17
Simulation and modeling of smarter large power grids ADVANCED ENERGY 2012 30-31 Octobre 2012, New York, NY, USA Omar Saad, Researcher IREQ/Hydro-Québec

Simulation and modeling of smarter large power grids ADVANCED ENERGY 2012 30-31 Octobre 2012, New York, NY, USA Omar Saad, Researcher IREQ/Hydro-Québec

Embed Size (px)

Citation preview

Simulation and modeling of smarter large power grids

ADVANCED

ENERGY 201230-31 Octobre 2012, New York, NY, USA

Omar Saad,Researcher IREQ/Hydro-Québec

Groupe – Technologie2

Modern (Future) power systems

> Increasingly complex transmission and distribution systems

> Evolution and upgrading of existing systems allowing to increase the penetration of renewable energies and to elevate security and flexibility levels

> Delivery of greener power > Large scale integration of renewable generation > Central and distributed generators, microgrids> Proliferation of HVDC systems> Smart Grids

• Huge needs in information and data for the operation and planning of power systems

Groupe – Technologie3

Large scale integration of renewable generation

> Deployment of intelligent controls, computer applications and communications

> Smart technologies for the interconnection of renewable energy generators in wide geographic areas

> Management of distributed resources> Power electronics application for: control

and variability> Sophistication of analysis methods

Groupe – Technologie4

Trends and challenges

> Simulation and analysis of super large networks with wideband models

• Electromagnetic and electromechanical transients

> Simulation of super distribution grids (Smart network)> Challenges

• Data and data portability between power system applications

• Visualization and analysis of huge systems• Parallel computations• Real-time computations• Online analysis• Unification of simulation methods and environments• Multi-domain simulations

