138
SIMPLIFIED NUMERICAL MODELS FOR THE GENERATION OF SYNTHETIC REFLECTION PROFILING SEISMOGRAMS AND SYNTHETIC REFLECTION/REFRACTION SEISMOGRAMS by Charles David Lodge

Simplified numerical models for the generation of

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

SIMPLIFIED NUMERICAL MODELS FOR THEGENERATION OF SYNTHETIC REFLECTIONPROFILING SEISMOGRAMS AND SYNTHETICREFLECTION/REFRACTION SEISMOGRAMS

by

Charles David Lodge

United StatesNaval Postgraduate School

THESISSIMPLIFIED NUMERICAL MODELS FOR THE GENERATION OF

SYNTHETIC REFLECTION PROFILING SEISMOGRAMS AND

SYNTHETIC REFLECTION/REFRACTION SEISMOGRAMS

by

/ /3Z£4 3

Charles David Lodge

April 19 70

Tku> document hcu> been approved fan. public iz-lzcu>e. and 4>alt; lti> dUt/iibutlon JU> untmLttd.

Simplified Numerical Models for the Generation of

Synthetic Reflection Profiling Seismograms and

Synthetic Reflection/Refraction Seismograms

by

Charles David LodgeLieutenant Commander, United States Navy

B.A., Rice University, 1962

Submitted in partial fulfillment of therequirements for the degree of

MASTER OF SCIENCE IN OCEANOGRAPHY

from theNAVAL POSTGRADUATE SCHOOL

April 1970

ABSTRACT

Two numerical models were developed which generate synthetic

seismograms in formats similar to those of records obtained in field

exploration. The models solve the hyperbolic wave equations in one

and two dimensions by finite difference approximations in initially

undeformed solution domains of transversely-isotropic layered media

subjected to a time varying, dilatational forcing stress applied at

the surface. A velocity attenuation term was included in the models

to inhibit strong boundary reflections.

The one-dimensional model produces synthetic reflection profiling

seismograms for arbitrary horizontal or dipping layers. The two-

dimensional model generates synthetic reflection/refraction seismograms

for horizontal layered media with arbitrary distribution of wave

velocities, Poisson's ratio and density. Several sample records were

produced for some representative velocity structures. The synthetic

seismograms were interpreted and gross correlation was carried out

as if they were actual field records.

OSTGKADUATE SCHOOLY, CALIF. 93940

TABLE OF CONTENTS

I. INTRODUCTION 11

II. THE SEISMIC REFLECTION PROFILING MODEL 14

A. THE MATHEMATICAL MODEL 14

B. THE SOLUTION DOMAIN 16

C. THE DIFFERENCE EQUATIONS - - 16

D. STABILITY AND CONVERGENCE 20

1. Stability 20

2. Convergence 21

E. DESCRIPTION OF THE PROGRAM 22

1. Distribution Parameters 22

2. Numerical Parameters 23

F. SCALING THE PROBLEM 27

III. THE REFLECTION/REFRACTION MODEL 30

A. THE MATHEMATICAL MODEL 30

B. THE SOLUTION DOMAIN 33

C. THE DIFFERENCE EQUATIONS 33

D. STABILITY AND CONVERGENCE 37

1. Stability -- 37

2. Convergence 38

E. DESCRIPTION OF THE PROGRAM 38

1. Distribution Parameters 39

2. Numerical Parameters 44

F. SCALING THE PROBLEM 45

IV. INTERPRETATION £7

A. THE REFLECTION PROFILING SEISMOGRAMS - 47

1. Variable Depth Records 51

2. The Seismograms 54

B. THE REFLECTION/REFRACTION SEISMOGRAMS - — 71

1. The Seismograms 74

2. The Contour Output --- 91

V. SUMMARY - - - 99

VI. FUTURE WORK - 101

COMPUTER PROGRAMS - 103

THE REFLECTION PROFILING MODEL 103

THE REFLECTION/REFRACTION MODEL - 109

SUBROUTINES - - 120

LIST OF REFERENCES 126

INITIAL DISTRIBUTION LIST - - 128

FORM DD 1473 - 129

LIST OF TABLES

TABLE PAGE

I. Sample Horizontal Station Distances 26

11. Sample Velocity Defining Array 26

III. Sample Attenuation Parameter Polygon

IV. Sample Forcing Function Polygon 27

V. Scales Available for C - 0.8 = 1.5 km/sec -- 29

VI. Sample Wave Velocity and Density Polygons 40

VII. Sample Forcing Function Polygon 40

VIII. Sample Attenuation Parameter Polygons 40

IX. Scales Available for C = 0.6 = 1.5 km/sec 46

X. Scale of Contoured Quantity 95

LIST OF FIGURES

FIGURE PAGE

1. The Solution Domain 17

2. Mesh Detail 18

3. Sample Velocity Structure for Seismic Profiling 24

4. Sample Distribution Parameters 25

5. The x-y Solution Space 34

6. Isometric Detail of Three-Dimensional Mesh 35

7. Sample Distribution of Wave Velocities and Density 41

8. Sample Distribution Parameters 42

9. Sample Distribution of the Attenuation Parameter 43

10. Velocity Structure C3H 48

11. Velocity Structure C4D 48

12. Velocity Structure C5B 49

13. Velocity Structure C6C 49

14. Velocity Structure C7A 50

15. Velocity Structure C8A 50

16. Forcing Function F7 52

17. Attenuation Parameter A14 52

18. Stress versus Time at Various Depths 53

19. Uncorrelated Reflection Profile C3H F7 A14 55

20. Reflection Profile C3H F7 A14 57

21. Reflection Profile C4D F7 A14 59

22. Reflection Profile C5B F7 A14 61

23. Reflection Profile C6C F7 A14 63

24. Reflection Profile C7A F7 A14 65

25. Reflection Profile C8A F7 A14 67

26. Precision Reflection Profile C4D F7 A14 69

27. Velocity Structure CA 72

28. Velocity Structure CB 72

29. Velocity Structure CC 73

30. Forcing Function F5A 75

31. Attenuation Parameter B3 75

32. Reflection Seismogram CA F5A B3 L2 76

33. Refraction Seismogram CA F5A B3 L2 81

34. Reflection Seismogram CB F5A B3 L2 83

35. Bottom Detector Seismogram CB F5A B3 L2 85

36. Reflection Seismogram CC F5A B3 L2 87

37. Theoretical Time-distance Curves for VelocityStructures CA and CB 89

38. Portion of the Printer Contour Plot Showing Generationof the Dilatational Wave 93

39. Portion of the Printer Contour Plot ShowingTransmission of the Dilatational Wave into theLower Media 94

40. Portion of the Printer Contour Plot Showing the

Development of a Dilatational Head Wave 96

41. Portion of the Printer Contour Plot ShowingGeneration of a Shear Wave at the Transition Zoneby the Dilatational Wave 97

42. Portion of the Printer Contour Plot ShowingDevelopment of an Interface Shear Wave 98

ACKNOWLEDGEMENTS

The author wishes to extend his sincere appreciation to Professor

Robert S. Andrews who provided invaluable assistance in delimiting the

scope of the problem and in interpretation of the results. Apprecia-

tion is also extended to the staff of the Naval Postgraduate School

computer Facility, especially Mr. David F. Norman, for assistance in

running and debugging the programs. Particular thanks are due to the

author's wife, Diana, whose moral support and secretarial skills aided

t lie project immeasurably.

