28
1 Simulation of Boundary Layer Ingestion Fan Noise for NOVA Aircraft Configuration G.Romani , Q.Ye, F.Avallone, D.Ragni, D.Casalino TU-Delft/3DS Workshop on PowerFLOW Simulations of Aircraft Noise 14 th September 2018, Delft

Simulation of Boundary Layer Ingestion Fan Noise for NOVA ......Simulation of Boundary Layer Ingestion Fan Noise for NOVA Aircraft Configuration G.Romani, Q.Ye, F.Avallone, D.Ragni,

  • Upload
    others

  • View
    14

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Simulation of Boundary Layer Ingestion Fan Noise for NOVA ......Simulation of Boundary Layer Ingestion Fan Noise for NOVA Aircraft Configuration G.Romani, Q.Ye, F.Avallone, D.Ragni,

1

Simulation of Boundary Layer

Ingestion Fan Noise for NOVA Aircraft

Configuration

G.Romani, Q.Ye, F.Avallone, D.Ragni, D.Casalino

TU-Delft/3DS Workshop on PowerFLOW Simulations of Aircraft Noise

14th September 2018, Delft

Page 2: Simulation of Boundary Layer Ingestion Fan Noise for NOVA ......Simulation of Boundary Layer Ingestion Fan Noise for NOVA Aircraft Configuration G.Romani, Q.Ye, F.Avallone, D.Ragni,

2

Outline

• Background and motivation

• Numerical method

• Geometries and simulated cases

• Computational setup

• Numerical results

• Conclusions and future outlooks

Page 3: Simulation of Boundary Layer Ingestion Fan Noise for NOVA ......Simulation of Boundary Layer Ingestion Fan Noise for NOVA Aircraft Configuration G.Romani, Q.Ye, F.Avallone, D.Ragni,

3

Outline

• Background and motivation

• Numerical method

• Geometries and simulated cases

• Computational setup

• Numerical results

• Conclusions and future outlooks

Page 4: Simulation of Boundary Layer Ingestion Fan Noise for NOVA ......Simulation of Boundary Layer Ingestion Fan Noise for NOVA Aircraft Configuration G.Romani, Q.Ye, F.Avallone, D.Ragni,

4

Background and motivation

• UHBR engines on next generation aircraft Address increasingly stringent

aviation regulations for pollution and noise impact

Enhanced propulsion efficiency and lower noise emissions

Integration challenges and special designs required

• Four different NOVA (Nextgen Onera Versatile Aircraft) aircraft geometries

investigated at Onera with focus on engine integration options*

*Wiart et al., “Development of NOVA Aircraft Configurations for Large Engine Integration Studies“, AIAA 2015-2254

Page 5: Simulation of Boundary Layer Ingestion Fan Noise for NOVA ......Simulation of Boundary Layer Ingestion Fan Noise for NOVA Aircraft Configuration G.Romani, Q.Ye, F.Avallone, D.Ragni,

5

Background and motivation

• Boundary Layer Ingestion (BLI) configuration benefits

Mass and drag penalty reduction

Jet and wake losses reduction

• Many implications have to be addressed before deriving the associated

benefits: effects of inlet flow distortion on engine efficiency, operability,

aeromechanics and aeroacoustics

• Research goals:

To perform the first CFD/CAA simulation of a full aircraft+BLI fan stage system

To address BLI installation effects on fan noise for a NOVA BLI-like configuration

Potential fuel burn reduction

Page 6: Simulation of Boundary Layer Ingestion Fan Noise for NOVA ......Simulation of Boundary Layer Ingestion Fan Noise for NOVA Aircraft Configuration G.Romani, Q.Ye, F.Avallone, D.Ragni,

6

Outline

• Background and motivation

• Numerical method

• Geometries and simulated cases

• Computational setup

• Numerical results

• Conclusions and future outlooks

Page 7: Simulation of Boundary Layer Ingestion Fan Noise for NOVA ......Simulation of Boundary Layer Ingestion Fan Noise for NOVA Aircraft Configuration G.Romani, Q.Ye, F.Avallone, D.Ragni,

7

Numerical method

• SIMULIA PowerFLOW solver*:

