulationssystems-wikipdf 33/62

Weather [edit]

Predicting weather conditions by extrapolating/interpolating previous data is one of the real use of

simulation. Most of the weather forecasts use this information published by Weather buereaus.

This kind of simulations help in predicting and forewarning about extreme weather conditions likethe path of an active hurricane/cyclone. Numerical weather prediction for forecasting involves

complicated numeric computer models to predict weather accurately by taking many

parameters into account.

Simulation games[edit]

Main article: Simulation game

Strategy games — both traditional and modern — may be viewed as simulations of abstracted

decision-making for the purpose of training military and political leaders (see History of Go for an

example of such a tradition, or Kriegsspiel for a more recent example).

Many other video games are simulators of some kind. Such games can simulate various

aspects of reality, from business, to government, to construction, to piloting vehicles (see

above).

Historical usage[edit]

Historically, the word had negative connotations:

…therefore a general custom of simulation (which is this last degree) is a vice, using either of a

natural falseness or fearfulness…

—Francis Bacon, Of Simulation and Dissimulation, 1597

…for Distinction Sake, a Deceiving by Words, is commonly called a Lye, and a Deceiving by

Actions, Gestures, or Behavior, is called Simulation…

—Robert South, South, 1697, p.525

However, the connection between simulation and dissembling later faded out and is now only of

linguistic interest.[70]

8/11/2019 SimulationsSystems-Wiki.pdf

http://slidepdf.com/reader/full/simulationssystems-wikipdf 34/62

See also[edit]

Computer experiment

Dissimulation

Emulator

in silico

Futures studies

High-level emulation

Illustris project

Lifelike experience

List of discrete event simulation software

List of computer simulation software

Mathematical model

Rule based Modeling

Merger simulation

Project management simulation

Microarchitecture simulation

Mining simulator

Molecular dynamics

Network simulation

Pharmacokinetics simulation

Placebo

Roleplay simulation

Simulation language

Similitude (model)

Simulated reality

Training simulation

Web-based simulation

8/11/2019 SimulationsSystems-Wiki.pdf

http://slidepdf.com/reader/full/simulationssystems-wikipdf 35/62

References[edit]

^ Jump up to:a

b

J. Banks, J. Carson, B. Nelson, D. Nicol (2001). Discrete-Event System

Simulation. Prentice Hall. p. 3. ISBN 0-13-088702-1.

Jump up In the words of the Simulation article in Encyclopedia of Computer Science,

"designing a model of a real or imagined system and conducting experiments with that

model".

Jump up Sokolowski, J.A., Banks, C.M. (2009). Principles of Modeling and Simulation.

Hoboken, NJ: Wiley. p. 6. ISBN 978-0-470-28943-3.

Jump up For example in computer graphics SIGGRAPH 2007 | For Attendees |

PapersDoc:Tutorials/Physics/BSoD - BlenderWiki.

^ Jump up to:a b Thales defines synthetic environment as "the counterpart to simulated

models of sensors, platforms and other active objects" for "the simulation of the external

factors that affect them"[1] while other vendors use the term for more visual, virtual

reality-style simulators [2].

Jump up For a popular research project in the field of biochemistry where "computer

simulation is particularly well suited to address these questions"Folding@home - Main,

seeFolding@Home.

Jump up For an academic take on a training simulator, see e.g. Towards Building an

Interactive, Scenario-based Training Simulator , for medical application Medical Simulation

Training Benefits as presented by a simulator vendor and for military practice A civilian's

guide to US defense and security assistance to Latin America and the Caribbean published

by Center for International Policy.

Jump up Classification used by the Defense Modeling and Simulation Office.

Jump up "High Versus Low Fidelity Simulations: Does the Type of Format Affect

Candidates' Performance or Perceptions?"

Jump up Davidovitch, L., A. Parush and A. Shtub, Simulation-based Learning: The

Learning-Forgetting-Relearning Process and Impact of Learning History, Computers &

Education, April 2008, Vol. 50, No. 3, 866–880

Jump up Davidovitch, L., A. Parush and A. Shtub, The Impact of Functional Fidelity in

Simulator based Learning of Project Management,International Journal of Engineering

Education, March 2009, Vol. 25, No. 2, 333–340(8)

8/11/2019 SimulationsSystems-Wiki.pdf

http://slidepdf.com/reader/full/simulationssystems-wikipdf 36/62

Jump up "Reacting to the Past Home Page"

Jump up https://sites.google.com/site/reactingscience/ Reacting to the Past:STEM

Games

Jump up "Carana," at 'PaxSims' blog, 27 January 2009

^ Jump up to:a b c d Sherman, W.R., Craig, A.B. (2003). Understanding Virtual Reality . San

Francisco, CA: Morgan Kaufmann. ISBN 978-1-55860-353-0.

Jump up Leeb, R., Lee, F., Keinrath, C., Schere, R., Bischof, H., Pfurtscheller, G. (2007).

"Brain-Computer Communication: Motivation, Aim, and Impact of Exploring a Virtual

Apartment". IEEE Transactions on Neural Systems and Rehabilitation Engineering 15(4):

473–481. doi:10.1109/TNSRE.2007.906956.

Jump up Zahraee, A.H., Szewczyk, J., Paik, J.K., Guillaume, M. (2010). Robotic

hand-held surgical device: evaluation of end-effector’s kinematics and development of

proof-of-concept prototypes. Proceedings of the 13th International Conference on Medical

Image Computing and Computer Assisted Intervention, Beijing, China.

Jump up Ahmed K, Keeling AN, Fakhry M, Ashrafian H, Aggarwal R, Naughton PA, Darzi

A, Cheshire N, et al. (January 2010). "Role of Virtual Reality Simulation in Teaching and

Assessing Technical Skills in Endovascular Intervention". J Vasc Interv Radiol 21.

Jump up Narayan, Roger; Kumta, Prashant; Sfeir, Charles; Lee, Dong-Hyun; Choi,

Daiwon; Olton, Dana (October 2004). "Nanostructured ceramics in medical devices:

Applications and prospects". JOM 56 (10): 38–43.Bibcode:2004JOM....56j..38N.doi:10.1007/s11837-004-0289-x. PMID 11196953.

Jump up Couvreur P, Vauthier C (July 2006). "Nanotechnology: intelligent design to treat

complex disease". Pharm. Res. 23 (7): 1417–50. doi:10.1007/s11095-006-0284-8.PMID

16779701.

Jump up Hede S, Huilgol N (2006). ""Nano": the new nemesis of cancer". J Cancer Res

Ther 2 (4): 186–95. doi:10.4103/0973-1482.29829. PMID 17998702.

Jump up Leary SP, Liu CY, Apuzzo ML (June 2006). "Toward the emergence of

nanoneurosurgery: part III—nanomedicine: targeted nanotherapy, nanosurgery, and progress

toward the realization of nanoneurosurgery". Neurosurgery 58 (6): 1009–26; discussion

1009–26. doi:10.1227/01.NEU.0000217016.79256.16. PMID 16723880.

8/11/2019 SimulationsSystems-Wiki.pdf

http://slidepdf.com/reader/full/simulationssystems-wikipdf 37/62

Jump up Nishisaki A, Keren R, Nadkarni V (June 2007). "Does simulation improve patient

safety? Self-efficacy, competence, operational performance, and patient safety". Anesthesiol

Clin 25 (2): 225–36. doi:10.1016/j.anclin.2007.03.009. PMID 17574187.

^ Jump up to:a

b

Meller, G. (1997). "A Typology of Simulators for Medical Education".