Groupe – Technologie5

Simulation of very large systems: Hydro-Québec Network in EMTP-RV

Bergeronnes

Périgny

+Z

nO

+Z

nO

+Z

nO

+Z

nO

+Z

nO

+Z

nO

+Z

nO

+Z

nO

+Z

nO

+Z

nO

+Z

nO

+Z

nO

+Z

nO

+Z

nO

+Z

nO

+Z

nO

+Z

nO

+Z

nO

+Z

nO

+Z

nO

+Z

nO

+Z

nO

+

ZnO

+Z

nO

+Z

nO

+

ZnO

+Z

nO

+Z

nO

+

CX

C04

+2006-ajout de 19 ohms-total 44 ohms, 2300A

CX

C7

+

CX

C8

+

CX

C23

+

CX

C19

+

CX

C27

+

CX

C28

+

CX

C29

+

CX

C31

+

CX

C32

+

CX

C33

+

CX

C51

+

CX

C52

+

CX

C53

+

CX

C59

+

CX

C70

+

CX

C69

+

CX

C62

+

CX

C63

+

CX

C76

+

CX

C77

+

CX

C78

+

CX

C80

+

CX

C81

+

CX

C82

+

CX

C84

+

CX

C85+

CX

C86

+

CX

C92

+

CX

C93

+

CX

C94

1

2

abitib

i_T

61T

62

+Z

nO

CP

2+L7084_7085

19

2.3

CP

+

L7094

28

6.6

CP

+

L7059

27

3.6

CP

+ 25

1.4

L7078

C

P+

L7086

19

5

CP+

L7027

181.6

CP +

60.2

L7011

CP

+

L7028

17

1.2

CP

+

L7029

CP

+

L7053

23

0.1

CP

+

L7052

CP

+

L7051

CP

+

L7008_B

CP

+

L7007_B

24

2

CP

+

L7097

76

.0

CP

+

L7005

11

0.2

CP

+

L7035

CP +

L7034

108

CP +

L7024

CP +

L7017

228.8

CP +

L7025251.9

CP +

117.2L7026

CP

+

L7016

24

6.5

CP

+

L7045

18

2.2

0

CP

+

L7044

25

3.6

70

CP +

93.4

L7042

CP +

46.1L7038

CP +

L7006

132.8

CP +

155.3

L7060

CP

+

L7062

CP

+

L7063

26

2.3

CP

+

L7080

24

1.1

CP

+

L7081

CP

+

L7082

21

7.8

CP +

31.7

CP +

61.8

L7090

CP

+

L7004_B

18

7.2

C

P+

L7004_A

22

4.2

CP

+

L7032

CP

+

L7031

21

9.9

CP

+

L7033

CP +

MiseEnService=200370.61

L7048

CP +

2003

70.20

L7049

CP

2+L7069_7070

21

7.7

2 3

1

+

1M

CP+

L7002

176.8

CP

+

L7023_B

CP

+

34

.8

+Z

nO

CP

2+L7092_7093

27

0.6

CP

+

L7047

+Z

nO

CP

2+L7076_7077

23

5.3

CP

+L7023_A

CP

+L7008_A

CP

+L7007_A

13

7.8

CP +

26.9

+

330 MX

+

165 MX

+

CP +

183.1

L7018

CP

+

L7019

25

1.6

+-

U1

pu

I1 tilly_L7055

+-

U1

pu

I1

+-

U1

pu

I1

duvern

ay_L7016

+-

U1

pu

I1

+-

U1

pu

I1

+-

U1

pu

I1

+-

U1

pu

I1

+-

U1

pu

I1

saguenay_L7026

+-

U1

pu

I1

+-

U1

pu

I1

lavere

ndry

e_L7094

1

2

23

1

+

1M

LF

LF

42

1M

W

39

MV

AR

SM

churc

hill_

A1aA

11

?m

+-

U1

pu

I1

+

330 MX

+

165 MX

+

165 MX

+Z

nO

+

CX

C61

CP

+

L7061

26

1.0

+

990 MX

+

165 MX

SM

lagra

nde4_A

1aA

9

?m

LF

+-

U1

pu

I1

LF

+-

U1

pu

I1

LF

lagra

nde3_A

1aA

12

lagra

nde3_A

1aA

12

SM

lagra

nde3_A

1aA

12

?m

LF 0

SM

lagra

nde2_A

1aA

16

?m

LF

+-

U1

pu

I1

+

330 MX

CP

+

73

.3

L7096

LF

+

1M2 3

1

735/230/12.5

+-

U1

pu

I1

+

2006

+

2006

2 3

1

2003

735/120/12.5

+

1M

+

96 MX @ 120 KV

LF

+-

U1

pu

I1

+

fi l tre CC

B2055_capac

2 3

1

+ 1M

+-

U1

pu

I1

LF

1

2

2 3

1

+ 1M

+-

U1

pu

I1

+-

U1

pu

I1

LF

levis

_b2003

+ 97600uS

CXC1_2_3_4

CP

+ 44

.7

CP

+

L3078_3079_3080_3071_A

13

9.0

20

+-

U1

pu

I1 riviereduloup_b472

LF

CP

+

L7095

10

2.0

1

2

1

2

CP

+

L1695

CP

+

L3039

1

2

2 3

1

+

LF

hartja

une

+hartja

une

3 gr

LF

+ -

U1puI1

LF

arnaud_b1609

2 3

1

CP +

L3115_L3116

70.46

LF

+[R

,L]

L3021_L3022_L3023_L3024

23

1

manic

ouagan_T

1aT

4

+[R,L] L3013_L3014 +

+ -

U1puI1

hauterive_b1643

23

1

LFSM

manic

2_A

21aA

28

?m

1

2

manic

2_T

1aT

4

1

2

+-

U1

pu

I1 +

+[R

,L]

L3026

1

2

LF

1

2

1

2

CP +

36

CP

+L3020_L3012_L3011

LF

bers

imis

1_A

1aA

8

LF

bers

imis

2_A

1aA

5

LF

4M

W

0.5

4M

VA

R

+-

U1

pu

I1 charlevoixA

+-

U1

pu

I1charlevoixB

LF

35

7M

W

10

.5M

VA

R

LF

45

1M

W

87

MV

AR

charlevoix

B

CP

+

L3001_L3002_L3003_L3004

+-

U1

pu

I1

LF

16

98

MW

0

CP +

87.6

L3010

CP

+ 34

.8

+-

U1

pu

I1

LF

76

8M

W

13

8M

VA

R

jacquescartie

r_b317

23

1

+

1M

CP +

L3100_L3101

83.9

CP+L3102_L3110_L3106_L310760

+

2006

B317_capac

CP+

L3015

78.4

CP+

L3005

117.4

CP+

L3069

45.3

23

1

duvern

ay_T

2T

3T

5

+ [R,L]

LCD11_LCD22

+

boundarycrt_b1025

LF

LF

2 3

1

+

1M

2 3

1

2 3

1

chenie

r_T

4aT

6

+[R,L]

L3170_L3171

1 2CP +

107.07

L3168_L3169CP +

83.4

L3172_L3173

LF

LFlaforge2_A1A2

CP +

54.9

LF

23

1

76

5/3

15

/12

.5

1 2

CP+

45.90

L3016

+

990 MX

+

1320 MX

+

330 MX

+

330 MX

+

660 MX

CP+

L7055

CP+

L7056

120.6

+

330 MX

CP+

L7057

104.3

+

165 MX

+

495 MX

12

outardes3_T31aT34

LFoutardes3_A1aA4

+[R

,L]