I. INTRODUCTION

A major problem in exploration geology is the determination of

structural relationships for areas in which the rocks cannot be directly

examined. This is usually a subjective process, involving the extra-

polation of lithologic facies from a region where control is available,

such as surface outcrops, mines or wells, across an unknown or

inaccessible area to another point with known structure. Indications

of subsurface structure, including magnetic, seismic and gravity

measurements as well as interpretation of surface morphological

features, are frequently relied upon to aid this process.

The problem becomes particularly acute in oceanic regions where

the only available control may be continental outcrops several hundreds

of miles away, a few bottom grab samples and shallow sediment cores

and a rough bottom topography. Remote measurements may then become

the only method of initial structure determination.

Frequent use is made of the manner in which the ocean bottom and

sub-bottom rocks reflect and transmit acoustic or seismic energy, not

only for the correlation of near-shore with on shore structures, but

also for initial determination of sub-bottom structures. When con-

ducting seismic exploratory operations, the information obtained is

usually presented as a two-dimensional graph (seismogram) on which

three variables are shown. These variables are: horizontal distance,

time and intensity of energy received. Depth information may be

inferred from the time scale with a known or assumed vertical distri-

bution of sonic velocity. A high level of intensity is usually

assumed to represent a point or surface at which the physical

11

parameters of the media change more or less abruptly, reflecting energy

or providing a surface along which energy might be propagated.

Interpretation of the sei sinograms and the development of a sub-

surface structure can be aided by the use of a mathematical model of

the supposed structure which would produce a synthetic seismogram.

The synthetic seismogram could be compared with the field record for

correlation.

This paper presents the development of two numerical models which

produce synthetic seismograms for layered media subjected to an initial

time varying, compressional (dilatational) stress input applied at the

surface. The models were designed to have fairly wide variability

while remaining simple enough to preclude the use of inordinate

computer time and storage requirements. The one-dimensional model

produces a reflection profiling seismogram. It is applicable to the

case of vertically incident dilatational waves reflected and transmitted

by arbitrary bottom profile and sub-bottom layered structure of hori-

zontal or dipping interfaces. The two-dimensional model yields a set

of seismograms applicable to a reflection/refraction problem where the

receivers are distributed in a horizontal array. Both dilatational

and shear stresses are treated. The region modeled is one of horizontal

layered media with arbitrary distribution of shear and dilatational

wave velocities and of density.

No attempt was made here to include the wide variability of possible

media which is an integral part of the large SLAM (Stress waves in

LAyered Media) code model developed at the Illinois Institute of

Technology (IIT) [Constantino 1969] primarily to treat the neighbor-

hood of high energy (nuclear) explosively generated ground shocks.

12

The LIT model has the capability of simulating a wide variety of

conditions but requires a large amount of computing time and space in

order to produce a single trace. It is felt that the two models pre-

sented here have a greater applicability to marine and terrestrial

seismic exploration problems.

These models were developed on the basis of numerical approxima-

tions to the solutions of the wave equations in one and two dimensions

by finite difference methods. The computer programs were written in

the FORTRAN IV language and were run on a dual IBM 360/67 system. The

plotting subroutines used to drive a CALCOMP 765 plotter were prepared

by the staff of the United States Naval Postgraduate School Computer

Facility [l969j

13

II. THE SEISMIC REFLECTION PROFILING MODEL

The problem of synthetic seismic profile generation was approached

as one of repeated transmission of normally incident longitudinal

(dilatational) disturbances through transversely-isotropic media. The

seismogram was developed by changing the velocity structure in the

solution domain between pulse transmissions, corresponding to a change

in position of the shot point as the profiling vessel moves across an

area of changing water depth and sub-bottom structure. The solutions

are presented as successive traces as though from a pressure hydro-

phone located at any depth below the shot point.

A. THE MATHEMATICAL MODEL

It was assumed that the wave velocity (C) is continuous throughout

the domain and either varies linearly with depth (x) or is constant.

Additionally, it was assumed that in transition zones, where the wave

velocity does change, density remains constant. Under these assump-

tions, the equation of motion in one dimension for dilatational waves

can be written (modified from Wolf [1937J ) :

ht* by {?%)+ A fc . (i)

where u is longitudinal particle displacement and A is a velocity

attenuation parameter which is a function of x. Carrying out the

indicated differentiation of the right side of equation (1) yields:

E: *h> - cz s£u +. 1C 33l£ $£ 4- a ^V- . (2)H 1 c a** + 1C

^* ^y + A ^E U)

14

Four collateral conditions are required in order to complete a

well-posed problem. The following conditions were selected:

initial conditions:

II: u^,0) = 0'! (3)

12: ot (y ;o N

-= C , (4)

boundary conditions:

Bl: C(L,0 - O t (5)

B2 : UK (C,-t ) - fit-/}, t^ "ti •

(6a)

V (O, M =: ,t>ti , (6b)

where L is the distance to the lower boundary.

The initial conditions allow the solution domain to be initially

undeformed and at rest. The first boundary condition requires that

displacements are zero for all time at the lower boundary, which then

becomes perfectly reflective. The second boundary condition allows a

variable stress to be applied to the upper boundary for t( t,, For

t > t , normal stresses are not transmitted across this boundary. It

then becomes a free surface.

The second term on the right side of equation (1),A ^rr: , represe-

sents an attenuation factor, dependent on depth and particle velocity,

which was used to reduce the magnitude of the disturbance in the lower

regions of the domain so that reflections from the lower boundary would

not mask late arriving multiple reflections from points nearer to the

surface. The function A(x) is assumed to be zero in the region from

which reflections are to be studied.

15

B. THE SOLUTION DOMAIN

The solution domain (Fig. 1) is divided by N equally spaced mesh

points into N-l subintervals each of length £x. A sample wave

velocity distribution is shown in the figure. The upper boundary (x =

01 is shown on the left. In the region O^x^x., the wave velocity is

constant and equal to Cl. For x„4 x ^ L, the velocity is equal to C2.

In the transition zone, x. < x < x„ , the velocity varies linearly from

Cl to C2.

The time-depth mesh is an array of N by M mesh points. Each

rectangular mesh area is then of size S x by £t. This mesh is the

full solution domain and the objective of the model is to find a solu-

tion of equation (2) at each mesh point under the collateral conditions,

equations (3) through (6).

C. THE DIFFERENCE EQUATIONS

A central difference form for each of the partial derivatives in

equation (2) can be written in terms of the (i,j) mesh point [ Smith

1965] . Figure 2 shows the (i,j) and neighboring mesh points. The

required derivatives, in central difference form, become:

^S ± Cut- Ci-

16

12 3 4 5

t

VELOCITY = CI VELOCITY = C2

Xl

X2

Figure 1. The solution domain

N

t

u-l

17

\(j+1 A\ i.i+i

j

7T\-Pcnr—fti fen

j-1 c"n

Vij-i

i-1 L i+1

Characteristic curves

Figure 2. Mesh detail.

18

Substituting these into equation (2) gives the difference equation of

motion for the (i,j) mesh point:

"-)+ .-2cX,j-n> t|

j.i _

cf / ^i^-l^^u^jN

+ Lq (Cwi - O-A /O^J^U-y, A + fr.

(U^-O^-iN(7)

The collateral conditions become:

II: Util = o (8)

12:UL.a.- OC.o -

(9)

Bl: UMjj = O . (10)

B2: "\i "°°j = Fj ' (11)

where F. = F(t) , 0(ti t,

fj ° . •= > ti .