Journal of Digital Imaging .

^ Jump up to:a

b

Cooper Jeffery B, Taqueti VR (December 2008). "A brief history of the

development of mannequin simulators for clinical education and training". Postgrad Med J.

84 (997): 563–570. doi:10.1136/qshc.2004.009886. PMID 19103813. Retrieved 2011-05-24.

Jump up Murphy D, Challacombe B, Nedas T, Elhage O, Althoefer K, Seneviratne L,

Dasgupta P. (May 2007). "[Equipment and technology in robotics]". Arch. Esp. Urol. (in

Spanish; Castilian) 60 (4): 349–55. doi:10.4321/s0004-06142007000400004. PMID

17626526.

Jump up "In Cybertherapy, Avatars Assist With Healing". New York Times. 2010-11-22.

Retrieved 2010-11-23.

Jump up Dagger, Jacob (May–June 2008). Update: "The New Game Theory" 94 (3). Duke

Magazine. Retrieved 2011-02-08.

Jump up Steinberg, Scott (2011-01-31). "How video games can make you smarter". Cable

News Network (CNN Tech). Retrieved 2011-02-08.

Jump up Vlaovic PD, Sargent ER, Boker JR, et al. (2008). "Immediate impact of an

intensive one-week laparoscopy training program on laparoscopic skills among postgraduate

urologists". JSLS 12 (1): 1–8. PMC 3016039. PMID 18402731.

Jump up Leung J, Foster E (April 2008). "How do we ensure that trainees learn to perform

biliary sphincterotomy safely, appropriately, and effectively?". Curr Gastroenterol Rep10 (2):

163–8. doi:10.1007/s11894-008-0038-3. PMID 18462603.

Jump up http://www.pong-story.com/intro.htm Archived 10 September 2010 at WebCite

Jump up History of Computers 1980

Jump up "Video Game Console Timeline - Video Game History - Xbox 360 - TIME

Magazine".Time. 2005-05-23. Retrieved 2010-05-23.

Jump up TRON - The 1982 Movie

Jump up http://www.beanblossom.in.us/larryy/cgi.html

Jump up Link Trainer Restoration

^ Jump up to:a

b

http://www.trudang.com/simulatr/simulatr.html

8/11/2019 SimulationsSystems-Wiki.pdf

http://slidepdf.com/reader/full/simulationssystems-wikipdf 38/62

Jump up Simulation - General Information | Open-Site.org

Jump up Video Games in the US Market Research | IBISWorld

Jump up Computer-generated imagery

Jump up Bringing Spidey to Life: Kleiser-Walczak Construction Company

Jump up Benedettini, O., Tjahjono, B. (2008). "Towards an improved tool to facilitate

simulation modeling of complex manufacturing systems". International Journal of Advanced

Manufacturing Technology 43 (1/2): 191–9. doi:10.1007/s00170-008-1686-z.

Jump up Banks, J., Carson J., Nelson B.L., Nicol, D. (2005). Discrete-event system

simulation(4th ed.). Upper Saddle River, NJ: Pearson Prentice Hall. ISBN

978-0-13-088702-3.

Jump up CADE- http://www.uic.edu/sph/cade/

Jump up News-Medical.Net article-

http://www.news-medical.net/news/2005/10/27/14106.aspx

^ Jump up to:a

b

Emergency Response Training

Jump up Federal Standard 1037C

Jump up Crane Simulators | CM Labs Simulations

^ Jump up to:a

b

Reed, M. P., Faraway, J., Chaffin, D. B., & Martin, B. J. (2006). The

HUMOSIM Ergonomics Framework: A new approach to digital human simulation for

ergonomic analysis. SAE Technical Paper, 01-2365

Jump up Chaffin, D. B. (2007). Human motion simulation for vehicle and workplace design.

Human Factors and Ergonomics in Manufacturing & Service Industries,17(5), 475-484

Jump up Jack and Process Simulate Human: Siemens PLM Software

Jump up Bush, P. M., Gaines, S., Gammoh, F., & Wooden, S. A Comparison of Software

Tools for Occupational Biomechanics and Ergonomic Research.

Jump up Niu, J. W., Zhang, X. W., Zhang, X., & Ran, L. H. (2010, December).

Investigation of ergonomics in automotive assembly line using Jack. InIndustrial Engineering

and Engineering Management (IEEM), 2010 IEEE International Conference on (pp.

1381-1385). IEEE.

Jump up Beitler, Matthew T., Harwin, William S., & Mahoney, Richard M. (1996) In

Proceedings of the virtual prototyping of rehabilitation aids, RESNA 96, pp. 360–363.

Jump up G.R. Bennett. The application of virtual prototyping in development of complex

aerospace products. Virtual Prototyping Journal, 1 (1) (1996), pp. 13–20

8/11/2019 SimulationsSystems-Wiki.pdf

http://slidepdf.com/reader/full/simulationssystems-wikipdf 39/62

Jump up From the floor of the 2012 Chicago Auto Show: Automation World shows how

Ford uses the power of simulation « Siemens PLM Software Blog

Jump up The Economist provides a current (as of 2012) survey of public projects

attempting to simulate some theories in "The science of civil war: What makes heroic strife".

Jump up Leinonen (ed.): Simulation studies of liquidity needs, risks and efficiency in

payment networks (Bank of Finland Studies E:39/2007) Simulation publications

Jump up Neville Arjani: Examining the Trade-Off between Settlement Delay and Intraday

Liquidity in Canada's LVTS: A Simulation Approach (Working Paper 2006-20, Bank of

Canada) Simulation publications

Jump up Johnson, K. - McAndrews, J. - Soramäki, K. 'Economizing on Liquidity with

Deferred Settlement Mechanisms' (Reserve Bank of New York Economic Policy Review,

December 2004)

Jump up H. Leinonen (ed.): Simulation analyses and stress testing of payment networks

(Bank of Finland Studies E:42/2009) Simulation publications

Jump up Ulf, Eriksson (2005). Diffusion of Discrete Event Simulation in Swedish Industry .

Gothenburg: Doktorsavhandlingar vid Chalmers tekniska högskola. ISBN 91-7291-577-3.

Jump up Paul H. Selden (1997). Sales Process Engineering: A Personal Workshop.

Milwaukee, WI: ASQ Quality Press. ISBN 978-0-87389-418-0.

Jump up Harrison, Andrew J (2011). "Throwing and catching movements exhibit

post-activation potentiation effects following fatigue". Sports Biomechanics 10 (3):

185–196.doi:10.1080/TNSRE10.1080/14763141.2011.592544.

Jump up Sikora, E.A. (2010, July 27). Space Shuttle Main Propulsion System expert,

John F. Kennedy Space Center. Interview.

Jump up Shuttle Final Countdown Phase Simulation. National Aeronautics and Space

Administration KSC Document # RTOMI S0044, Revision AF05, 2009.

Jump up Shuttle Ground Operations Simulator (SGOS) Summary Description Manual.

National Aeronautics and Space Administration KSC Document # KSC-LPS-SGOS-1000,

Revision 3 CHG-A, 1995.

Jump up Math Model Main Propulsion System (MPS) Requirements Document, National

Aeronautics and Space Administration KSC Document # KSCL-1100-0522, Revision 9, June

2009.

Jump up South, in the passage quoted, was speaking of the differences between a

falsehood and an honestly mistaken statement; the difference being that in order for the

8/11/2019 SimulationsSystems-Wiki.pdf

http://slidepdf.com/reader/full/simulationssystems-wikipdf 40/62

statement to be a lie the truth must be known, and the opposite of the truth must have been

knowingly uttered. And, from this, to the extent to which a lie involves deceptive words, a

simulation involves deceptive actions, deceptive gestures, or deceptive behavior . Thus, it

would seem, if a simulation is false, then the truth must be known (in order for something

other than the truth to be presented in its stead); and, for the simulation tosimulate.