L2375

+[R

,L]

L2329

23

1

+-

U1

pu

I1 thetford_b2290

LF 234MW

46.5MVAR

+

B2290_capac

+

1M

+

330 MX

+

+

330 MX

LF

23

1

+ -

U1pu

I1

lanaudiere_b1262

+

+

1M

23

1

+

1M

23

1

+-

U1

pu

I1

LF

460MW66MVAR

+

1M

+

1M

LF

bouchervilleslack

2 3

1

+-

U1

pu

I1

LF

94

3M

W

42

0M

VA

R

+

1M

23

1

chibougamau_T2T3

+-

U1

pu

I1

LF

91

MW

3M

VA

R

chib

ougam

au_b1683

+

1M

CP+

L3150

CP+

L3151

23

1

abitibi_T1aT3+-

U1pu

I1

lebel_b528LF

590MW48MVAR

+

1M

LF

+ -

U1pu

I1

+ -

U1pu

I1

LFnemiscauCLC LFalbanelCLC

+-

U1pu

I1

LFchibougamauCLC

+ -

U1pu

I1

LF

chamouchouaneCLC

LF

1

2

stemarguerite3_T1T2

+

1M

23

1

+

1M

LF

radissonslack-2000 MW du RNCC

1

2

1

2L

F

1 2

lagrande1_T21T27

LF

17MW3MVAR

CP

+

L3152_L3153

+

-1/1

E1

5/0

+

660 MX

+ [R,L]

L1498

+[R

,L]

L7088

+[R

,L]

L7089

CP+

L7054

LFlaurentidesCLC

P=0Q=0

Phase:14

+ -

U1puI1

CP +

88.980

L7040

LFmassena_b818

+

massena_b818

1 2

+

23

1

+[R

,L]

L3027_L3028

LF

SM?m

manic3_A1aA6+ [R,L]L3035_L3036

12

1 212

23

1

CP

+

10

7.7

L3031_L3032

CP

+

L3033_L3034

CP

+

2005

55

L3123

LF

manic5_b41

LF

SM?m

outardes4_A1aA4

LF

SM?m

manic5PA_A1aA4 LF

SM

manic5_A1aA8?m

1 2

2005

LF

+

2 3

1

+

1M

1

2

31

5/1

3.8

L

F

CP

+

2006

5.9

00

00

E+

01

L3176_3177

1

2

73

5/1

3.8

1

2

73

5/1

3.8

1

2735/13.8

CP

+

34

Mauricie sud

gentilly_b2100

nicolet_b2007

Mauricie nord

mauricie_b488

trois-rivières_b2268

2 3

1

+

1M

LF

abitib

i_C

S1C

S2

LF

LF

SM

?m

AV

R

-exst1

-pss1

a

(pu

)

AV

R

-ie

ee

x1

(pu

)S

M?

m

SM

outa

rdes2_A

1aA

3

?m

AV

R

-exst1

-pss1

a

(pu

)

CP

+

42

.58

+-

U1

pu

I1

AVR

-exst1-pss2a

(pu)

+-

U1puI1

SM

stemarguerite3_A1A2

?m

SM

eastm

an_A

1aA

3

?m

+

1m

SM

?m

abitib

i_C

S1C

S2

LFlevis_CLC

P=0Q=0

Phase:14

+ -

U1puI1

SM

?m

levis

_C

S1C

S2

SM

?m

LF

AVR

-expci1-pss2a

(pu)

expci1 partiel

AVR

-expci1-pss2a

(pu)

expci1 partiel

SM

brisay_A1A2

?m

SM

laforge2_A1A2

?m

SM

laforge1_A11aA16

?m

AV

R

-exp

ci1

-pss2

a

(pu

)

ex

pc

i1 p

art

ielRéglage Planificateur

SM

lagra

nde1_A

1aA

12

?m

SM

?m

AV

R

-exst1

-ie

ee

vc (

s.o

.)

-pss4

b

(pu

)o

ut

in Vct

AV

R

-exst1

-ie

ee

vc (

s.o

.)