Solving equation (7) for u. .,-, gives:

E . o-tlj4i = [2UL,j (l- CiV2

-) Hr UL+x.j (C?fc* + ic^(c^,-c,.-i)c.a)

-cJ.r,(l+ i.A;St)]/[l-iALS^ , (i2)

where: £2 = ( ^-M *

Writing equation (12) for j=l and substituting u- n from equation (9)

yields the initial conditions:

II: L>-til = 6 (8)

12: 0„z - O . (13)

19

Writing equation (12) for i=l and substituting u . from equation (11)o

> J

yields the boundary conditions:

Bl: °^,j + i " ° » (10a)

B2: L,ri = [20 Lij(i-C 4V) + 2 a

,j(CfR 1

)

-:,r :(l^A i -t)^^(^)]/[l- i A t- (14)

The equations (12), (8), (13), (10a) and (14) then form a well-

posed problem for numerical solution. Initially, the j=l and j=2 rows

are set to zero following equations (8) and (13). The j+1 row can then

be solved utilizing equation (10a) for the lower boundary (i=N)

,

(14) for the upper boundary (i=l) and (12) for the interior points.

Note that the value of u anywhere along the interior of the j+1 row is

dependent only on the values of u at three points along the j row and

one on the j-1 row (shown as circles in Fig. 2).

D. STABILITY AND CONVERGENCE

1. Stability

Because of the large number of arithmetic operations involved

9(approximately 10 for the solution spaces used), it is necessary to

insure that there is a stable decay of errors introduced in the various

computations. Studies of the stability of the centered difference

formulation of the basic wave equation:

TZ- ' c -5** '(15)

have been carried out by several investigators [ Smith 1965j . Smith

investigated the stability by the Fourier series method and showed

20

that the centered difference formulation is stable for the mesh

ratio:

^ 4c

*< 16 >

The addition of the velocity gradient and velocity attenuation

terms in equation (2) alters the stability conditions somewhat. A

large velocity gradient, approaching discontinuous velocity change,

generates instability in the gradient region. Investigation of the

stability conditions showed that if the condition:

&C, - Ci+i - Ci-i 4 C'l , (17)

were imposed on the gradient regions, the requirement on the mesh ratio

[equation (16)1 becomes:

£t y0-89

.

bx * C (18)

The addition of a negative attenuation term tends to decrease

the right side of equation (18). This would lead to a more stringent

requirement on the mesh ratio. This effect was found to be quite small

for the values of A(x) necessary to damp lower boundary reflections.

Empirically, it was found that stability would be assured by requiring

that:

St y 0-S5- 4 -£- • (19)

2 . Convergence

A finite difference scheme is said to be convergent if the

exact solution of the difference equations approaches the exact

solution of the partial differential equations as Sx and St

21

approach zero together. Forsythe and Wasow [1967] have shown that

convergence of a finite difference scheme such as equation (12) with

boundary conditions such as equations (8), (13), (10a) and (14) is

convergent as long as the mesh ratio is such that the (i, j+1) mesh

point lies within the intersection of the characteristics through the

(i-l,j) and(i+l,j) mesh points (see Fig. 2). The equation defining

the characteristics for equation (2) is:

(£f ' <? (20)

This leads to:

6t

Convergence is then assured for:

= ±C •(21)

St > 1

4. -r * (16)

It is apparent then that as long as equation (19) holds, the finite

difference formulation will be both stable and convergent.

E. DESCRIPTION OF THE PROGRAM

The program requires 140K bytes of main core storage. An average

run with a 251x1800 mesh grid with 41 shot points requires approxi-

mately 13 min of main run time exclusive of output time required for

the plotting subroutines.

1 . Distribution parameters

The advantage of this model lies in the wide variability of the

conditions which may be easily simulated. The primary parameters used

to model various conditions are the distribution parameters. They are:

a. wave velocity distribution, C(x,t),

22

b. forcing function, F(t)

,

c. attenuation parameter, A(x).

The forcing function and the attenuation parameter arc put into

Liio model as single-valued, continuous, polygonal line functions of

the indicated dependent variable. The wave velocity is put into the

model as a two-dimensional array of points which describe the depths to

isovelocity layers at successive horizontal stations. Figure 3 shows a

sample distribution of isovelocity horizons with horizontal stations

and shot points indicated. Horizontal station distances and the

velocity defining array for this sample are shown in Tables I and II.

At each shot point, the wave velocity is a single-valued, continuous

polygonal line function of depth. An example of wave velocity distri-

bution at a single shot point is shown in Fig. 4 along with a sample

attenuation parameter and forcing function. The polygons for A(x) and

F(t) are defined in Tables III and IV.

2 . Numerical parameters

The numerical parameters, which remain constant throughout the

problem, are used to control the computation of the distribution para-

meters and to set the arrangement and size of the solution domain.

They are:

a. mesh size in the x direction, (DX)

,

b. mesh size in the t direction, (DT)

,

c. horizontal distance between successive solution stations

(shot point spacing), (DK)

,

d. number of total x mesh points, (N),

e. number of total t mesh points, (M)

,

f. number of solution stations, (KK),

23

o asPLH <in o2 2 COO M WM Z 2H i-i Oi—

i tn NCO U COO Q H S3P-c 53 O2& i—

i

Oi—

l

HO M P-, i—

i

M CJ> COH O H 2O

gCO > CO H

o—

A

HO<!HCO

<H53ONJI—

l

o

o— >

>

>

>

>o

>

t>

>

>

>

t>

ol>

t>

>

O— 1>

t>

t>

>

t>

o—

>

r-l IIICJ ///II //

/

^ ///M / / /W // /o // /•J // /w // /> ///

/ / CN CO <tII CJ> o

II IIII

£ E>*HM (—

1

1—

1

C_> c_> OO o OhJ .J hJw w W> > >

I

H

60

4-1

O5-1

a

eCO

•HCU

w

J-i

Ou-i

aj

u

uo

•u

ex

ICO

CU

(-1

X

24

(a)

f

C3 —

CI

20.0

(b) 10.5 20.0

2.0

(O

-0.15 t-

t p-

Figure 4. Sample distribution parameters

(a) Wave velocity at one shot point,

(b) Attenuation parameter.(c) Forcing function.

25

g. number of points defining the distribution parameter

polygons

:

(1) wave velocity polygon, (NC)

,

(2) attenuation parameter polygon, (NA)

,

(3) forcing function polygon, (NF)

,

h. number of horizontal stations in the velocity defining

array, (NG)

,

i. mesh point at which the output stress is to be measured,

(IP),

j. horizontal distance to the first shot point, (EEE)

.

Additional numerical parameters are put into the program which

control the size, scale and arrangement of the output traces. For

details of their use see the explanatory notes in the program.

Table I.

Sample horizontal station distances

Station Distance

0.02.0

10.520.0

Table II.

Sample velocity defining array

Station Numbers12 3 4 Velocity

Depth 0.0 0.0 0.0 0.0 CI

to 2.0 2.0 4.5 9.8 CI

isovelocity 2.2 2.2 4.7 10.0 C2

horizons 4.7 4.7 4.7 10.0 C2

4.9 4.9 4.9 10.2 C3

20.0 20.0 20.0 20.0 C3

26

Table III.