Because, otherwise, one would not know what to offer up in simulation. Bacon’s essay Of

Simulation and Dissimulation expresses somewhat similar views; it is also significant that

Samuel Johnson thought so highly of South's definition, that he used it in the entry for

simulation in his Dictionary of the English Language.

Simulation de

phénomènesLa simulation est un outil utilisé par le chercheur , l' ingénieur , le militaire, etc. pour étudier les résultats

d'une action sur un élément sans réaliser l'expérience sur l'élément réel.

Lorsque l'outil de simulation utilise un ordinateur on parle de simulation numérique. Il a également existé

des simulateurs analogiques et il a été envisagé dans les années 1970 d'en construire des stochastiques.

Les chercheurs, les ingénieurs, les militaires et bien d'autres professionnels se posent souvent la question :

quel est le résultat que j'obtiens si j'exerce telle action sur un élément ?

Le moyen le plus simple serait de tenter l'expérience, c'est-à-dire d'exercer l'action souhaitée sur l'élément

en cause pour pouvoir observer ou mesurer le résultat. Dans de nombreux cas l'expérience est irréalisable,

trop chère ou contraire à l'éthique. On a alors recours à la simulation : rechercher un élément qui réagit

d'une manière semblable à celui que l'on veut étudier et qui permettra de déduire les résultats.

8/11/2019 SimulationsSystems-Wiki.pdf

http://slidepdf.com/reader/full/simulationssystems-wikipdf 41/62

Imitation par ordinateur d'une vaguecirculaire avec le logiciel Blender .

Sommaire

[masquer ]

1 Phénomène réel

2 La question

3 La réponse

4 Les solutions alternatives

5 Limites et avantages de la simulation

6 Différents types de simulation

7 Utilisation de la simulation

8 Notes et références

9 Voir aussi

9.1 Articles connexes

Phénomène réel[modifier | modifier le code]

Le phénomène réel à étudier peut appartenir à de nombreuses branches et en particulier :

la physique (mécanique, optique, thermodynamique, électronique, etc.) :

exemple simple : mouvement d'une masse suspendue à un ressort et soumise à

une impulsion.

exemple plus complexe : mouvement de la caisse d'une automobile en

déplacement sur une route.

8/11/2019 SimulationsSystems-Wiki.pdf

http://slidepdf.com/reader/full/simulationssystems-wikipdf 42/62

l'économie :

exemple simple : remboursement d'un prêt avec intérêt.

exemple plus complexe : revenu d'une taxe dont on fait varier le taux.

la biologie :

exemple simple : diffusion d'un médicament dans le sang en fonction du temps.

exemple plus complexe : évolution d'une épidémie dans une population en fonction

du taux de vaccination et du temps.

le raisonnement :

exemple simple : joueur artificiel de jeu d'échecs.

exemple plus complexe : aide à la décision dans un engagement militaire ( jeu de

guerre).

etc.

La question[modifier | modifier le code]

Au travers des exemples cités ci-dessus, certains professionnels peuvent s'interroger :

l'ingénieur sur l'influence d'un changement d'amortisseurs sur le comportement d'un véhicule en

déplacement sur une route.

le ministre du Budget sur le rapport de la taxe à la valeur ajoutée sur un produit quand le taux en

est modifié.

le médecin sur l'influence d'un vaccin sur l'éradication d'une maladie dans une population.

le militaire sur la tactique à employer dans un engagement de forces aériennes.

La réponse[modifier | modifier le code]

Dans tous les cas ci-dessus la réponse pourrait être obtenue en tentant l'expérience.

l'ingénieur peut construire de nouveaux amortisseurs, les intégrer sur le véhicule, le faire rouler

en disposant dans l'habitacle des capteurs de mouvement (accéléromètres) qui lui feront

connaître les forces subies par le conducteur et les passagers.

le ministre peut décréter l'augmentation ou la baisse de la TVA sur un produit et relever, en fin

d'année, les résultats sur les versements des commerçants.

le médecin peut pratiquer la vaccination de la population et mesurer les effets au cours des

années.

le militaire peut engager des forces contre l'ennemi et mesurer les résultats.

Mais toutes ces expériences ont un ou plusieurs inconvénients :

8/11/2019 SimulationsSystems-Wiki.pdf

http://slidepdf.com/reader/full/simulationssystems-wikipdf 43/62

elles peuvent être coûteuses : la construction d'une nouvelle voiture est relativement chère.

elles peuvent être longues : mesurer l'impact d'une vaccination au cours des années prend...

des années.

elles peuvent être contraires à l'éthique : on n'essaye pas un nouveau vaccin sur une population

sans un minimum de garanties sur les résultats, on ne fait pas exploser une bombe sur une

population uniquement pour en mesurer les effets, on n'effectue pas un essai d'accident sur un

véhicule avec des passagers humains à bord.

elles peuvent être "politiquement incorrectes" : on ne peut pas augmenter ou diminuer un impôt

sans en prévoir les conséquences auparavant.

elles peuvent être difficiles, voire impossibles à mettre en œuvre : le matériel n'existe pas ou la

population de référence n'existe pas.

les résultats ne peuvent pas être mesurés avec certitude : l'expérience ne peut pas être réalisée

plusieurs fois dans des conditions identiques.

etc.

Les solutions alternatives[modifier | modifier le code]

L'expérience posant divers problèmes de réalisation, on a depuis longtemps fait appel à de très nombreux

moyens et outils pour essayer de prévoir les résultats :

les prototypes et les maquettes : on construit un exemplaire, éventuellement à échelle réduite,

du matériel et on effectue sur lui les essais. La simulation est très proche de l'expérience et on

a donc une partie des inconvénients (coûts, durée). on remplace l'humain par un animal : il faut trouver des populations animales dont les

comportements sont proches de l'homme vis-à-vis d'un phénomène donné. De nombreux

groupes de pression luttent contre cette pratique.

on représente le phénomène par une équation : les exemples abondent et ont été utilisés par

tous les élèves et étudiants dans les cours de physique, de chimie, etc. Seuls les phénomènes

les plus simples sont susceptibles de ce type de simulation.

les manœuvres : les militaires font s'affronter deux troupes opposées (les oranges contre les

bleus) sur un vrai terrain avec de vrais matériels mais sans utiliser de munitions réelles. Des

arbitres décident des dégâts infligés.

Tous ces outils sont des simulations. Elles sont plus ou moins proches de l'expérience et plus ou moins

faciles à mettre en œuvre.

Depuis quelques années un nouvel outil a fait son apparition : l'ordinateur et la simulation numérique. Le

principe de base est celui de la représentation du phénomène par une équation. L'ordinateur permet

8/11/2019 SimulationsSystems-Wiki.pdf

http://slidepdf.com/reader/full/simulationssystems-wikipdf 44/62

toutefois de s'affranchir de la limitation principale : la représentation des phénomènes les plus simples.

Grâce à une puissance de calcul toujours croissante et à l'augmentation du volume de données stockables

il est possible de découper un phénomène complexe en milliers, voire en millions, de phénomènes simples

et donc de calculer les résultats sur le phénomène complexe.