-pss4

b

(pu

)o

ut

in Vct

+-

U1

pu

I1

+-

U1

pu

I1+-

U1

pu

I1

2 3

1

+

1M

+[R

,L]

L3162_L3163

+ [R,L]

L7079

+[R

,L]

L7020

+L3166_L3167

+[R

,L]

L3104

+

+

L3029_L3030

+ [R,L]

L3009

+[R

,L]

L2385_A

+L7010

LF

21

62

MW

0

+

SM

toulnustouc_A1A2

?m

+-

U1

pu

I1

AV

R

-exst1

-pss1

a

(pu

)

AV

R

-exst1

-pss1

a

(pu

)

AVR

-exst1-pss1a

(pu)

Tw=0.03s au l ieu de 0.08s

AV

R

-exst1

-pss1

a

(pu

)

AVR

-exst1-pss1a

(pu)

AV

R

-exst1

-pss1

a

(pu

)

AVR

-exst1-pss1a

(pu)

AVR

-exst1-pss1a

(pu)

Réglage Planificateur

AVR

-exst1-pss1a

(pu)

AV

R

-exst1

-pss1

a

(pu

)

AV

R

-exst1

-pss1

a

(pu

)

+

SM?m

AV

R

-exp

ci1

-pss1

a

(pu

)

ex

pc

i1 p

art

iel

Planificateur

+

660 MX

+

330 MX

AV

R

-exst1

-pss4

b

(pu

)

KG=0

AV

R

-exst1

-pss4

b

(pu

)

Load-Flow

OFF

I/O FILES

Start EMTP

SimulationOptions

Simulation webShow Load-Flow

AVR

-exst1-pss4b

(pu)

ks=1

AVR

-exst1-pss4b

(pu)

KG=1

+

1M

1 2

V

I

V

I

albanel_CLC

V

I

chibougamauCLC

V

I

chamouchouane_CLC

V

I

laurentidesCLC

V

I

levis_CLC

V

I

laverendrye_CLC

+

3600Ohm

L1

View Steady-State

+

165 MX

+ 1M

PI

+L7046

PI

+L7036

PI

+L7009

23

1

+

1M

+-

U1

pu

I1

LF

CP

+

L7014

51

.90

+

1M

+

165 MX

2 3

1

+

1M

2 3

1

+

1M

AV

R

-exst1

-pss4

b

(pu

)