Sample attenuation parameter polygon

Depth A(x)

0.0 0.010.5 0.020.0 -2.0

Table IV

Sample forcing function polygon

Time F(t)

0.0 0.00.10 0.00.40 -0.15

0.70 0.02.0 0.0

F. SCALING THE PROBLEM

All wave velocities and depths were put into the model in non-

dimensional form. The wave velocity in the upper layer and the depth

to the first transition zone were chosen as the definitive values for

non-dimensionalizing the problem. Non-dimensional time was then

determined by these values through the mesh ratio. Practically, the

scale of the problem is determined by the wave velocity values and one

of the mesh sizes. In general, the wave velocity is entered as C

distance units per time unit. For a mesh ratio of:

St _ 0-025 _ i- - -±- «t C??1

)

the stability condition [equation (19)1 allows the wave velocity to

vary from 0.0 to 3.4 distance units per time unit. If a value of C of

0.8 is to represent dilatational wave velocity in water (1.5 km/sec),

27

then the scale of the problem would depend on a choice of either time

or depth mesh size, chosen in view of the definition desired. Table V

shows some scales where the time mesh size was specified.

28

II

00«

o

oooCM

CM

cO

o t3

x: ou « /-v

a- 60) J-i

-^Q CD

o•J

eCO

o oo aj

B a to

tO CD w•H hJCU

WD

Oo00

<t-

oin

o om oo

00 <f

oCM

m

m•

m oo r^I-h v£> 0000 <J- i-l

oCM

o

>cu

i—

i

X>co

H

CJ>

oM-l

cd

to

<D

4-)

0)

6CO

l-i

CO

a,

a> -u cj

g -H CD

•H C WH 3 ^

CD

OCcO4-1

to p

<1-

O

<l"O oo

mm r^

• •

m JO r-~ m 00

00in CO r^ i—*

oo

m

cO

oan

••^ mo m CM r-l

4J CU m o CM i—

i

o oCD to CM i—

i

o o o oN ^-^ o o o o o o•HCO

x:CO ma> m r» mS *"> m r-~ m 00 r^

x e

oom oo

29

III. THE REFLECT ION/ REFRACTION MODEL

Synthetic reflection/refraction seismogram generation requires

solution of the wave equation in at least two dimensions. A rectangu-

lar solution space was chosen with three rigid, reflective boundaries

and one free boundary corresponding to the air-water or air-ground

interface. In order to produce a model with wide variability as well

as one that may be easily manipulated without inordinate computer time

and storage requirements, it was assumed that the media in the solution

space is horizontally isotropic. The y-derivatives of density and

Lame's constants (and hence of shear and dilatational wave velocities)

will then be zero.

A. THE MATHEMATICAL MODEL

It was assumed that density, o , and Lame's constants, A and ll ,

are continuous throughout the solution domain. Further, it was

assumed that density and the dilatational and shear wave velocities,

C and S, are either constant or vary linearly with depth. Under these

assumptions, the equations of motion in two dimensions for the propaga-

tion of shear and dilatational disturbances can be written (modified

from Officer [ 1958] and Takeuchi [l966J ):

6c

El

+ ¥"H^ + 4 5

E2:?

+ iY $15H

(23)

at(24)

30

where u and v are the particle displacements in the x and y directions

and B is a velocity attenuation factor. The stresses are:

Dilatational stress: VcT* ?>u" )

Shear stress: / \"d* bu~

These stresses are computed in the program and are used, in addition

to displacements, to form the seismograms.

Carrying out the indicated differentiation on the right side of

equations (23) and (24) and collecting terms yields:

El

i ^^ /SO . "&>A 2- ^A ^ .B^o

E2: Vv _ / V^A ^v

where it has been assumed that:

(25)

£rt (26)

31

The eight collateral conditions chosen to complete a well-posed

problem were:

initial conditions:

II: oCx^.o^) = O , (27)

12: ^0,^,0^ - O , (28)

13: ^^H,o) - O , (29)

14: \f^,L\,o) = O , (30)

boundary conditions:

Bl: L)L*,0,-\.) - O 9

«J (*,fA,0 = O ,

B2: v(K,0,-t) = O ,

V(L (H ,-t) = O ,(32)

B3: O x (0lH ,4r) + ^(O^.-fc) = F lH .t) * (33)

where: F(y,t) = for t > t

B4: °H (°iHi"t^ +vxl° 1 H.t) " O • (34)

The initial conditions allow the solution space to be initially unde-

formed and at rest. The first two boundary conditions (Bl and B2)

require that displacements are zero for all time at the subsurface

boundaries, which then become perfectly reflective. The other boundary

conditions (B3 and B4) allow the x=0 boundary to become a free surface.

Shear and dilatational stresses are not transmitted across the surface

for all time except for an externally applied, time-varying dilatational

stress, applied at a point or combination of points for t v. t, .

As in the one-dimensional model, an attenuation term was included

in the equations of motion (El and E2) in order to keep boundary

32

reflections from masking multiple reflections in the central regions.

The function B(x,y) is non-zero only in the vicinity of the three rigid

boundaries and is zero in areas where disturbances are to be studied.

B. THE SOLUTION DOMAIN

The solution domain is a three-dimensional rectangular array of L

by M by N mesh points dividing the domain into (L-l) by (M-l) by (N-l)

equal subdivisions, each of size ox by &y by £t. Figure 5 shows the

x-y solution space. The total solution domain is formed from N succes-

sive solution spaces or planes. A detail of the distance-depth-time

mesh in the vicinity of mesh point (i,j,k) is shown in Fig. 6.

C. THE DIFFERENCE EQUATIONS

As in the one-dimensional model, a centered difference form for

each partial derivative in equations (25") and (26) can be written.

Making use of the definitions for wave velocities:

c

ST

—^ /

P

(35)

(36)

finite difference forms of equations (25) and (26) may be written in

terms of wave velocities and their derivatives. Carrying out this

substitution and solving for the time leading (i,j,k+l) term for u and

v yields:

El: O-^.iw, =[iU-L.j,k(l-eRA-sfRc) + Ud+1i

jiL (ct+^ +^)KA

+ UKj ^(c':-^-^)KH^(;uLir ,,L-^U;|

- l|OS"Xc +VA(c\-s!)R£(37)

33-

—i cn ro <r 10

>"

I

I

o

1—

1

H ECu CO psi

II II II

H>-HH B

U U 1—

1

o o COhJ J 2fa w w> > QhJ Pd

1 1o x1—

1

COH<H

CNCM CMO CO §

II II ii

SK HM M My u COq o 55

g £ w> >

ga5 w

<iH

m

CN

0)

oCO

aen

Co

•r-l

4-)

i—l

oCO

>•.

I

X

u

(30

•i-l

fa

X

34

/

I

i,j,k+l

i-lf j»k

i» j-l»k

- +i

+ -

i.J+l.k

h J,k

* /-

i,j, k -l

t

i+l,j,k

+ -

Figure 6. Isometric detail of three-

dimensional mesh.

35

+ v/i-'.j.te. U*-^:)^ + W i

j+li k.-».M-li j-, 1 jc.)c"riCC + UA(c"-s")kS

v Co;lj+. 1

k-o:1

)-i,k)a&OM. ->/;,),k.^i (i + |r£%t)j / f i- §^&"

where: RA - (^ , *6 = ^fg_ , Re = /it

"

OA - Uf+i.JH,,!.. + pt ,,j. lik - O^.j-.k - U,, ifl| k

The collateral conditions become:

II: Ul(J1

- O ,

12: Vj,j (1 - ,

13: Ui/,,1 -

14:

Bl

V; P

B2:

Ufcj.k. -

^-W -

^uk -

^L,jk =

V

o

o

o

oo

o

o

o

B3: Od

B4: Vkj.t-M - i2N/i.j.k.(i-ci«C-SiRA) - v/,,j, k (* Si |2A)

(38)

(39)

(40)

(41)

(42)

(43)

(44)

(45)

(46)

36

A well-posed problem for numerical solution is then formed by

equations (37) and (38) with collateral conditions (39) through (46).