Exemple : on sait, en aérodynamique, représenter par une équation les forces (portance, traînée) qui

résultent de l'action d'un courant d'air sur une plaque plane. On ne sait pas représenter par une équation ces

mêmes forces lorsque l'action est exercée sur une surface complexe telle que l'aile d'un avion. La simulation

numérique permet de découper l'aile en plusieurs millions de petits éléments qu'on considère comme étant

des plaques planes. On peut alors calculer les forces qui s'exercent sur chacune d'entre elle et les

combiner pour calculer les forces sur l'aile complète.

Limites et avantages de la simulation[modifier | modifier le code]

L'ordinateur permet aujourd'hui de simuler des phénomènes très complexes tel qu'un avion complet mais la

puissance reste encore insuffisante pour représenter l'ensemble des phénomènes météorologiques : la

simulation de l'évolution du temps reste encore très difficile au delà de quelques heures.

La simulation permet d'effectuer des recherches sur un système isolé, en faisant varier les paramètres un à

un et en recommençant avec les mêmes conditions initiales.

L'expérimentation, sauf pour les phénomènes simples, ne permet pas toujours d'isoler le système à étudier

de son environnement; la maîtrise des conditions initiales peut être compliquée et l'expérience peut détruire

le système étudié ou le modifier suffisamment pour empêcher de recommencer.

La simulation est souvent moins chère que l'expérimentation et comporte beaucoup moins de risques

lorsque l'homme fait partie du système étudié. Les résultats peuvent être obtenus beaucoup plus

rapidement.

La simulation (surtout numérique) est basée sur une connaissance des phénomènes qui ne peut être

obtenue que par l'expérimentation. Une simulation ne peut donc être réalisée que si on dispose d'un acquis

de connaissances suffisant obtenu par des expérimentations sur des phénomènes antérieurs et analogues.

Quelle que soit la qualité de la simulation, elle ne remplace pas totalement l'expérimentation.

Certaines simulations ont un coût très élevé (même s'il reste faible devant celui de l'expérimentation). Ceci

explique que les utilisateurs de la simulation, en particulier lorsqu'elle utilise des moyens de calcul

exceptionnels, sont les industries à forte valeur ajoutée (aéronautique et espace, nucléaire) ou à risque

élevé (militaire).

8/11/2019 SimulationsSystems-Wiki.pdf

http://slidepdf.com/reader/full/simulationssystems-wikipdf 45/62

Différents types de simulation[modifier | modifier le code]

On appelle modèle un élément, analogique ou numérique, dont le comportement vis-à-vis d'un phénomène

est similaire à celui de l'élément à étudier. Les sorties sont les éléments que l'on veut étudier. Les entrées,

paramètres et contraintes sont les éléments dont la variation influe sur le comportement du modèle ; on

appelle entrée ceux qui sont commandés par l'expérimentateur, paramètres ceux que l'opérateur choisit de

fixer et contraintes ceux qui dépendent d'éléments extérieurs. On appelle simulation l'ensemble constitué

par un modèle, les ordres d'entrée, les paramètres et contraintes, et les résultats obtenus.

Comme indiqué plus haut les maquettes, prototypes, etc. peuvent être considérés comme des modèles

analogiques et les essais, tests, manœuvres, etc. comme des simulations analogiques.

Les équations sont des simulations numériques. Aujourd'hui ce terme s'applique essentiellement aux

modèles et simulations réalisés sur ordinateur.

Dans certains cas on peut réaliser des simulations hybrides, analogiques - numériques, qui intègrent divers

éléments dont certains seulement sont représentés par des équations.

Lorsque le calculateur est suffisamment rapide pour fournir un résultat à la même vitesse, voire plus

rapidement, que le phénomène réel on parle de simulation en temps réel :

On peut alors réaliser des simulations analogiques - numériques où l'un des éléments

analogiques est l'homme : il s'agit de simulation avec l'homme dans la boucle. Un

simulateur de pilotage en est un bon exemple : le pilote (analogique) est assis dans une cabine

de pilotage quasi-réelle (analogique) et pilote son avion. Les ordres qu'il donne sont lus par un

ordinateur qui calcule les mouvements de l'avion (numérique). Ces mouvements sont restitués

(analogique) sur la cabine et sur les écrans ce qui permet au pilote de sentir et voir les effets

des ordres qu'il a donné.

De même, dans ce cas, la boucle de simulation peut comporter des éléments réels comme des

équipements et sous-systèmes à tester. On parle alors de matériel dans la boucle ou

"Hardware in the loop" (HiL). Un cas exemplaire est le test de sous-système ABS réel intégré

dans un simulateur de conduite ou géré par un logiciel de type SimulationX.

Le jeu de simulation est une application récente du même principe. La différence entre le jeu et le

simulateur d'étude réside soit dans :

le coût des éléments analogiques : un simulateur de pilotage pour jouer remplace la cabine

réelle par un clavier d'ordinateur et n'utilise qu'un seul écran pour montrer les instruments et le

8/11/2019 SimulationsSystems-Wiki.pdf

http://slidepdf.com/reader/full/simulationssystems-wikipdf 46/62

paysage. Par contre, au moins dans le cas d'un avion de tourisme, les équations de vol sont les

mêmes que celles du simulateur d'étude qui est utilisé par l'ingénieur.

dans l'introduction de paramètres fantastiques : le simulateur pour jouer introduit des

phénomènes qui n'existent pas dans la réalité telles que pouvoirs surnaturels, armes nouvelles,

etc.

Utilisation de la simulation[modifier | modifier le code]

Les simulations sont utilisées par les professionnels (chercheurs, ingénieurs, économistes, médecins, etc.)

dans toutes les phases de recherche ou d'étude d'un phénomène ou pour concevoir et améliorer les

systèmes.

Les simulateurs hybrides analogiques - numériques avec homme dans la boucle, sont de plus en plus

utilisés pour l'enseignement ou l'entraînement. Leur coût relativement élevé les a d'abord réservés aux

professions les plus en pointe ou à risque (pilotage d'un aéronef, commande d'une centrale nucléaire,

engagement armé, etc.). La diminution du prix des systèmes vidéo permet d'envisager aujourd'hui des

applications à la conduite des camions voire des automobiles.

Enfin de nombreux jeux vidéo sont des utilisateurs des mêmes techniques soit en permettant au joueur de

se trouver dans une situation excitante ou dangereuse (pilote de chasse…) soit dans une situation

fantasmagorique.

シミュレーション この項目では、模擬実験について説明しています。

サッカーの反則については「ファウル (サッカー)」をご覧ください。

シミュレーション

(英: simulation)とは、

何らかのシステムの挙動を、それとほぼ同じ法則に支配される他のシステムやコ

ンピュータなどによって模擬すること[1]。「模擬実験」とも。

(サッカー)あたかもファウルを受けたかのようなふりをすること[1]。審判を欺く

行為で反則とされる[1]。→サッカー競技規則を参照。

8/11/2019 SimulationsSystems-Wiki.pdf

http://slidepdf.com/reader/full/simulationssystems-wikipdf 47/62

目次

[非表示]

1概要

2コンピュータとシミュレーション

2.1コンピュータ・シミュレーション

2.2計算機科学におけるシミュレーション

3コンピュータ以外によるシミュレーション

4目的・用途

5コンピュータ・シミュレーションの応用

5.1物理学

5.2工学

5.2.1電子工学

5.2.2無線工学

5.2.2.1アンテナのシミュレーション

5.2.2.2電波伝播のシミュレーション

5.2.2.3通信プロトコルのシミュレーション

5.3軍事

5.4計算機

6訓練としてのシミュレーション 6.1フライトシミュレータ

6.2ドライブシミュレータ

6.3船舶シミュレータ

6.4プラントシミュレータ

6.5教育におけるシミュレーション

6.6軍事教練におけるシミュレーション

7医療シミュレータ

8経済・金融 9デザイン・都市景観

10工学(技術)シミュレーションとプロセスシミュレーション

11脚注

12参考文献

13関連項目

8/11/2019 SimulationsSystems-Wiki.pdf

http://slidepdf.com/reader/full/simulationssystems-wikipdf 48/62

14外部リンク

概要[編集]