– Lattice-Boltzmann method for subsonic/supersonic flows

• Solves the fully explicit, transient and compressible LBE

• Sliding mesh (LRF) for rotating geometries

• Hybrid solver: D3Q39 model inside LRF, D3Q19 model outside LRF

– LBM-VLES turbulence model

• Large-eddies are resolved (“coherent” statistically anisotropic eddies)

• Small eddies (statistically universal) are modeled with an extended RNG k-ε model

• Swirl term used to switch from modeled to resolved eddies

– Extended turbulent wall model to account for favorable/adverse pressure gradients

Hybrid D3Q39 ModelMamax~2.0

*Nie et al., “A Lattice-Boltzmann/Finite-Difference Hybrid Simulation of Transonic Flow“, AIAA 2009-139Gonzalez-Martino et al., “Fan Tonal and Broadband Noise Simulations at Transonic Operating Conditions Using Lattice-Boltzmann Methods“, AIAA 2018-3919van der Velden et al., “Jet Noise Prediction: Validation and Physical Insight“, AIAA 2018-3617

Page 8: Simulation of Boundary Layer Ingestion Fan Noise for NOVA ......Simulation of Boundary Layer Ingestion Fan Noise for NOVA Aircraft Configuration G.Romani, Q.Ye, F.Avallone, D.Ragni,

8

Outline

• Background and motivation

• Numerical method

• Geometries and simulated cases

• Computational setup

• Numerical results

• Conclusions and future outlooks

Page 9: Simulation of Boundary Layer Ingestion Fan Noise for NOVA ......Simulation of Boundary Layer Ingestion Fan Noise for NOVA Aircraft Configuration G.Romani, Q.Ye, F.Avallone, D.Ragni,

9

Fan stage geometry

• Modified version of “Low-Noise” NASA/SDT*– Original geometry fully scaled to match NOVA fan diameter (2.15 m)

– Original nacelle axial length increased to match NOVA BLI intake-fan distance (2.35 m)

*Envia , “Fan Noise Source Diagnostic Test - Vane Unsteady Pressure Results”, AIAA 2002-2430

Fan (22 blades)

OGV (26 stator swept vanes)

ø = 2.15 m

Tip clearance = 1.94 mm

Page 10: Simulation of Boundary Layer Ingestion Fan Noise for NOVA ......Simulation of Boundary Layer Ingestion Fan Noise for NOVA Aircraft Configuration G.Romani, Q.Ye, F.Avallone, D.Ragni,

10

• Engine integration on NOVA lifting fuselage (courtesy of ONERA)– BLI engine

– 40% buried intake

– Intake-Fan distance = 2.35 m

– Tilt angle = 1°

– Toe angle = 2.5°

Fan stage integration into NOVA fuselage

ONERA s-duct

design costraints

S-duct design

Semi-span = 19.05 mFuselage length = 38.3 m

Page 11: Simulation of Boundary Layer Ingestion Fan Noise for NOVA ......Simulation of Boundary Layer Ingestion Fan Noise for NOVA Aircraft Configuration G.Romani, Q.Ye, F.Avallone, D.Ragni,

11

Simulated cases

• Isolated NASA/SDT with modified nacelle

• Installed NASA/SDT with modified nacelle into NOVA fuselage geometry

Mach Mach Tip Pressure Temperature AoA Glide angle Tilt angle Toe angle

0.25 1.0038 ISA at 1000 ft 4° 6° 1° 2.5°

Page 12: Simulation of Boundary Layer Ingestion Fan Noise for NOVA ......Simulation of Boundary Layer Ingestion Fan Noise for NOVA Aircraft Configuration G.Romani, Q.Ye, F.Avallone, D.Ragni,

12

Outline

• Background and motivation

• Numerical method

• Geometries and simulated cases

• Computational setup

• Numerical results

• Conclusions and future outlooks

Page 13: Simulation of Boundary Layer Ingestion Fan Noise for NOVA ......Simulation of Boundary Layer Ingestion Fan Noise for NOVA Aircraft Configuration G.Romani, Q.Ye, F.Avallone, D.Ragni,