+345.7 MX @ 315 KV. Fusible externe

XC4_boucherville

740.09/_6.4grandbrule_b770

751.51/_26.2saguenay_b718

759.06/_36.0

chibougamau_b783

752.38/_41.1arnaud_b709

759.34/_30.0chamouchouane_b731

753.88/_9.0appalaches_b790

754.73/_34.4abitibi_b713

752.87/_20.7laverendrye_b714

748.11/_49.6montagnais_b710

749.84/_3.7descantons_b755

748.57/_1.0

monteregie_b784

738.42/_57.9

churchill_b760

763.82/_60.1

742.28/_1.9

carignan_b730

arnaud_b309

750.03/_34.2manicouagan_b705

haute

rive_b643

748.86/_6.0

nicolet_b707

751.38/_-0.8

chateauguay_b719

322.03/_79.2

767.32/_58.5lemoyne_b723

768.86/_63.5tilly_b724

radisson_b1020

radisson_b320

755.52/_60.3

lagrande2_b749

radisson_b720

micoua_b306

toulnustouc_b476

748.42/_37.7micoua_b706

a ab bc c

cba a b c

305.45/_-1.8mauricie_b488

758.77/_45.7nemiscau_b780

760.56/_46.3albanel_b782

733.88/_0.3duvernay_b702

739.58/_1.4chenier_b715

746.90/_-0.7hertel_b708

748.78/_14.7jacquescartier_b717

326.63/_86.5

310.02/_5.0jacquescartier_b317

314.24/_8.7laurentides_b304

manicouagan_b305

317.28/_33.0bersimis1_b433

315.42/_33.7bersimis2_b434

749.82/_14.5laurentides_b704

752.80/_13.5levis_b703

boucherville_b701

742.00/_-0.0

• 1100 lines• 296 3-ph transformers• 532 loads• 7 SVC• 32 Synchronous

Condenser• 99 SM

Groupe – Technologie6

EMTP model of Gaspésie system:Integration of wind generation

RIVIÈRE-DU-LOUP 315/230/120 kV

36 M VAR

TO 735 kV SYSTEM

LÉVIS 735/315 kV

KAMOURASKA 315 kV

GOÉMON230/161/69 kV

Mont-LouisGE 100.5 MW

VigerREpower 25 MW

TO NEW-BRUNSWICK

RIMOUSKI 230/69 kV

RIMOUSKI 315/230 kV

MICMAC230/161 kV

CASCAPÉDIA 230/69 kV

MATAPÉDIA 315/230 kV

Gros MorneGE 211.5 MW

CarletonGE 109.5 MW

Vent du KemptEnercon100 MW

St-DamaseEnercon 24 MW

Le PlateauEnercon 161 MW

TemiscouataEnercon 25 MW

DC

TO NEW-BRUNSWICK

New RichmondEnercon 66 MW

St-Ulric/St-Léandre GE127.5 MW

Lac Alf redREpower 325 MW

Nordais-1Neg Micon 43 MW

Mont CopperVestas 54 MW

Montagne-Sèche GE 58.5 MW

Anse-à-Valleau GE 100.5 MW

Baie-des-Sables GE109.5 MW

Mont MillerVestas 54 MW

Nordais-2 Neg Micon 57 MW

DC

LESBOULES 230/120 kV

230 kV

315 kV

315 kV

230 kV 230 kV230 kV

161 kV

161 kV230 kV

230 kV

315 kV

315 kV

Three-Winding Transf ormer

Riv ière-Sainte-AnneCapacitiv e Div ider

AC Filters

AC Filters

Two-Winding Transf ormer

DC

Sy nchronous Condenser

HVDC Interconnection

Zigzag Grounding Transf ormer

Collector Sy stem For WPP

Load

315 kV Lines230 kV Lines

120 kV Lines161 kV Lines

69 kV Lines34,5 kV Lines25 kV or less Lines

+

+

CP+

CP+

CP+

CP+

CP+CP+

CP+

CP+

CP+

CP+

CP+

+

++

+

+

+

+

CP+

CP+

CP+

CP+

CP+

CP+

CP+

CP+

CP+

+

LF

+

+

CP+

CP2

CP+

CP+

CP+

CP2CP2CP2 CP2

+

+

+

CP+

+

+

CP2

CP2

CP2

CP+

CP+

DF

REpower

Enerc on

+

Wind

Ves tasV 80Optis l ip

LVRTVRCCAG 04

DF

GE

DF

GEDF

GE

+

Wind

Ves tasV 80Optis l ip

LVRTVRCCAG 04

+

CP+

CP+

+

CP+ CP+

CP2

CP+

CP2

+

+

+

+

CP+

CP+

CP+

CP2

CP+

CP+

CP+

CP+

CP2

CP+

CP+ CP+

CP+

CP+

+

CP+

CP+

+CP

+

+

CP+

CP+

LF

+

NEGM ICON750 k W

M AS àcaged'écur euil

N143M W

NM 750/48

+

NEGM ICON750 k W

M AS àcaged'écur euil

N257M W

NM 750/48

CP+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+ ++

++

+

+

++ +

CP+

++

+

+

CP2

CP2

CP2

CP2

+

+

+

++

DF

REpower

Enerc on

LF

LF

LF

LF

LF

LF

LF

LF

LF

LF

LF

LF

LF

EXP

EXP

EXP

EXP

EXP

EXP

EXP

EXP

EXP

EXP

EXP

EXP

EXP

EXP

EXP

LF

EXP

EXP

EXP

EXP

EXP

EXP

EXP

EXP

EXP

EXP

EXP

EXP

EXP

+

+

Enerc on

EXP

CP+

LFLF

DF

GE

+

+

DF

GE

12

1 2

12

1 2

12 12

12

12

12

12

1 2

1 2

1 2

CP2

1 2

1 2

2

3

1

2

3

1

2

3

1

1 2 12

1 2

12

1 2

12

12

12

12

12

12

12 1

2

12

12

1 2

12

12

2

3

1

2

3

1

2

3

1

2

3

1

12

12

12

23

1

12

12

12

12

1 212

2

3

1

2

3

1

2

3

1

1 2

1 2

12

12

12

1 2

1 2

12

1 2

2

3

1

2

3

1

12

12

12

12

12

12

12

12

12

12

12

1 2

23

1

23

1

2

3

1

2

3

1

1 2

23

1

23

1

EXP

+

+

+

+

+

CP2CP2

CP+

+

12

2

3

1

LF

LF

LF

Enerc on

LF

LF

LF

LFLF

LF

LF

LF

LF

LF

LF

1 2

1 2

LF

CP+

EXP

2

3

1

ZnO

KAM OURASKA

2

3

1

CP22

3

1

CP2

+

CP+ CP+

CP+

CP+

CP+

CP+

CP+

CP+

CP+

CP+

CP+

CP+

CP+

Enerc on

CP+

23

1

+

+

+

+

+

+

EXP

CP2

EXP

12

EXP

CP+

CP+

CP+

CP+

CP+

LF

CP+ DF

GE

LF

+

DF

GE

+LF

EXP

121 2

+

SC

12

CP+

1 2

EXP

CP+

CP+

CP+

EXP

EXP

EXP

EXP

12

12

121

2

EXP

12

12

EXP

EXP

12

12

CP+

++

+

CP+

SC

+ + +

+

++

+ + +

+

CP+

2

3

1

2

3

1

1 2

SC

+

+

LF

++

+

++

+

++

++

+

Groupe – Technologie7

Hydro-Québec

> Pioneered important research and development works on advanced simulation methods for large scale and complex power systems