Initially, the k=l and k=2 planes are set to zero following equations

(39) through (42). The k+1 plane can then be solved using equations

(43 ^ through (46) for the boundaries and equations (37) and (38) for

the interior mesh points.

D. STABILITY AND CONVERGENCE

1. Stability

Under the conditions that the attenuation and velocity gradient

terms are zero and that Sx = Sy, the difference equations (37) and

(38) reduce to those for which a stability analysis was carried out by

Alterman and Karal [ 1968 J , and Alterman and Rotenberg [1969

J

The former paper showed that the stability criterion is given by:

8* C(47)

In the latter paper, the authors indicated that stability was guaranteed

under the condition that:

g < °- 86' (48)

with the assumption that S/C = 0.55, corresponding to a Poisson's ratio

of 0.28. Poisson's ratio is defined in terms of wave velocities as:

<r - (49)

Empirically, it was found that the addition of attenuation and

velocity gradient terms reduced the right side of equation (47), while

37

an increase in Sy ( Sy > ox) reduced the left side. An approximate

stability criterion was established, given by:

b^b^-f< ^ wir ' (»)

under the condition that the restrictions on velocity gradients (for C

and S) given by equation (17) apply.

2. Convergence

Following the methods of Forsythe and Wasow [1967] and of

Fox et al. [ 1962 J , it was assumed that convergence would be assured as

long as the mesh ratios were sufficiently small to insure that the

(i,j,k+l) mesh point lies within the characteristic surfaces through

adjacent mesh points in the k plane. Fox equated the characteristic

surfaces with successive positions of a wave front. The most restrictive

condition on convergence is then given by the maximum dilatational

wave velocity in the solution space. This would give a less stringent

mesh ratio condition than the stability condition. Therefore, as

long as equation (49) holds, the method will be convergent as well as

stable.

E. DESCRIPTION OF THE PROGRAM

The program produces a set of four seismograms: shear and dilata-

tional stress and vertical and horizontal displacement. The data is

written on a temporary storage device (tape, disk or drum). A second

program then reads the data and plots the seismograms. An average run

with a 71x81 grid, 800 time mesh points and 25 detectors requires 278K

bytes of main core storage and a run time of 18 min. The output

requires 325K bytes of temporary storage space. The primary limiting

38

factor on a given problem is the time required for input/output to and

from the temporary storage device.

1. Distribution Parameters

As in the one-dimensional model, the distribution parameters

are used to model the physical conditions in the solution space. They

are:

a. dilatational wave velocity, C(x),

b. shear wave velocity, S(x),

c. density, RH(x),

d. forcing function, F(y,t),

e. attenuation parameter, B(x,y).

Wave velocities and density are put in the program as single-

valued, continuous, polygonal line functions of depth. The forcing

function is put in as was done in the one-dimensional model along with

horizontal stations at which F is to be applied. The attenuation

parameter is put into the program as two single-valued, continuous,

polygonal parameters. They are:

el. vertical attenuation parameter, BA(x)

,

el. horizontal attenuation parameter, BB(y).

The full attenuation parameter, B(x,y), is then computed as follows:

B(*.cO = MAX[BA(X), BB(H^] • (51)

Tables VI through VIII give sample numerical input used to

describe the various distribution parameters. Their distributions in

the solution domain are shown graphically in Fig. 7 through 9.

39

Table VI.

Sample wave velocity and density polygons

Depth C(x) S(x) RH(x)

0.0 0.6 0.0 1.03.0 0.6 0.0 1.0

3.3 1.2 0.82 2.17.0 1.2 0.82 2.1

Table VII.

Sample forcing function polygon

Time F(t)

0.0 0.00.1 0.00.7 -0.151.30 0.02.50 0.0

Table VIII.

Sample attenuation parameter polygons

lepth BA(x) Distance BB(y

0.0 0.0 0.0 -2.54.0 0.0 1.0 -1.0

7.0 -2.5 2.0 0.010.0 0.011.0 -1.0

12.0 -2.5

40

t

>^

o o o• • •

O o 1—1

II II II

u COPi

fa'

o

u

00

c•I-l

o(X

Co•HJ-l

CO

o *

•H >!i—l ua •Ha. CO

<o Ccu

c • X)o 0)

•H c XIu o SO N CO

ti

3 a CO

<-w o 0)

•r-l •H00 U 4-t

C •H •r-l

•r-l CO oo d oM m T-l

o H 0)

fa H >

fa H>CO

&<+-l

o

co•H4J

•HMUCO

exECO

CO

cu

u360

•r-l

fa

41

(a)

0.15

(b)

°l7.0

1

x —>

-2.5 BA

(c)

12.0

BB

•2.5 —

Figure 8. Sample distribution parameters.

(a) Forcing function(b) Vertical attenuation parameter(c) Horizontal attenuation parameter

42

43

2. Numerical Parameters

These parameters are used to control the computation of the

distribution parameters and to set the arrangement and size of the

solution domain. They are:

a. mesh size in the x direction, (DX)

,

b. mesh size in the y direction, (DY),

c. mesh size in the t direction, (DT)

,

d. number of total x mesh points, (L),

e. number of total y mesh points, (M)

,

f. number of total t mesh points, (N)

,

g. number of points defining the distribution parameter

polygons

:

(1) wave velocity and density polygons, (NC),

(2) forcing function polygon, (NF)

,

(3) attenuation parameter polygons:

(a) vertical, (NBA),

(b) horizontal, (NBB)

,

h. x mesh point at which the output is measured:

(1) stress, (IA),

(2) displacement, (ID),

i. number of horizontal output stations, (KK)

,

j. y index of the first output station, (JB)

,

k. mesh increment between output stations, (JJ),

1. shot point or area location:

(1) first shot mesh point, (MA),

(2) last shot mesh point, (MB),

m. last time mesh point at which F(y,t) is to be applied, (LL)

44

F. SCALING THE PROBLEM

The scale of the problem is determined by choices of wave velocity

values and either &t or ox and £y. For mesh ratios of:

St Q-Q£ _ i_

8* o.io 2. (52a)

fit - o^o| = i , (52b)

and under the condition on shear velocity that S = C/ V3" (0~ = 0.25),

the dilatational wave velocity may vary from 0.0 to 1.86 distance units

per time unit, and shear wave velocity may not exceed 1.07 distance

units per time unit. If a value of C = 0.60 is to represent dilata-

tional wave velocity in water of 1.5 km/sec, then the scale of the

problem would depend upon a choice of either time or distance mesh

size. Table IX shows scales available for various distance mesh sizes

specified.

45

o

o o oOJ ^~, o o CNCJ >-, £ o CN i—l

CTJ CM r-l

a .—1

oncu

ti No •r-l

•H CO4-1 o o O3 •-S o o r-

i—l X £ o r^o r~-

CO

Ln

oo00

CO

u jz

O MOg c <u

co cu co

•H J^CD

vOv£>

VD

Xo

r-( 5-i

,0 Ort m • •

H co

cu J-l

i—i CD

,a J-J

CO a)

.—l eH cO

cO J-i

> cO

cO CX

CO .—

(

a> CO

i—i oCO •Ho uCO cu

<U Og w a;

•h en

w•u•i-l

C1=>

^ e

a x e

o-

oo

ooo

<r oo o

o

oo

o•u a)

co CO

N

co

CO

CU

^ e

x e

CMCM o

CN O oO O o

mo

oo

LO

46

IV. INTERPRETATION

The synthetic seismic records produced by the two models presented

in this paper were interpreted first in the manner of actual field

records without direct reference to the structural profiles used.

