24
Simulation of the e+ Source up to the CLIC Damping Ring A. VIVOLI* Thanks to: L. RINOLFI (CERN) R. CHEHAB (IPNL & LAL / IN2P3-CNRS) O. DADOUN, F. POIRIER, P. LEPERCQ, A. VARIOLA (LAL / IN2P3-CNRS) V. STRAKHOVENKO (BINP) K. FLÖTTMANN (DESY) * E-mail : [email protected]

Simulation of the e+ Source up to the CLIC Damping Ring

Embed Size (px)

DESCRIPTION

Simulation of the e+ Source up to the CLIC Damping Ring. A. VIVOLI* Thanks to: L. RINOLFI (CERN) R. CHEHAB (IPNL & LAL / IN2P3-CNRS) O. DADOUN, F. POIRIER, P. LEPERCQ, A. VARIOLA (LAL / IN2P3-CNRS) V. STRAKHOVENKO (BINP) K. FLÖTTMANN (DESY). * E-mail : [email protected]. - PowerPoint PPT Presentation

Citation preview

Page 1: Simulation of the e+ Source up to the CLIC Damping Ring

Simulation of the e+ Source up to the CLIC Damping Ring

A. VIVOLI*

Thanks to:

L. RINOLFI (CERN)

R. CHEHAB (IPNL & LAL / IN2P3-CNRS)

O. DADOUN, F. POIRIER, P. LEPERCQ, A. VARIOLA (LAL / IN2P3-CNRS)

V. STRAKHOVENKO (BINP)

K. FLÖTTMANN (DESY)

* E-mail : [email protected]

Page 2: Simulation of the e+ Source up to the CLIC Damping Ring

20/04/23A. Vivoli, CLIC Positron Source,

CLIC 2009, CERN2

CONTENTS

• General scheme of the CLIC positron source

• Design and Simulation of the elements

• Conclusions

Page 3: Simulation of the e+ Source up to the CLIC Damping Ring

e- gun

LaserDC gunPolarized e-

Pre-injector Linac for e-

200 MeV

e-/Target

Pre-injector Linac for e+

200 MeV

Primary beam Linac for e-

5 GeV

Inje

ctor

Lin

ac

2.66

GeV

e+ DR

e+ PDRB

oost

er L

inac

5.

14 G

eV

4 GHz

e+ BC1 e- BC1

e+ BC2 e- BC2e+ Main Linac e- Main Linac

2 GHz

e- DR

e- PDR

2 GHz 2 GHz 2 GHz

4 GHz 4 GHz

12 GHz 12 GHz

8 GeV48 km

2.86 GeV 2.86 GeV

e

Target

AMD

2.86 GeV 2.86 GeV

3 TeV

Base line configuration

CLIC Main Beam Injector Complex (2009)

IP

Unpolarized e+

3

Page 4: Simulation of the e+ Source up to the CLIC Damping Ring

4

POSITRON SOURCES USING CHANNELING FOR ILC & CLIC

• PROPOSED POSITRON TARGET FOR CLIC

e-

Crystal Amorphous

e+, e-, e-

e+

2 m

(5 GeV)

W: 1.4 mm thick W: 10 mm thick

N. simulated e- : 6000 r=2.5 mm

20/04/23 A. Vivoli, CLIC Positron Source, CLIC 2009, CERN

Page 5: Simulation of the e+ Source up to the CLIC Damping Ring

Gamma Production

20/04/23 A. Vivoli, CLIC Positron Source, CLIC 2009, CERN

5

PHOTONS SPECTRUM

CHANNELING: N = 111942 N / Ne- = 18.657 E = 170.37 MeV Ee- = 5 GeV

r = 9.85 mm

SPOT SIZE

By V. STRAKHOVENKO

Page 6: Simulation of the e+ Source up to the CLIC Damping Ring

Positron Production

20/04/23 A. Vivoli, CLIC Positron Source, CLIC 2009, CERN

6

N. e+ Yield e+/e-

x (rms)

mm mrad

y (rms)