> Advanced real-time simulation methods> Advance off-line simulation methods> Sophisticated utilization of simulation tools for

transmission and distribution network studies> Integration of wind generation: 4 GW by 2015

• Based on detailed studies of electromagnetic and electromechanical transients

> At Hydro-Québec (TransÉnergie) the frequency range of simulation models has been constantly increasing with increasing computer speed, improved models and numerical performance.

Groupe – Technologie8

Real-Time simulator

> Capability to solve power systems quickly enough to produce outputs synchronized with the real-time clock

A second of simulation = 1 second of clock time when testing equipment

> A real-time simulator can be connected directly to power system control and protection equipment to test the equipment under realistic conditions

• For detecting abnormal operating conditions that cannot be found through numerical models

• For super-fast contingency analysis

> Hydro-Québec develops HYPERSIM: a real-time simulator

Develop, improve and assess new protection and control concepts

Optimize the operation and the maintenance power systems

Decrease the time required to commission protection relays and

control systems (FACTS, HVDC, SVC, etc..)

Reproduce events that occurred in the power system by using the

actual protection and control systems

Groupe – Technologie9

EMTP-RV

> Simulation and analysis of electromagnetic transients> General purpose circuit analysis tool: wideband, from

steady-state to time-domain> Detailed simulation and analysis of large scale electrical

systems> Network analysis: network separation, power quality,

geomagnetic storm, interaction between compensation and control components, wind generation

> Synchronous machines: SSR, auto-excitation, control> Multiterminal HVDC systems, Power electronics> Series compensation: MOV energy absorption, short-

circuit conditions, network interaction> Transmission line systems: insulation coordination,

switching, design, wideband line and cable models> Switchgear: TRV, shunt compensation, current chopping,

delayed-current zero conditions> Protection: power oscillations, saturation problems> Detailed transient stability analysis: more and more> Off-line tool: May save millions in design and operation!

Groupe – Technologie10

Simulation and Analysis

> The basis of all problems!> Modern power grids require advanced study and

analysis methods • for power system design• operation• post-mortem analysis

> Numerical models and solution methods now play a dominant role and contribute to all research and development levels.

> The needs for grid simulations increase significantly faster than the capability of researchers to deliver models and faster simulations methods.

Groupe – Technologie11

Simulation and Analysis

> Simulation and modeling are essential for the evolution and operation of modern power systems

> Can we build an electronic copy of the operated system?> Can we merge real-time and off-line simulation tools?> Can we replicate analog simulator style with numerical

simulators?> What is the highest computational speed?> How far: wideband and size> Can we unify simulation environments to work with

unique data sets and various analysis methods?> Can we create portable models and data?> Use Concurrent and multi-domain simulation methods

Groupe – Technologie12

New trends: Cloud computing

> Applications for power systems• Generation scheduling, unit commitment

– Complex optimization problems• Load-flow

– Probabilistic methods• Transient stability and electromagnetic transients

– Acceleration of simulations– Sensitivity analysis– Contingency analysis

> Dispatching of computing jobs into a resource pool> Simulation services with centralized and shared data> Increased utilization of available computing services> Higher automation levels

• Reduced human intervention• Private cloud systems• Public cloud systems• Community cloud: organizations working together

Groupe – Technologie13

New Trends: Parallel computing

> Availability of increasing calculation capabilities through multicore computers

> Power system simulations involve the solution of linear sparse systems

> Traditional methods are generally sequential and use only one CPU

> The matrices are very sparse, moderate size, coupled and unsymmetrical

> For Load flow and steady-state studies the matrices are coupled but the solution is performed once

> For time domain it is possible to use the natural delay of the lines to decouple the system. Not always feasible!