Extensive use was made of gross seismic interpretation techniques pre-

sented by Grant and West [l965] , Dobrin [i960] , and Bullen [l959J ,

Interpretation of the reflection and transmission of incident pulses

was aided by the results of Alterman and Karal [1968j , Alterman and

Rotenberg [l969] , Gupta [ 1966a and 1966b] , Sengbush, Lawrence and

McDonal [ 1 9 6 1J and Tooley, Spencer and Sagoci [ 1965J .

A. THE REFLECTION PROFILING SEISMOGRAMS

Each reflection profile produced by the model is designated by an

alpha-numeric sequence. For example, C3H F7 A14 identifies the exact

structure (C3H), forcing function (F7) and attenuation parameter (A14)

used.

Six profiles were developed using three basic structures. The

structures, shown in Fig. 10 through 15, can be described in terms of

marine geology as follows:

(1) Shelf break with horizontal layers.

(a) Increasing velocity in each successive layer (C3H).

(b) With one low velocity layer (C4D).

(2) Flat bottom with double wedge.

(a) High velocity wedge (C5A)

.

(b) Low velocity wedge (C6C).

(3) Flat bottom, horizontal layering, penetrated unconformably by

a dipping bed.

47

distance > 22oo

5

10

o ^^C = 1.4

^. C - 0.8

° C = 2.2

=^\^o C = 2.8

ua-<u

•o 15

1 C = 3.420

25Figure 10. Velocity structure C3H

distance p-

10

a

15

20

25

C =

C =

C =

C = 3.0

Figure 11. Velocity structure C4D

22

48

distance *• 22

C = 0.8

C = 1.4

5

r - ? 2 ^====^10

x:ua.CD

1

15

C = 2.8-

1

C = 3.4

20

25

Figure 12. Velocity ^structure C5B

distance > 22

C = 0.8

C = 1.4

5

10

r - 1 ^"^=:::::::5=:

x:4-1

a0)

I15

C = 2.0

C = 3.0

20

25

Figure 13. Velocity structure C6C

49

15

J

20

25

distance

C = Q.8

?9

Figure 14. Velocity structure C7A

distance 22

20

C = 0.8

Figure 15. Velocity structure CSA

50

(a) High velocity bed (C7A)

.

(b) Low velocity bed (C8A)

.

All traces utilized forcing function F7 (Fig. 16) and attenua-

tion parameter A14 (Fig. 17).

1 . Variable Depth Records

As an aid to interpretation, several single traces were

developed with a single velocity structure, where the depth of the

detection point was varied between traces. The traces are shown in

Fig. 18 along with the mesh point at which each was computed. These

various detection points are shown as circles in Fig. 10. The traces

were generated using a source located at a horizontal distance of 0.5

units for the problem designated C3H F7 A14. The first disturbance in

each trace, designated d, is the direct wave. Pi and P_ designate the

reflected pulses from the first and second transition zones, while the

first primary multiple (P-, reflected from the free surface) is shown

by P,P . Other multiples are marked in a similar manner.

These traces show'clearly the development of a train of alter-

nating negative and positive pulses behind the main pulse. The change

in pulse shape is also quite evident. As the pulse progresses, the

amplitude decreases and the pulse width increases. Additionally, the

base and tip of the pulse form tends to become more rounded. These are

primarily mesh effects and are dependent on mesh size (DX) . When one

particle is unloaded as the pulse passes by, the adjacent particle is

still under stress, causing a reverse stress between the particles. In

gradient zones, where the derivative of C is non-zero, there is also an

elastic rebound effect which reinforces the pulse train.

51

0.1 0.4 0.7i •

i

0.03

Figure L6, Forcing function F7

52

p p P ? P <=+P

4P

<;P 1

\

*115

^Detection mesh point

time

6 10

Figure 18. Stress versus time at various depths

53

2 . The reflection profiling seismograms

Synthetic reflection profiling seismograms are shown in Fig. 19

through 26. Figure 19 is an uncorrelated version of Fig. 20, included

so that lineations may be observed without the influence of correlation

lines shown on the remaining figures. Solid lines on the seismograms

mark lineations which were correlated with first reflections from a

particular horizon. Dashed lines indicate multiple reflections which,

if used as primary reflections, might lead to erroneous interpretations

of structure. For each correlation, a particular phase was chosen and

followed laterally through successive traces. Figures 20 and 21 show

clearly the false dips introduced by the sloping bottom, increasing the

pulse travel time in the lower velocity upper layer. The bottom slope

causes a change in thickness of the top two layers (water and the first

subbottom layer). The false dip introduced is a function of the bottom

slope and the ratio of velocities involved. Note that there is a change

in dip at each point where a layer pinches out.

Figures 22 and 23 show similar false dips and horizons intro-

duced by variations in the thickness of a single layer. The high

velocity wedge causes a doming up to be introduced into a horizontal

transition zone below, while the low velocity wedge has the reverse

effect. The most obvious feature of the records for velocity structures

C7A and C8A (Fig. 24 and 25) is the relatively high amplitudes in the

records in the areas where the dipping beds pinch out against the flat

bottom. This is caused by a combination of factors. In velocity

structure C7A (Fig. 24), there is a sharp change in velocity contrast

across the bottom as the dipping bed outcrops. The steeper gradient

then reflects more energy, causing an increase in amplitude in both

54

Figure 19

Uncorrelated reflection profile C3H F7 A14

DX: 0.10 DT: 0025 DK: 0.50

N: 251 M: 1800 IP: 2

Horizontal distance (d)

versus

time (t)

55

HU-A

Oucu

c

•H

o0)

56

Figure 20

Reflection profile C3H F7 A14

DX: 0.10 DT: 0.025 DK: 0.50

N: 251 M: 1800 IP: 2

Horizontal distance (d)

versus

time (t)

First reflections

Multiple reflections

57

A

O.' r A f

o

1

* fi

'*:

i : p

AftMWalii

'XT

fen.

srH<J

C_>

0)

iH•H>4H

OMaco•HJ-l

OQJ

QJ

oCM

OJ

M36C

58

Figure 21

Reflection profile C4D F7 A14

DX: 0.10 DT: 0.025 DK: 0.50

N: 251 M: 1800 IP: 2

Horizontal distance (d)

versus

time (t)

First reflections

Multiple reflections

• Location of precision trace (Fig. 26)

59

o1-1

ao•H4JOCD

<D

U3Ml•HP*

nWf\r\ptMAJ\

60

Figure 22

Reflection profile C5B F7 A1A

DX: 0.10 DT: 0.025 DK: 0.50

N: 251 M: 1800 IP: 2

Horizontal distance (d)

versus

time (t)

First reflections

Multiple reflections

61

H<!

u01

H•HMHO

CM

ao•H4-1

U

CMCM

d>

•H

62

Figure 23

Reflection profile C6C F7 A14

DX: 0.10 DT: 0.025 DK: 0.50

N: 251 M: 1800 IP: 2

Horizontal distance (d)

versus

time (t)

— First reflections

— Multiple reflections

63

64

Figure 24

Reflection profile C7A F7 A14

DX: 0.10 DT: 0.025 DK: 0.50

N: 251 M: 1800 IP: 2

Horizontal distance (d)

versus

time (t)

— First reflections

— Multiple reflections

65

-1-

<

Pn

<CJ

<U

H•HU-l

O

co

eg

0)

u3

•HEn

66

Figure 25

Reflection profile C8A F7 A14

DX: 0.10 DT: 0.025 DK: 0.50

N: 251 M: 1800 IP: 2

Horizontal distance (d)

versus

time (t)

— First reflections

— Multiple reflections

67

oMD

ao•H4-1

o0)

OJ

u

00

68

Figure 26

Precision reflection profile C4D F7 Al4

DX: 0.10 DT: 0.025 DK: 0.10 EEE: 4.0

N: 251 M: 1800 IP: 2

Horizontal distance (d)

versus

time (t)

— First reflections

— Multiple reflections

69

AT^AA*^

fa

Qu

oMO.