ラテン語の 「similisシミリス (似ている)」「simulareシミュラーレ(模倣する)」「simulat(真似た、コピーした)」といった用語から生まれた概念である。

現実のシステムを動かしてその挙動や結果を確かめることが極めて困難、不可能、または危

険である場合にシミュレーションが用いられる。

シミュレーションは、対象となるシステムで働いている法則を推定・抽出し、それを組み込

んだモデル、模型、コンピュータプログラムなどを用いて行われる。

例えば、社会現象などにおける問題の解決方法を探る時など、(悪影響があるので実社会で

はとりあえず試せないので)実際の社会と似た状況を数式などで作りだし、コンピュータ等

を用いて模擬的に動かし、その特性などを把握するのに用いる[2]。例えば風洞実験、水槽実

験で働いている法則を数学的なモデルに置き換えて行う[2]。また例えば経営に関する様々な

事象を数学的なモデルに置き換えてみて、様々な数値を入力したり変化させることで、結果

を推定する[2]。

シミュレーションのための装置やプログラムをシミュレータ (英: simulator)と言う。ただ

し、きわめて単純なシステムを模倣するためのシミュレーション、特に単純化されたモデル

を用いる場合などは(とりあえず)紙と鉛筆(やホワイトボードとペン)だけを用いて手作

業で行われるものもある。

対象となるシステムにおいて働いている法則をどれほど忠実に模倣するかによって、シミュ

レーションの精度は異なる。シミュレーションの質は、シミューレーションを設計する者の

技量や、どの程度まで法則を見抜き、どこまでそれらの法則を模倣させたか、ということに

よって異なるのである。現実の法則を十分に模倣していないシミュレーションは、現実とは

異なった挙動を示す。

またコンピュータを用いて、連続現象を離散化した積算によるシミュレーションは必ず誤差

が生じ、その誤差は蓄積する。従ってコンピュータによるシミュレーションによって良好な

結果を得る為には、モデル化による誤差見積もりが重要となる。モデル化によるシミュレー

8/11/2019 SimulationsSystems-Wiki.pdf

http://slidepdf.com/reader/full/simulationssystems-wikipdf 49/62

ションは、現象についてどの程度正確に真似るかによって計算量を調整することが可能であ

り、現象についての完全な知識は必要とされないなどのメリットがある。

システムのモデル化を行わず、完全な模倣を目的とする場合は、シミュレーションと言わず

エミュレーションということもある。エミュレーションは、模倣したいシステムにおいて、予測できる現象より予測できない現象が支配的である場合などに使われる。

英語はsimulationで、日本語の表記はあくまで「シミュレーション」である。[3][4][5][6][7][8]

コンピュータとシミュレーション[編集]

コンピュータ・シミュレーション

[編集]

コンピュータ・シミュレーションは、実世界や何らかの仮説的状況をコンピュータ上でモデ

ル化するもので、それによってそのシステムがどのように作用するのかを研究することがで

きる。変数を変化させることで、システムの振る舞いについて予測を立てることができる。

コンピュータ・シミュレーションの応用として、コンピュータを使ってコンピュータをシ

ミュレートするというものがある。エミュレータや命令セットシミュレータなどがあり、仮

想化や仮想機械の項目も参照のこと。計算機科学的にも興味深いテーマである(#計算機科学

におけるシミュレーションを参照)。

コンピュータ・シミュレーションは、物理学/化学/生物学における様々な自然科学的システムのモデル化、経済学/社会科学における人間に関わるシステムのモデル化、さらには工学にお

けるシステムのモデル化において、それらシステムの作用について洞察を得る助けとなる。

シミュレーションにコンピュータを使うことの利便性を表す例として、ネットワーク交通量

シミュレーションがある。このようなシミュレーションにおいては、その環境についての初

期設定を変更するとモデルの振る舞いが変化する。一般にコンピュータ・シミュレーション

は、人間との対話を排除した形で行われるものとされる。[要出典 ]

古来、システムの形式的モデル化には解析学が用いられ、代数的に解を求めることで、あるパラメータと初期条件におけるシステムの振る舞いを予測することがおこなわれてきた。こ

れに対し、数値を具体的に計算することによる手法を数値解析という。コンピュータ・シ

ミュレーションは、コンピュータを使わないことには計算量的に現実的でない数値解析をコ

ンピュータによっておこなう「コンピュータによる数値解析」の一種でシミュレーションに

8/11/2019 SimulationsSystems-Wiki.pdf

http://slidepdf.com/reader/full/simulationssystems-wikipdf 50/62

よるもの、とみることもでき、代数的な解法や単純な計算では不可能な場合の補助あるいは

置換として使われることが多い。コンピュータ・シミュレーションには様々なタイプがある

が、それらに共通するのは、システムが取りうる全ての状態を列挙するのが不可能あるいは

現実的でない場合に、そのモデルの代表的シナリオの標本を生成しようとするという点であ

る。

モンテカルロ法や確率論的モデリングによるコンピュータ・シミュレーションは、モデル化

が非常に簡単という特徴がある。

計算機科学に るシミュレーション[編集]

理論計算機科学では、特別な意味がある。万能マシンが、(シミュレーションする対象の)

離散状態マシン(という語をチューリングは使っている。たとえばチューリングマシンのこ

と)の状態遷移と入力と出力を記述した状態遷移表[9]を実行すること(現代風に言うと、コ

ンピュータがそのようなプログラムを走らすこと)を、シミュレーションと言う。シミュ

レーションの語を使ったのはアラン・チューリングである[要出典 ]。またこれに従って、状態遷

移系間の関係に使い、操作的意味論の研究で有用である。

少し理論的でないが、興味深いコンピュータ・シミュレーションの応用は、コンピュータを

使ったコンピュータのシミュレートである。コンピュータ・アーキテクチャでは、一般にエ

ミュレータと呼ばれるシミュレータを、しばしば実機で走らせるのがめんどう(たとえば、

新しく設計されたコンピュータでまだ構築されていないとか、過去のコンピュータで既に存

在しないとか)なプログラムを実行するのに使う。また、緊密に制御されたテスト環境でプ

ログラムを実行するのに使う(仮想化も参照のこと)。たとえば、マイクロプログラムやア

プリケーションプログラムを、実機に送り込む前にデバッグするのに使う。コンピュータの

動作がシミュレートなので、コンピュータの動作の全ての情報をプログラマが直接的に利用

でき、速度を変えたりステップ実行したりなど好きなようにできる。

シミュレータを使ってフォルトツリー解析を行うこともある。また、大規模集積回路の論理

設計は実際に製造に入る前にシミュレータでテストされる。シンボリックシミュレーション

では、変数を、未知の値を表すのに使う。

最適化問題の分野では、物理プロセスのシミュレーションが進化的計算と共に使われ、制御

戦略の最適化を行う。

8/11/2019 SimulationsSystems-Wiki.pdf

http://slidepdf.com/reader/full/simulationssystems-wikipdf 51/62

コンピュータ以外によるシミュレーション[編集]