> It is essential to explore new ways to increase the speed of calculations while maintaining accuracy

> Hydro-Québec with Ecole Polytechnique of Montreal and RTE (France) are collaborating in an important research project to increase the speed of calculations using the possibilities offered by new technologies

Groupe – Technologie14

New Trends: Collaborative computing, Co-simulation

> Parallel computing can be done in a collaborative approach

> Several simulation tools addressing different aspects, telecom, control, electromechanical and electromagnetic transients, collaborate together to simulate the same power system

> Collaborative software environment can be implemented through a co-simulation channel in an indirect interaction (FMI)

> Use Federated simulation systems run-time infrastructure (RTI) to support interoperability (HLA)

> Scalable performance via parallel and distributed simulation techniques

Groupe – Technologie

Application: Large-scale Case diverse simulators (EMTP, Simulink)

PI

+P

I3

PI

+P

I7

PI

+ PI32PI

+ PI34

PI

+ PI33

PI

+P

I31

PI

+P

I26

PI

+ PI25

PI

+P

I21

PI

+P

I24

12

YgY

g_np

3

?

20/500

PI

+P

I29

PI

+P

I28

PI

+P

I20

PI

+P

I6

PI

+P

I9

PI

+P

I10

PI

+P

I14

PI

+P

I15

12

YgY

g_np

5

?

500/500

12

YgY

g_np

10

?

500/500

12

YgY

g_np

4

?

20/500

LF

500M

W

184M

VA

R

Load

2

PI

+P

I11

PI

+P

I12

PI

+P

I18

PI

+P

I17

PI

+P

I19 P

I

+P

I22

LF 320M

W

153M

VA

R

Load

6

LF

628M

W

103M

VA

R

Load

9

LF

224M

W

47.2

MV

AR

Load

13

LF 139M

W

17M

VA

RLoad

14

LF

206M

W

27.6

MV

AR

Load

161

2

YgY

g_np

9

?

20/500

12

YgY

g_np

11

?

20/500

12

YgY

g_np

8

?

20/500

PI

+P

I23

LFLF9

P=

830M

W

V=

20.8

kVR

MS

LL

SM

:G9

LF LF7

P=

560M

W

V=

20.2

kVR

MS

LL

SM

:G7

+SW1 ?vi

1E15|1E15|0

AV

R+

Go

v

(

pu

)

-exc

. se

xs

-pss

ieee

st

-gov

ieee

g3

Net

wor

k fr

eque

ncy

or r

otor

spe

ed (

pu)

out

in

avr_

sexs

_iee

est_

govG

3_pu

AV

R_G

ov_9

AV

R+

Go

v

(

pu

)

-exc

. se

xs

-pss

ieee

st

-gov

ieee

g3

Net

wor

k fr

eque

ncy

or r

otor

spe

ed (

pu)

out in

avr_

sexs

_iee

est_

govG

3_pu

AV

R_G

ov_5

SM

20kV

1000

MV

A

PV

bus:

LF5?m

G5

AV

R+

Go

v

(

pu

)

-exc

. se

xs

-pss

ieee

st

-gov

ieee

g3

Net

wor

k fr

eque

ncy

or r

otor

spe

ed (

pu)

out in

avr_

sexs

_iee

est_

govG

3_pu

AV

R_G

ov_7

SM

20kV

1000

MV

A

PV

bus:

LF7

?mG

7

LFLF6

P=

650M

W

V=

20.1

kVR

MS

LL

SM

:G6

LF

247.

5MW

84.6

MV

AR

Load

11

SM

?m

G9

PQ

DEV2

PI

+P

I5

+SW8 ?vi

1E15|1E15|0

+

SW

14?v

i-1|1

E15

|0

+

SW

16?v

i

-1|1

E15

|0

+SW20 ?vi

-1|1E15|0

+S

W25

?vi-1|1

E15

|0

+S

W26

?vi-1|1

E15

|0

PI

+P

I1

Om

ega_

1

Om

ega_

1 Om

ega_

1

PQ

DE

V1

LFLF5

P=

508M

W

V=

20.2

kVR

MS

LL

SM

:G5

LF

158M

W

30M

VA

R

Load

8

LFLoad19

1104MW250MVAR

LFLF1

Slack: 502.4kVRMSLL/_0SM:G1

Phase:0

AVR+Gov (pu)

-exc. sexs-pss ieeest-gov ieeeg3

Network frequencyor rotor speed (pu)

out

in

avr_sexs_ieeest_govG3_pu

AVR_Gov_1

SM

500kV1000MVASlack:LF1

?m

G1

Omega_1

PI

+ PI2

LF

522M

W

176M

VA

R

Load

4

PI

+P

I13

LF

233.