13

Permeable Surface for FWHVR strategy

Computational setup

*Gonzalez-Martino et al., “Fan Tonal and Broadband Noise Simulations at Transonic Operating Conditions Using Lattice-Boltzmann Methods“, AIAA 2018-3919

Grid

Resolution

Fan Tip Cell

Size (mm)# Cells CPUh (10 revs)

Medium* 0.355 611 M 56000

Local Reference Frame

LRF

• Symmetry plane (at fuselage centerline)

• FWH permeable approach for far-field noise

• 16 Variable Resolution (VR) regions (medium

grid resolution)– VR16: tip gap

– VR15: leading/trailing edges of fan/OGV and nacelle lip

– VR14: fan/OGV

– VR13: bypass channel, nacelle and s-duct walls

– VR12: FWH permeable surface

– VR11-VR0: fuselage offsets and boxes up to domain

boundaries

• Fan geometry rotated through LRF

Page 14: Simulation of Boundary Layer Ingestion Fan Noise for NOVA ......Simulation of Boundary Layer Ingestion Fan Noise for NOVA Aircraft Configuration G.Romani, Q.Ye, F.Avallone, D.Ragni,

14

Outline

• Background and motivation

• Numerical method

• Geometries and simulated cases

• Computational setup

• Numerical results

• Conclusions and future outlooks

Page 15: Simulation of Boundary Layer Ingestion Fan Noise for NOVA ......Simulation of Boundary Layer Ingestion Fan Noise for NOVA Aircraft Configuration G.Romani, Q.Ye, F.Avallone, D.Ragni,

15

• Instatanoeus flow on a plane normal to the fuselage– Higher flow acceleration at intake lip

– Adverse pressure gradient induced flow separation on intake wall

– Adverse pressure gradient induced flow separation on s-duct surface

– Different fan wake/OGV interaction

Flow installation effects

Isolated engine BLI engine

Page 16: Simulation of Boundary Layer Ingestion Fan Noise for NOVA ......Simulation of Boundary Layer Ingestion Fan Noise for NOVA Aircraft Configuration G.Romani, Q.Ye, F.Avallone, D.Ragni,

17

• Mean flow on a plane upstream the fan– Strong flow distortion and non-uniformity

– Flow acceleration in blade inboard regions

Flow installation effects

Isolated engine BLI engine

90°

180°

270°

90°

180°

270°

Fan blade azimuth

Page 17: Simulation of Boundary Layer Ingestion Fan Noise for NOVA ......Simulation of Boundary Layer Ingestion Fan Noise for NOVA Aircraft Configuration G.Romani, Q.Ye, F.Avallone, D.Ragni,

18

Fan blade sectional air-loads

• Phase-locked cxŨ2 at three fan blade span-wise locations

– Inboard: low-frequency unsteadiness mean flow distortion

– Outboard: high-frequency unsteadiness and lower mean value turbulence ingestion

Blade Inboard Blade Outboard

Ũ =u

a∞

Local flow velocity

Freestream speed of sound

Negative Cx as the

meaning of thrust

Page 18: Simulation of Boundary Layer Ingestion Fan Noise for NOVA ......Simulation of Boundary Layer Ingestion Fan Noise for NOVA Aircraft Configuration G.Romani, Q.Ye, F.Avallone, D.Ragni,

22

Arc 0°

• PSD on 10 m radius arc centered around the fan center

Far-field noise directivity - Arc 0°

FLOW

FLOW

FLOW

BLI

en

gin

eIs

ola

ted

en

gin

e

Page 19: Simulation of Boundary Layer Ingestion Fan Noise for NOVA ......Simulation of Boundary Layer Ingestion Fan Noise for NOVA Aircraft Configuration G.Romani, Q.Ye, F.Avallone, D.Ragni,

23

• PSD on 10 m radius arc centered around the fan center Arc 45°

Far-field noise directivity - Arc 45°

FLOW

FLOW

FLOW

BLI

en

gin

eIs

ola

ted

en

gin

e

Page 20: Simulation of Boundary Layer Ingestion Fan Noise for NOVA ......Simulation of Boundary Layer Ingestion Fan Noise for NOVA Aircraft Configuration G.Romani, Q.Ye, F.Avallone, D.Ragni,