CO•HUOCD

CU

o•rl

CO

•HOCU

UP-

CN

CU

UP00•Hfa

70

first reflections and multiples. Additionally, there is a resonance

effect of the large number of multiples being generated. This resonance

effect is also present in velocity structure C8A (Fig. 25). There is

also a tuning effect due to the relationship between the thickness of

the transition zone and the primary period of the incident pulse

Sengbush, Lawrence and McDonal 1961 J which would lead to high ampli-

tude reflected pulses. The possibility that instabilities were intro-

duced in these high gradient areas was considered. All parameters,

however, are well within stability criteria established in Section II.

Figure 26 is an example of a "precision trace4 ' that may be

produced by the model. This seismogram presents a section of a record

obtained with the same velocity structure as that shown in Fig. 21

(C4D F7 A14) with an expanded horizontal scale. The horizontal

distance covered includes the region where the first sub-bottom layer

pinches out. This area (from 4.0 to 8.0) is marked on Fig. 21 with a

horizontal line in the record. The "precision trace" was obtained by

reducing the shot point spacing (DK)

.

B. THE REFLECTION/REFRACTION SEISMOGRAMS

Each set of synthetic seismograms developed by the model is

designated by a letter-number sequence similar to that used in the

reflection profiling model. CA F5A B3 L2 identifies the exact wave

velocity and density structure (CA) , forcing function (F5A) , attenua-

tion parameter (B3) and shot point location (L2) used to generate the

records. The seismograms presented in this section were developed

using the following velocity structures (Fig. 27 through 29):

(1) Two elastic layers, (CA) .

71

X

I

7

+—

F y —*-

JL 124. r> + o

C = 0.60 S = 0.35 RHO = 1.00

C = 1.40 S = 0.82 RHO = 2.10

-+ Reflection spread

o Refraction SDread

CAFigure 27. Velocity structure

o 4 +

C = 0.60

C = 1.40

S = 0.0 RHO - 1.00

S = 0.82 RHO =2.10

+ + Reflection spread• * Bottom spread

Figure 28. Velocity structure CB

12

72

1

C = 0.60 S = 0.35 RHO = 1.00

12

C = 1.10 S = 0.65 RHO = 2.10

C = 1.80 S = 1.05 RHO = 3.00

+ + Reflection spread

Figure 29. Velocity structure CC

73

(2) Water layer over elastic layer, (CB).

(3) Three elastic layers, (CC).

With the exception of the water layer in CB, all velocity structures

were designed with Poisson's ratio of 0.25.

All traces were produced utilizing forcing function F5A (Fig. 30),

attenuation parameter B3 (Fig. 31> and shot point location L2. At this

shot point location, the surface dilatational forcing stress is applied

at mesh points j=15 and j=16. This is marked by the letter "F" in

Fig. 27 through 29.

1. The Sei sinograms

Selected correlated synthetic seismograms are shown in Fig. 32

through 36. Figure 32 is a complete set of four synthetic seismic

records for a close (reflection) spread of 25 surface detectors for

velocity structure CA. The detector spread is shown in Fig. 27. Com-

parison of these records shows the interdependence of the displacements

and stresses. Actual land field records would include only vertical

and/or horizontal displacements, or particle velocity, while marine

records would only consist of the dilatational (pressure) record. The

additional synthetic seismograms enable the proper phase arrivals to be

quickly identified. A set of theoretical time-distance curves was

developed for velocity structures CA and CB (Fig. 37), where it was

assumed that the width of the transition zone was zero. There is good

agreement between these theoretical arrival times and correlated linea-

tions on the synthetic records.

The first trace on the dilatation record corresponds to a

normally incident wave. It bears a very close resemblance to traces

obtained with the one-dimensional model for similar velocity structures.

74

0.1 0.7 1.3

f

-0.15

Figure 30. Forcing function F5A

y ^

12

B =

v£>

XvO

CN

1

CNII

\II

pq

PQ

7

B = 2.6

Figure 3.L. Attenuation parameter B3

75

Figure 32

Reflection seismogram CA F5A B3 L2

Dilatational stress

Shear stress

Vertical displacement

Horizontal displacement

DX: 0.10 DY: 0.15 DT: 0.05

L: 71 M: 81 N: 800

IA: 2 ID: 1 JB: 16 JJ : 1

Horizontal distance (d)

versus

time (t)

Direct wave arrivals

First reflections

Multiple reflections

Shear-dilatation conversion wave

76

o o o

A*d_v . - Yui--\ ^ .ux/\^r^A.—^^a

J A!\iy wv/sj-^

—J-44- [A-p^ A_^p=r,._.A^

r

m

Ttm 1

J±Al 4- / -... v.-.^^ .^^-

-r ^.p-v^^^^---^^^-:,^-^ /-.. '-!_

k , vr_

t_ ^-^d^-'j

4=—/^Jv^/v

.'^v/v'-'^v p'^' '-

-••""H'v-"rr-"-^

t

^ V'/'-'f^^

-Mr-A

i^f \ /

X

J

M-V^f -X/-- -K- ^ ;/v-

r^^iV^N^t^t^

,^\/->

^v-^ivf-v r r -l J/- \ / X£ -r x - 'v

u I

vl f '

Af

A7+: - > ' W -V^- '-i-';i~t=p-"\-/ -

^ v -^vy-K

tl

-u—

=

u•uCO

oHCO

•uc8

CNI

hJ

mP3

<CLO

<u6cd

u00oeCO

•H0)

CO

co•H•uo0)

0)

<!CMn0)

u360•H

77

CO

<mPm

<Ju

u

iCO

•H0)

CO

CO•HUod)

rHM-l

a)

paog

•H

78

<l \ I

Kt'-,

A 'A'

LI TVY

i /i \i^\

tf . '

; A &

I "7 T ''-- \<

/ U"1, /"X^

I 1.4/ • / -. ' I•

i /

J iv /

J

Si A-

hZ y£

\\\\ I J-S

-->

k:. r ;... ^.cd£

^// : k—T^

• ly"

4/

V

4-

/

1' " - Xr v. • ^1-' .'"v.V^ . A

I - 1

Kk-fi.