8MW

84M

VA

R

Load

3

LF LF2

P=

527M

W

V=

20.9

kVR

MS

LL

SM

:G2 Pha

se:0

AV

R+

Go

v

(

pu

)

-exc

. se

xs

-pss

ieee

st

-gov

ieee

g3

Net

wor

k fr

eque

ncy

or r

otor

spe

ed (

pu)

out in

avr_

sexs

_iee

est_

govG

3_pu

AV

R_G

ov_2

SM

20kV

1000

MV

A

PV

bus:

LF2 ?m

G2

LF

322M

W

2.4M

VA

R

LFLo

ad18 9.

2MW

4.6M

VA

R

+SW

3?v

i

1E15

|1E

15|0

+SW

6?v

i

1E15

|1E

15|0

LF

7.5M

W

88M

VA

R

Load

5

12

YgY

g_np

6

?

500/500

+SW

7?v

i

-1|1

E15

|0

+

SW

9?v

i-1|1

E15

|0

LF

329M

W

32.3

MV

AR

Load

7

LF

281M

W

75.5

MV

AR

Load

15

+SW18 ?vi

-1|1E15|0

LF

283.

5MW

26.9

MV

AR

?i?p

Load

17

SM

20kV

1000

MV

A

PV

bus:

LF6

?m

G6

AV

R+

Go

v

(

pu

)

f(pu

)

out

in

AV

R_G

ov_6

avr_

sexs

_iee

est_

govG

3_pu

Om

ega_

1

PI

+P

I30

PI

+P

I4

PI

+P

I16

LF

308.

6MW

-92M

VA

RLo

ad12

+

SW

10?v

i

-1|1

E15

|0+S

W27

?vi -1

|1E

15|0

PI

+P

I8

+

SW

4?v

i

-1|1

E15

|0+S

W2?

vi

-1|1

E15

|0

LF

274M

W

115M

VA

R

Load

10

PI

+ PI27

Om

ega_

1

+SW

5?v

i

-1|1

E15

|0

+

SW

11?v

i 10|1

0.1|

0

DF

IG

Qre

fGE_DFIG_mean_b19

c

-1.8

e-1

Qre

fb19

1 2DYg_2

500/0.575

p

b19vRMS

PQ

PQb19+ A?i

Ieolb19

12

DY

g_4

500/

0.57

5

p

b25vRMS

PQ

PQb25

+A ?i

Ieolb25

12

DY

g_5

500/

0.57

5pb2vRMS

PQ

PQb2

12D

Yg_

3

500/

0.57

5

p

b10vRMS

PQPQb10

vab2 vbb2 vcb2 ibb2 iab2

va

vc

iaibvb

interface_b2

+A ?i

Ieolb2

vab19

vbb19

vcb19

ibb19

iab19

va vc

ia ibvb

Interface_b19

vab25 vbb25 vcb25 ibb25 iab25

va

vc

iaibvb

Interface_b25

+A ?i

Ieolb10

vab10vbb10vcb10ibb10iab10

va

vc

iaib vb

interface_b10

PQ

PQb10_2

+A ?i

Ieolb10_2

vab10_2vbb10_2

vcb10_2ibb10_2iab10_2

va

vc

iaib vb

interface_b10_2

PQ

PQb25_2

+A ?i

Ieolb25_2

vab25_2vbb25_2

vcb25_2 ibb25_2 iab25_2

va

vc

iaibvb

Interface_b25_2

BU

S1

BUS2

BUS22

BUS9

BUS13

BUS10

BUS7

BUS8

BUS6

BUS20

BUS5

BUS17

BUS38

BU

S39

BUS34

BUS18

BUS3

BUS14

BUS12

BUS29

BUS28

BUS16

BUS27

BUS24

BUS35

BUS26

BUS11

BUS15

BUS4 BUS21

BUS31

BUS23

BUS36

BUS19

BUS25

Groupe – Technologie

Challenges

> Decoupling : Where & How ???• Delays (measurement/controlled source)• Transfer of slowly changing states: need for

filters!• Automation of decoupling!

> Diverse solution methods: • Synchronization issues (e.g. Check for

instantaneous power injected by WTG !)

> Global solution for all variables (not only interface) & impact on validity for all types of studies

Groupe – Technologie17

Conclusions

> Research on power system simulation and analysis tools is now facing new and major challenges:

• Simulation of extremely large networks• Very complex networks, penetration of renewables

energy• Smart Grids

> New trends and means for solving increasingly complex problems

• Parallel computations• Cloud computing• Collaborative computing• Advanced visualization methods• Data portability with CIM

> Major research and revisions are needed in existing simulation tools