24

• PSD on 10 m radius arc centered around the fan center

Arc 90°

Far-field noise directivity - Arc 90°

FLOW

FLOW

FLOW

BLI

en

gin

eIs

ola

ted

en

gin

e

Page 21: Simulation of Boundary Layer Ingestion Fan Noise for NOVA ......Simulation of Boundary Layer Ingestion Fan Noise for NOVA Aircraft Configuration G.Romani, Q.Ye, F.Avallone, D.Ragni,

25

Arc 45°

Far-field noise – Mic at 20°/Arc 45°

FLOW

• PSD for directivity angle of 20° on Arc at 45°

Page 22: Simulation of Boundary Layer Ingestion Fan Noise for NOVA ......Simulation of Boundary Layer Ingestion Fan Noise for NOVA Aircraft Configuration G.Romani, Q.Ye, F.Avallone, D.Ragni,

26

Arc 45°

Far-field noise – Mic at 90°/Arc 45°

FLOW

• PSD for directivity angle of 90° on Arc at 45°

Page 23: Simulation of Boundary Layer Ingestion Fan Noise for NOVA ......Simulation of Boundary Layer Ingestion Fan Noise for NOVA Aircraft Configuration G.Romani, Q.Ye, F.Avallone, D.Ragni,

27

Arc 45°

Far-field noise – Mic at 160°/Arc 45°

FLOW

• PSD for directivity angle of 160° on Arc at 45°

Page 24: Simulation of Boundary Layer Ingestion Fan Noise for NOVA ......Simulation of Boundary Layer Ingestion Fan Noise for NOVA Aircraft Configuration G.Romani, Q.Ye, F.Avallone, D.Ragni,

28

• CFD computed pressure waves around BPF1– Isolated engine: low/high pressure areas extending upstream from each fan blade and co-rotating

with fan propagate mainly upstream in the sideline direction

– BLI engine: highly irregular pressure waves pattern propagating mainly upstream in the axial

direction and downstream in the sideline direction

Band-pass filtered pressure around BPF1

Isolated engine BLI engine

Page 25: Simulation of Boundary Layer Ingestion Fan Noise for NOVA ......Simulation of Boundary Layer Ingestion Fan Noise for NOVA Aircraft Configuration G.Romani, Q.Ye, F.Avallone, D.Ragni,

30

PNL on-the-ground

Isolated engine BLI engine

• Perceived Noise Level vs time during a takeoff fight path

Page 26: Simulation of Boundary Layer Ingestion Fan Noise for NOVA ......Simulation of Boundary Layer Ingestion Fan Noise for NOVA Aircraft Configuration G.Romani, Q.Ye, F.Avallone, D.Ragni,

33

Outline

• Background and motivation

• Numerical method

• Geometries and simulated cases

• Computational setup

• Numerical results

• Conclusions and future outlooks

Page 27: Simulation of Boundary Layer Ingestion Fan Noise for NOVA ......Simulation of Boundary Layer Ingestion Fan Noise for NOVA Aircraft Configuration G.Romani, Q.Ye, F.Avallone, D.Ragni,

34

Conclusions and future outlooks

• LBM solver Simulia PowerFLOW used to address fan noise implications of

NOVA BLI-like engine configuration

• Aerodynamic installation effects:– Flow distortion and non-uniformity low-frequency air-loads variation

– Separation on intake and s-duct walls high-frequency air-loads variation

• Aeroacoustic installation effects:– Increase of noise sources intensity, but different propagation behavior

• Isolated engine: noise radiated mainly upstream in the sideline direction

• BLI engine: noise radiated mainly upstream in the axial direction and downstream in the sideline direction

• As future outlooks:– Analysis of boundary layer/fan interaction mechanisms

– Analysis of fan wake/OGV interaction mechanisms

Page 28: Simulation of Boundary Layer Ingestion Fan Noise for NOVA ......Simulation of Boundary Layer Ingestion Fan Noise for NOVA Aircraft Configuration G.Romani, Q.Ye, F.Avallone, D.Ragni,

35

Thank you for your attention!

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant No 769 350