ミニチュアによる実験など、何らかの物理的な物体で実物を置き換えることもシミュレー

ションの一種である。これを「物理的シミュレーション」と言うこともある。置換する物体

としては、実物よりも小さいものや安価なものが選ばれる。

目的・用途[編集]

1. 建築物や自動車などの製品の機構に内在する欠陥(負荷や強度など)を模型や

コンピュータによって探して取り除く。

2. ビジネスにおいて客層や商品、時間帯、店舗等の調査結果をシミュレーション

に取り入れることで、効率的な販売をする。

3. 災害の発生や規模の予知。地震、津波、火災などの自然災害や、原子力発電所

のメルトダウンや航空機事故などの人災などの防災。

4. 自動車におけるドライブシミュレータや航空機におけるフライトシミュレータ

等、各種の操縦、操作を学ぶ手立てとしての利用。いろいろなシチュエーショ

ン、特に実機では危険を伴うような場面を体験することが可能となる。

5. シミュレーションゲームではシミュレーションを娯楽として行う。ボードやコ

マやカードを使い事象を再現するようなルールに基づいてプレイするものと、

コンピュータを使って事象の再現を行わせるものとがある。ウォーゲーム、戦

略ゲーム、経営ゲームなど。前項のドライブ、フライトシミュレータはレー

ス、戦闘などの形でゲームとしても存在する。

6. その他、天気予報や人口の推移、予測、分析の分野でも広く使われている。

コンピュータ・シミュレーションの応用[編集]

コンピュータの登場によって、人間の手による計算ではほとんど不可能な膨大な量の総当り

でしか行えない計算が比較的短時間で行えるようになったため、コンピュータによるシミュ

レーションは自然現象や経済活動や人口の推移といったものに使用されるようになった。コ

ンピューターの演算能力の発展は、以前は縮小模型や実物大模型などによって行われていた

実験を計算による仮想空間のみで実験・予測することが可能になってきている。

8/11/2019 SimulationsSystems-Wiki.pdf

http://slidepdf.com/reader/full/simulationssystems-wikipdf 52/62

物理学

[編集]

例えば、木の葉が舞い落ちる動きを通常の手計算で導き出す事は不可能であった。これは重

力や空気抵抗だけでなく、木の葉自体の動きによる空気の状態の変化などが複雑に絡み合っ

ているからである。この、カオティックな振る舞いに対して、単純計算を膨大に繰り返す事の出来るコンピュータによって、ある程度の周期性や規則性を見出されうる。

工学

[編集]

電子工学[編集]

電子工学においては、コンピューター上で回路の設計や実験をするのに、SPICEやSPICEを

起源とする電子回路シミュレーション・ソフトウェア等が使われている。電子回路を所定の

書式でシミュレーターに入力(GUIによる入力が可能なものも多い)すると、各電子部品の電

気的特性を元に回路の動作が計算され、回路の動作を調べることができる。

無線工学[編集]

アンテナのシミュレーション[編集]

無線工学においては、アンテナの設計をするのにアンテナ・シミュレーション・ソフトウェ

アが用いられる。アマチュア用途ではMMANAやMMANA-GAL等のフリーソフトがある。アン

テナの物理的な形状を入力すると、自由空間や特定の地上高におけるアンテナ上の電圧分

布、電流分布、共振周波数、給電点におけるインピーダンス特性、SWR特性などを計算により求めることができる。短縮型アンテナやマルチバンド・アンテナの設計のために、延長コ

イル、短縮コンデンサ、LCトラップ等を挿入した場合のリアクタンス値を求めることもでき

る。

電波伝播のシミュレーション[編集]

無線工学において、電波伝播(電波の伝わり方)をシミュレーションするのに電波伝播シ

ミュレーション・ソフトウェアが用いられる。VHFやUHFのテレビ放送局や中継局のサービ

スエリアを調べるために、アメリカの研究者 A. G. Longleyと P. L. Riceとが1968年に

Longley-Rice Modelアルゴリズムを開発・発表した。このアルゴリズムは 20 MHz - 20 GHzの

周波数に適用でき、これを基にした電波伝播シミュレーション・ソフトウェアが、日本のい

くつかの電気通信コンサルタント会社により開発されている。[10]

8/11/2019 SimulationsSystems-Wiki.pdf

http://slidepdf.com/reader/full/simulationssystems-wikipdf 53/62

シミュレーションするには、ソフトウェアに、大地の導電率と比誘電率、大気の屈折率、送

信場所や受信場所の標高、周波数、電波の偏波面、アンテナの利得や地上高、送信機の出

力、受信機の感度などの値を与える。また、シミュレーション対象地域のデジタル地形デー

タ(たとえばNASAのFTPサイト[11]からダウンロードできる)を与える。すると、電波の大気

による屈折、地形による反射や回折、電波が伝わるうえで受ける減衰等を計算し、電波の届

く範囲をシミュレーションする。結果は、数値や、地図上に電波の強さごとにグラフィカル

に色分けして示される。[10]

フリーソフトとしてはカナダのアマチュア無線家 Roger Coude(VE2DBE)が1988年に開発

した Radio Mobile[12] がある。[10]

通信プロトコルのシミュレーション

[編集]

TCP/IP等の通信プロトコルの分野では日々新しい方式が提案されている。IEEEやITU、ある

いは日本の電波産業会( ARIB)などで次世代の通信プロトコルの標準規格が議論されるが、

このとき各提案者の案として提示されている規格が、さまざまな条件下でどのような特性を

持っているのかを比較検討する必要がある。このような局面で通信プロトコルのシミュレー

ション が必須となっている。2層(データリンク層)以上の通信プロトコルの規格は状態遷

移図で記載されることが多いが、記述された状態遷移等の処理、条件をコンピュータ上で疑

似し、スループットやエラー処理などの評価を行う。

フリーウェアではNS3[13] 等があるが、企業や研究所のレベルではQualnet[14][15]、OPNET

Modeler [16][17]等の商用のシミュレーターを使用するケースが多い。

この分野のシミュレーションでは信号処理の部分をMatLabやSimlink、電波伝搬の部分を

WirelessInSight, Winprop, Atoll等の他のシミュレーターや計算ソフトと連携させたりする場合

もある。また特に無線、移動体の分野では各通信機の動きも重要な要素となるためその部分

に関して他のツールや実際の計測値などと連携させる試みもなされている。

Qualnet、OPNET Modeler 等の商用ツールでは実際のネットワーク上を流れる通信パケットを

シミュレータと接続できるものもあり、仮想のネットワークを利用した時の動画品質も確認

などにも使われている。

8/11/2019 SimulationsSystems-Wiki.pdf

http://slidepdf.com/reader/full/simulationssystems-wikipdf 54/62

軍事

[編集]

軍事分野においては戦闘状況をシミュレートしたモデル研究が行われており、地形、時間、

損害率、兵員数、戦闘価値、移動速度、発見率、命中率などの要素から戦闘の推移、両軍の

損害などを導き出すことができる。また指揮官制、補給計画立案、戦術研究、海空軍の訓練などでシミュレーションは用いられている。

また、最近の戦争においては情報を伝達するための通信の確保は戦況を左右する重要な要素

であるため、部隊展開時に山間部や市街地などにおいても兵員同士が途切れることなく通信

できることをシミュレーションするシステム(JCSS:旧称 NetWars)をアメリカ国防情報

システム局 (DISA)が開発している[18][19]。

計算機

[編集]