mm mrad

<E> MeV

E

MeV

z (rms)* mm

49500 8.25 63614 77903 54.51 115.5 0.301*

Positron Beam Parameters at the target

By O. DADOUN

Page 7: Simulation of the e+ Source up to the CLIC Damping Ring

20/04/23 A. Vivoli, CLIC Positron Source, CLIC 2009, CERN

7

Adiabatic Matching Device

• Length: L = 20-50 cm• Magnetic field at the

target : B0 = 6 T

• Magnetic field at the end : B(L) = 0.5 T

• Magnetic Field Behaviour :

zz

1

B)B(

0

Page 8: Simulation of the e+ Source up to the CLIC Damping Ring

AMD RESULTS

20/04/23 A. Vivoli, CLIC Positron Source, CLIC 2009, CERN

8

AMD

cm

N*. e+

Yield

e+/e-

x

mm mrad

y

mm mrad

<E> MeV

E

MeV

z *

mm

z

cm MeV

20 16476 2.75 682 681 78.9 164.7 8.7* 136.2

Page 9: Simulation of the e+ Source up to the CLIC Damping Ring

CAVITY 100 KW CW (P. Lepercq)

L= 58.96886 cm Fr = 1.99915469674 GHz Iris : r = 20mm Ezmax(r=0)= 5.2 MV/m

Page 10: Simulation of the e+ Source up to the CLIC Damping Ring

20/04/23 10

Page 11: Simulation of the e+ Source up to the CLIC Damping Ring

Capture Section Design

20/04/23 A. Vivoli, CLIC Positron Source, CLIC 2009, CERN

11

e+ (200 MeV)

Target

AMD

e-

63 Cavities

Solenoid

AMD

• Length : L = 20 cm• Magnetic Filed: B = 6 - 0.5 T• Final Aperture: r = 2 cm

SOLENOID

• Length : L = 41 m• Magnetic Filed: B = 0.5 T• Drift Tube Aperture: r = 2 cm

Accelerating cavities:

• Number of cavities: N = 63• Length: L = 60 cm• Max Energy Gain: E = 5.95 MeV• Maximum Gradient: Ez (r=0) = 25 MV/m• Frequency: = 2 GHz

Page 12: Simulation of the e+ Source up to the CLIC Damping Ring

Capture Results

20/04/23 A. Vivoli, CLIC Positron Source, CLIC 2009, CERN

12

S

cm

N. e+

Yield

e+/e-

x

mm mrad

y

mm mrad

<E> MeV

E

MeV

z

mm

z

cm MeV

4200 6186 1.03 6939 7051 214.1 35.0 9.9 33.5

To be optimized…

Page 13: Simulation of the e+ Source up to the CLIC Damping Ring

20/04/23 A. Vivoli, CLIC Positron Source, CLIC 2009, CERN

13

Capture Section (+ Bunch Compressor)

Crystal To the accelerator

Target

Adiabatic MatchingDevice Pre-accelerator

Chicane

e-

e+

Solenoid Cavities

BendingMagnets

Drift

Magnetic field

Electric field

e+

e-

e-

Magnet LINAC 2 GHz

Page 14: Simulation of the e+ Source up to the CLIC Damping Ring

20/04/23 A. Vivoli, CLIC Positron Source, CLIC 2009, CERN

14

e+

Magnetic Chicane

Quadrupoles

Bunch Compressor Design

TW structure

Page 15: Simulation of the e+ Source up to the CLIC Damping Ring

20/04/23 A. Vivoli, CLIC Positron Source, CLIC 2009, CERN

15

Bunch Compressor Elements

Quadrupoles:

• Number: N = 14• Length: L = 20-40 cm• Gradient: G = 1.5 – 4.7 T/m• Aperture: r = 5-15 cm

Accelerating cavities:

• Number of cavities: N = 1 TW• Length: L = 3.9 m• Average Gradient: Ez = 14.5 MV/m• Frequency: = 2 GHz

Bending Magnets:

• Number: N = 4• Length: L = 30 cm• Magnetic Field: B = 0.3513 T

Drift Tubes:

• Number: N = 28• Aperture: r = 5-10 cm• Length: L = 10 - 40 cm

Page 16: Simulation of the e+ Source up to the CLIC Damping Ring

16

MAGNETIC CHICANE

BS1 BS2 BS3 BS4

103

mm

for

=

172

mra

d

e+

0.30 m 0.30 m 0.30 m0.30 m

0.296 m 0.296 m0.30 m

- -

20/04/23 A. Vivoli, CLIC Positron Source, CLIC 2009, CERN

Chicane Modeling:

• Bending angle: = 9.87 deg• Drift: = 30 cm• Diaphragm: r = 4.0 cm

Page 17: Simulation of the e+ Source up to the CLIC Damping Ring

Bunch Compressor Results

20/04/23 A. Vivoli, CLIC Positron Source, CLIC 2009, CERN

17

S

cm

N. e+

Yield

e+/e-

x

mm mrad

y

mm mrad

<E> MeV

E

MeV

z

mm

z

cm MeV

5688 5895 0.98 22678 23479 211.8 26.0 7.7 18.35

Page 18: Simulation of the e+ Source up to the CLIC Damping Ring

20/04/23 A. Vivoli, CLIC Positron Source, CLIC 2009, CERN

18

Injector Linac I (800 MeV)

TW structures

Quadrupoles

From A. Ferrari et al., CLIC Note 626-655-723

Page 19: Simulation of the e+ Source up to the CLIC Damping Ring

20/04/23 A. Vivoli, CLIC Positron Source, CLIC 2009, CERN

19

Injector Linac II (1.5 GeV)

TW structures

Quadrupoles

Page 20: Simulation of the e+ Source up to the CLIC Damping Ring

20/04/23 A. Vivoli, CLIC Positron Source, CLIC 2009, CERN

20

Injector Linac III (2.86 GeV)

TW structures

Quadrupoles

Page 21: Simulation of the e+ Source up to the CLIC Damping Ring

20/04/23 A. Vivoli, CLIC Positron Source, CLIC 2009, CERN

21

Injector Linac Elements

Quadrupoles:

• Number: N = 196• Length: L = 40-60 cm• Gradient: G = 1.0 – 18.5 T/m• Aperture: r = 5-15 cm

Accelerating cavities:

• Number of cavities: N = 49 TW• Length: L = 3 - 4.5 m• Average Gradient: Ez = 14.5 MV/m• Frequency: = 2 GHz

Drift Tubes:

• Number: N = 50• Aperture: r = 5 cm• Length: L = 200 - 280 cm

Page 22: Simulation of the e+ Source up to the CLIC Damping Ring

20/04/23 A. Vivoli, CLIC Positron Source, CLIC 2009, CERN

22

Injector Linac Results

S

cm

N. e+

Yield

e+/e-

x

mm mrad

y

mm mrad

<E> MeV

E

MeV

z

mm

z

cm MeV

38550 4558 0.76 19804 14729 2825.1 129.5 6.2 69.5

To be optimized…

e+ in PDR: 2747; Yield e+/e- =0.458

Page 23: Simulation of the e+ Source up to the CLIC Damping Ring

Conclusions

• In order to have 4.6 109 e+ in PDR we need:

4.6 109/0.458=10 109 e- in primary electron beam on crystal.

• According to Dadoun et al., CLIC Note in preparation:

PEDD = 22.14*10 109 / 7.5 109 = 29.5 J/g < 35 J/g but close.

• Optimization of the parameters for non-polarized positrons is necessary and will be done soon.

• Configuration at 500 GeV and double charge not possible with only 1 fixed tungsten target for the moment.

• Utilization of different codes for simulations (PARMELA, PLACET, GEANT4,…) will be done.

20/04/23 A. Vivoli, CLIC Positron Source, CLIC 2009, CERN

23

Page 24: Simulation of the e+ Source up to the CLIC Damping Ring

20/04/23 A. Vivoli, CLIC Positron Source, CLIC 2009, CERN

24

THANKS.

The EndThe End