電子計算機により電子計算機をシミュレーションすることができる。これにより、たとえば

まだ実際には設計段階で実機の無い計算機のためのソフトウェアを開発したり、動作を確認

することができる。 あるいは実在の計算機をシミュレーションすることにより、実際にその

アーキテクチャーの計算機ハードウェアを持たなくてもソフトウェアを実行できる。 シミュ

レーションにより構築された計算機は仮想マシン(VM)とも呼ばれ,マシン構成を自由に変

更したり、論理的に別の仮想マシンを立てて処理することでデータアクセスの独立性を保証

することでセキュリティを確保したり、仮想マシンの状態を保存しておくことでシステムの

瑕疵等による障害からの回復を容易にすることなどができる。

訓練としてのシミュレーション[編集]

8/11/2019 SimulationsSystems-Wiki.pdf

http://slidepdf.com/reader/full/simulationssystems-wikipdf 55/62

大型車のシミュレータで訓練中の兵士

シミュレーションは一般市民や兵士の訓練に使われることが多い。これは、実際の装置や兵

器を訓練に使用するのがコスト的に高価すぎたり、単に非常に危険であるという理由からで

ある。この場合、安全な仮想環境で意味の有る訓練が行われる。特に、実際なら生命に関わるような失敗をしても許される点は重要である。

訓練におけるシミュレーションは3つに分類される。

「ライブ」シミュレーション -実地でシミュレートされた装備を身につけた人間

が訓練を行う。

「仮想」シミュレーション -仮想環境でシミュレートされた装備を身につけた人

間が訓練を行う。

「構築型」シミュレーション -仮想環境でシミュレートされた装備を身につけたシミュレートされた人間が訓練を行う。これは、ウォーゲームと呼ばれるものが

進化したものである。

フライトシミュレータ

[編集]

詳細は「 フライトシミュレーション 」を参照

フライトシミュレータは、地上で航空機の操縦士を訓練するのに使われる。この場合、操縦

士がシミュレートされた航空機を墜落させても生命に危険はない。特に実地では訓練が困難

な危険な状況を設定して訓練することが可能である。例えば、エンジンが停止した状態での

着陸、電気系統が停止した状態での着陸、油圧系統が機能しない状況での着陸などである。

最近のシミュレータは視界の表示や油圧による姿勢制御が高度に進化している。シミュレー

タは通常、実際の訓練用航空機よりも低価格である。

ドライブシミュレータ

[編集]

詳細は「 ドライビングシミュレーター 」を参照

ドライブシミュレータは実際の自動車の特性を仮想環境内で再現する。外的要因や条件を再

現することで、運転者が実際の自動車を運転しているかのように感じさせる。訓練目的で使

われることが多いが、研究目的でも使われる。

8/11/2019 SimulationsSystems-Wiki.pdf

http://slidepdf.com/reader/full/simulationssystems-wikipdf 56/62

船舶シミュレータ

[編集]

船舶シミュレータは、船員の訓練に使われる。特に大型の船舶をシミュレートするものが多

い。種類としては、操船訓練を行なう操船シミュレーター、エンジンプラントの運転訓練を

行なうエンジントラブルシミュレーター、荷役訓練を行なう荷役シミュレーターなどがある。

プラントシミュレータ

[編集]

化学プラントのプラントシミュレータは、物理モデルに基づいて化学プラントの動的な挙動

を模擬するものである.さまざまな条件における挙動を実現できるため,主に,プラントを

運転するオペレータに対する運転操作の訓練に用いられている.

教育に るシミュレーション

[編集]

教育におけるシミュレーションも訓練の一種と考えられ、特定の主題に沿って行われる。ビ

デオを鑑賞し、問題の解決策を話し合い、ロールプレイを行うなどの手法がある。企業によ

るビジネス教育の一環としてもシミュレーションが採用されつつある。リスクのない仮想環

境でビジネス戦略の実験をしたり、ケーススタディの学習における拡張手段として用いられ

る。

軍事教練に るシミュレーション[編集]

兵士が行軍や歩兵戦闘などをシミュレーションするもの。Operation Flashpoint: Cold War

Crisisや ArmA: Armed Assaultから発展したVBS1・VBS2が米豪等の軍で採用されている。

医療シミュレータ[編集]

医療シミュレータは、医療に従事する者への治療法/診断法/概念/意思決定についての教育の

目的で、近年開発が盛んになってきている。医療シミュレータによる訓練は、単純な血液採

取から腹腔鏡手術まで各種存在する。また、新型医療機器の開発においてもシミュレーションは重要である。医療シミュレータでもコンピュータが重要な役割を担っている。実物大の

人形を用いたシミュレータでは、人形への薬物投与などによって適切な反応を示すようにプ

ログラムされている。視覚をコンピュータグラフィックスで擬似する場合、触覚は訓練者の

動作に反応するようプログラムされたフィードバック機器で再現する。この場合、現実性を

8/11/2019 SimulationsSystems-Wiki.pdf

http://slidepdf.com/reader/full/simulationssystems-wikipdf 57/62

増すために実際の患者のCTやMRIのデータを用いることが多い。より簡便なシミュレーショ

ンとして、ウェブブラウザで操作できるものもあるが、触覚は再現されず、キーボードとマ

ウスで操作することになる[1]。

医療シミュレータとは若干意味が異なるが、偽薬を使った医薬の有効性の試験も一種のシミュレーションと言える。

経済・金融[編集]

個々の人々は仮に自分の利益追求だけを求める単純なモデルと考えたとしても、社会全体と

しての動きを知る事は出来ない。単純が複数集まるとそこには、様々な性質が生まれるとい

う複雑系であるためで、これもまた、コンピュータの膨大な計算のシミュレーションによっ

て予想されうるものであるが、実際のところ株価や物価の変動など、経済の動きを予測することは容易ではない。

金融においては、コンピュータシミュレーションを用いてシナリオ立案が行われる。例え

ば、リスクを考慮した正味現在価値 (NPV)は計算方法は確立しているが、入力値は不明な場

合がある。評価対象のプロジェクトの性能を擬似することで、シミュレーションによって

様々な場合の NPVが求められる。

デザイン・都市景観[編集]

コンピュータグラフィックス(CG)によって作成されたバーチャルリアリティ映像を、工業

デザインや建築デザインの成果物を事前評価するのに用いる。例えば建築物や構造物による

景観への影響を予測する景観シミュレーションの場合、実写風景の上で建物のCGと組み合わ

せたり、建物や背景の全てをCGで構築し、実際に建築した様子に近い景観を観察することが

出来る。コンピュータの計算能力が実用に達するまでは、手作業により遠近法にそって書か

れたパース画を作成し評価していた。

都市計画のツールとして都市シミュレータを使って、様々なポリシーの決定によって都市が

どのように変わるかを把握することができる。大規模な都市シミュレータの例としては、

UrbanSim(ワシントン大学で開発)、ILUTE(トロント大学で開発)、Distrimobs[20](ボ

ローニャ大学で開発)などがある。都市シミュレータはエージェントに基づくシミュレー

ションが一般的で、土地の利用計画や交通機関などが入力として設定される。

8/11/2019 SimulationsSystems-Wiki.pdf

http://slidepdf.com/reader/full/simulationssystems-wikipdf 58/62

景観シミュレータと都市シミュレータの開発を行う研究分野は、一般的に計画支援システム

と呼ばれている。

工学(技術)シミュレーションとプロセスシミュレーション[編集]

シミュレーションは、工学システムや多くのプロセスから構成されるシステムの重要な機能

である。例えば電子工学では、遅延線を使って実際の伝送線路における遅延や位相のずれを

シミュレートする。また、擬似負荷(ダミーロード)を用いてインピーダンスのシミュレー

トが行われる。シミュレータは一般にシミュレート対象の一部の操作や機能だけを擬似す

る。一方、エミュレータは対象の全機能を擬似するのが一般的である。

多くの工学シミュレーションは、数学的モデルを用いて、コンピュータを利用して行われ

る。しかし、その数学的モデルが信頼できない場合も多い。流体力学のシミュレーションは

数学的なシミュレーションと物理的なシミュレーションの両方を必要とすることが多い。こ

の場合、物理的モデルは動的相似性(Dynamic Similitude)を要求される。物理的シミュレー

ションや化学的シミュレーションは、研究目的だけでなく、具体的な実用目的を持つ。例え

ば、化学工学におけるプロセスシミュレーションによって得られたプロセスのパラメータ

は、石油精製などの化学工場の運用に即座に活用できる。

生産技術・オペレーション・オペレーションズリサーチの分野でよく使われる離散事象シ

ミュレーションは、様々なシステムのモデル化に使われる。例えば、ビジネスにおいて各個

人が30のタスクを実行可能で、数千の製品やサービスがあり、各製品/サービスには数十のタ

スクを逐次的に行う必要があり、顧客がどの製品/サービスを求めるかは季節によって変動し

たり、将来的に変化していく。このような状況をシミュレーションすることで経営上の様々

な意思決定の助けとなる。関連する事項として、制約条件の理論、ボトルネック、コンサル

ティングなどがある。

脚注[編集]

[ヘル

プ]

^ a b c 広辞苑第6版

8/11/2019 SimulationsSystems-Wiki.pdf

http://slidepdf.com/reader/full/simulationssystems-wikipdf 59/62

^ a b c ブリタニカ百科事典「シミュレーション」

広辞苑 第五版「シミュレーション」

広辞苑 第六版「シミュレーション」

カタカナ語辞典「シミュレーション」

goo辞書「simulation」

「シミュレイション」と表記されることはある。(カタカナ英和辞典)

「日本語の文章や話し言葉では唇音拗音を回避した「シュミレーション」と

いう形で書かれたり発音されたりすることもある。[要出典 ]」と主張した人がいる[誰 ?]。

英語版のSimulationの記事がこれを「状態遷移表」としている。等価性とし

ては多分それでもいいと思うが、普通万能チューリングマシンの議論では、状

態遷移表は万能機械を記述する遷移表とし、対象機械の記述はテープの初期状

態として与える。

^ a b c 原岡 充「Radio Mobileを使った中山間地域の電波伝搬シミュレーショ

ン」、『CQ ham radio』2009年1月号、CQ出版社、東京都豊島区、2009年1

月、 pp. 84-89。

NASAデジタル地形データダウンロード・サイト (FTP) - NxxEyyy.hgt.zipの

xxは北緯、yyyは東経。注意:アクセスが集中していると接続拒否される。

Radio Mobileダウンロード・サイト

NS3 NSNAM Home Page

QualNet Home Page

構造計画研究所QualNet Home Page

OPNET Modeler Home Page

情報工房OPNET Modeler Home Page

JCSS History

JCSS User’s Manual7.0 Final (OPNET 2.6.4)

http://distrimobs.fisicadellacitta.it

参考文献[編集]

増田顕邦ほか『シミュレーション入門』日刊工業新聞社(昭和36年9月23日発行)

R. Frigg and S. Hartmann, Models in Science. Entry in the Stanford Encyclopedia of

Philosophy .

8/11/2019 SimulationsSystems-Wiki.pdf

http://slidepdf.com/reader/full/simulationssystems-wikipdf 60/62

S. Hartmann, The World as a Process: Simulations in the Natural and Social

Sciences, in: R. Hegselmann et al. (eds.), Modelling and Simulation in the Social

Sciences from the Philosophy of Science Point of View , Theory and Decision Library.

Dordrecht: Kluwer 1996, 77–100.

P. Humphreys, Extending Ourselves: Computational Science, Empiricism, and

Scientific Method . Oxford: Oxford University Press, 2004.

Roger D. Smith: Simulation Article, Encyclopedia of Computer Science, Nature

Publishing Group, ISBN 0-333-77879-0.

Roger D. Smith: "Simulation: The Engine Behind the Virtual World", eMatter,

December, 1999.

Aldrich, C. (2003). Learning by Doing : A Comprehensive Guide to Simulations,

Computer Games, and Pedagogy in e-Learning and Other Educational Experiences.

San Francisco: Pfeifer — John Wiley & Sons.

Aldrich, C. (2004). Simulations and the future of learning: an innovative (and perhaps

revolutionary) approach to e-learning. San Francisco: Pfeifer — John Wiley & Sons.

Percival, F., Lodge, S., Saunders, D. (1993). The Simulation and Gaming Yearbook:

Developing Transferable Skills in Education and Training. London: Kogan Page.

South, R., "A Sermon Delivered at Christ-Church, Oxon., Before the University,

Octob. 14. 1688: Prov. XII.22 Lying Lips are abomination to the Lord", pp.519–657 in

South, R., Twelve Sermons Preached Upon Several Occasions (Second Edition),

Volume I , Printed by S.D. for Thomas Bennet, (London), 1697.

Of Simulation and Dissimulation フランシス・ベーコンの論文

Wolfe, Joseph & Crookall, David, (1998). Developing a scientific knowledge of

simulation/gaming . Simulation & Gaming: An International Journal of Theory,

Design and Research, 29(1), 7–19.

Bibliographies containing more references to be found on the website of the journal

Simulation & Gaming .

関連項目[編集]

ウィキメディア・コモンズに

は、シミュレーションに関連

するカテゴリがあります。

8/11/2019 SimulationsSystems-Wiki.pdf

http://slidepdf.com/reader/full/simulationssystems-wikipdf 61/62

Scilab - MATLAB類似でフリーウェアのシミュレーション言語。システムフロー図

をGUIで描いてプログラムできる。

GNU Octave - MATLAB互換を目指したフリーソフトウェアの行列型数値計算用言

語。統計物理や工学的計算によく使われる。

R言語 - S言語準拠のフリーソフトウェアの行列型数値計算言語。経済予測など時

系列解析・シミュレーションによく使われる。

SPICE (ソフトウェア) -カリフォルニア大学バークレー校で1973年に開発され

た、電子回路のアナログ動作をシミュレーション

するソフトウェア。

OrthoCAD -歯列矯正において矯正歯科医が治療計画、方法作成のために利用する

シミュレーションシステム。抜歯の影響の評価や矯正器具の最適な設置位置など

がパソコン上で実際に歯を動かすことによりシミュレーションできる。

オペレーションズリサーチ

地球シミュレータ

ビッグデータ

スーパーコンピュータ

カオス理論

複雑系

統計学

標本調査

CAE

オフラインティーチング

シミュレーション(サッカーの反則行為)

エミュレータ

In silico

モンテカルロ法

偽薬

物理演算

シミュレーテッドリアリティ

外部リンク[編集]

日本シミュレーション学会

日本医学シミュレーション学会

8/11/2019 SimulationsSystems-Wiki.pdf

http://slidepdf.com/reader/full/simulationssystems-wikipdf 62/62

JASAG 日本シミュレーション&ゲーミング学会

EUROSIM —ヨーロッパのシミュレーション学会の連合組織

INFORMS -オペレーションズリサーチと管理科学に関する研究所

National Center for Simulation

Simulation Interoperability Standards Organization

The Society for Modeling and Simulation International (Formerly the Society of

Computer Simulation)

Winter Simulation Conference

日本バイナリー株式会社:手術シミュレーション機器など