1

c0)

a0)

u03

.-I

P-W•H

Cfl

O•H•US-i

CD

>

Csl

roPQ

<dmfa

<1UaCO

(30

Oa03

•HCD

CO

O•H•UOQJ

H4-1

Pi

UCNco

CD

M•Hfa

79

4J

C0)

E0)

uOJ

iHO.W•HQ

K-l

rnPQ

<!m

<osCTJ

>-l

b0OSCD

•HQJ

WCo•Hj-J

o0)

QCO

0)

M

•H

80

Figure 33

Refraction sei sinogram CA F5A B3 L2

Shear stress

DX: 0.10 DY: 0.15 DT: 0.05

L: 71 M: 81 N: 800

IA: 2 ID: 1 JB: 22 JJ: 2

Horizontal distance (d)

versus

time (t)

Direct wave arrivals

First reflections

Refracted arrivals

81

o

00

oCO

t

oCO

b

AT"

A / / M

v

^v

AA^

l-l

CD

43CO

CMhJ

COpp

<mfa

<SO

MMOBto

•r-l

cu

CO

13

O•H4J

Occj

f-i

14-1

0J

ff5

COCO

cu

300•Hfa

82

Figure 34

Reflection seismogram CB F5A B3 L2

Dilatational stress

DX: 0.10 DY: 0.15 DT: 0.05

L: 71 M: 81 N: 800

IA: 2 ID: 1 JB : 16 JJ : 1

Horizontal distance (d)

versus

time (t)

o Direct wave arrivals

First reflections

- — — Multiple reflections

83

05

CO

CD

^1

UCO

O•r-l

•1-1

Q

CNiJ

CO

<mfa

pac_>

I

too

O6W

•r-l

cu

C/3

Co

•r-4

4JO0)i—lmcu

erf

CO

cu

3too

•Hfa

84

Figure 35

Bottom detector seismogram CB F5A B3 L2

Dilatational stress

DX: 0.10 DY: 0.15 DT: 0.05

L: 71 M: 81 N: 800

IA: 20 ID: 20 JB: 16 JJ: 2

Horizontal distance (d)

versus

time (t)

Direct wave arrivals

Surface reflected multiples

Interface wave conversion

85

CNJ

oto

D

oro

CO

w0)

u•u

ao

4JtO

i-H

•HQ

CMhJ

COpa

<mfa

CQC_)

iu60OBw

•r-i

0)CO

S-i

o•u

u

4J

<u

Q

U4-1

o

CO

<u

M

•Hfa

86

Figure 36

Reflection seismogram CC F5A B3 L2

Dilatational stress

DX: 0.10 DY: 0.15 DT: 0.05

L: 71 M: 81 N: 800

IA: 2 ID: 1 JB: 16 JJ: 1

Horizontal distance (d)

versus

time (t)

o Direct wave arrivals

First reflections

Multiple reflections

Shear wave conversion

87

o

-. A «..1 —**":

i\-^ f*~A- *~c—s \i~ -

cO

co

•r-4

UCO

Uctj

i—

i

•!-(

Q

CNJCOPQ

<:m

§

60Oico

•H<U

CO

•i-l

4-1

O01

r-l

M-l

0)

CO

0)

60•HPn

88

° Dilatational arrivals (CA and CB)

^ Shear arrivals (CA only)

Subscripts:direct wavefirst reflected waverefracted wave

Refraction spread

Reflection spread

25

20

t15

10

-35

Figure 37. Theoretical time- distance curves for

velocity structures CA and CB.

89

Elastic rebound is present, causing the development of a cyclic wave

train. Phase reversal is observed for events reflected from the free

surface on all records. These features are particularly apparent in

the contour plots discussed in the next section.

Although no refracted arrivals are shown on any of the records

of Fig. 32, a close examination of the traces revealed their presence

after a refraction record was obtained. Figure 33 is the shear stress

refraction record for velocity structure CA. The surface detector

spread (shown in Fig. 27) extended across most of the solution space

into the attenuation region on the right.

In addition to the arrival of the refracted shear wave, Fig. 33

shows the development of a small shear stress in advance of the first

shear arrival. This is generated by the passage of the dilatational

wave across the mesh, a result of the coarseness of the mesh relative

to the wave velocity. As the dilatational wave passes a mesh point at

an oblique angle relative to the x or y axis, shear strains are set up

between mesh points. In fact, it is just this effect which causes the

generation of the initial shear wave at the forcing function applica-

tion point, or, more precisely, between one application point (where

the applied dilatational stress causes some displacements and the

neighboring mesh point where displacements are different. The shear

wave is then generated from two centers. For shot point location L2,

these centers are (fictitious) mesh points (%, 14%) and(%, 16%).

Figure 34 is the dilatational stress reflection record for

velocity structure CB. This structure (shown in Fig. 28) is identical

to CA except that, in the upper layer, shear wave velocity (and hence,

Lame's constant/^) was set to zero. The record is, of course, very

90

similar to that obtained from structure CA except that the amplitudes

of the first arrivals are somewhat greater. This is caused by the lack

of rigidity in the upper layer leading to a loss of the attenuation

effect of shear strains on dilatational strains.

An example of a seismogram obtained with a spread of detectors

on the bottom of a water layer is shown in Fig. 35. Because of the

relationship between shot point location and detector location, the

only lineations available for correlation, except for the direct wave,

are multiple reflections between the bottom and the surface, and re-

fracted waves. An additional effect observed on this record is the

generation of a head wave in advance of the direct wave. This wave is

generated at the interface between the two layers by the dilatational

wave travelling through the lower medium at a high velocity.

A three-layer reflection seismogram is shown in Fig. 36. The

main feature of this record, not seen in the two-layer seismogram, is

the mutual interference between the first multiple from the first

transition zone and the reflected wave from the second transition zone.

As these two waves are out of phase with one another, the initial

effect is one of destructive interference. As distance from the shot

point is increased, the waves arrive from somewhat different directions,

altering the phase relationships, leading eventually to constructive

interference.

2. The Contour Output

An on-line printer contour plotting subroutine was developed so

that the reflection and transmission of elastic waves might be observed

in a qualitative manner. At chosen intervals, the values of horizontal

or vertical displacement, dilatational or shear stress or vorticity are

91

computed for each mesh point, converted to an alphabetic representation

and printed as a rectangular contour plot. Figures 38 and 39 show

portions of such plots, dilatational stress plotted for the problem

CB F5A B4 L2 at time mesh levels K=16 and 91 respectively. Figure 38

shows the generation of the initial dilatational wave by the forcing

function. Figure 39 shows the progress of the dilatational wave as it

is reflected and transmitted at the transition zone. Some minor modifi-

cation of the main two-dimensional program was necessary to produce this

form of output. Examination of the subroutine shows what additional

parameters were necessary. Table X shows the scaled values represented

by the plotted characters.

An animated motion picture was made of dilatational and shear

stress for this problem. This presentation enables the progress of

wave fronts throughout the solution space to be readily observed,

including phase changes where they occur. This output allowed the

efficacy of the attenuation parameter to be determined quite easily

during the development phase of the model. A copy of this motion

picture on Super 8mm film is on file at the Naval Postgraduate School,

Department of Oceanography (Code 58Ad), and is available to interested

investigators on a loan basis.

Some effects were noted on the contour outputs before they were

identified on the seismograms. The dilatational plots first showed the

development of a head wave in the upper layer (Fig. 4CH . Other pre-

sentations clearly show the development of a shear wave in the lower

medium due to the incidence of a dilatational wave against an elastic

transition zone (Fig. 41) and the generation of an interface wave

travelling along the fluid-elastic boundary in advance of the shear wave

(Fig. 42).

92

DILATATION: CB F5A B4 L2 K=16

i

FFGuGGCGLClGCGCuGGGM GGGCGOGGGUGCGCCGCCGGC ;

2 GGGi OCCL'lCC'KN ZZ* CCOCCGGGGGGCGGGGUGJGGX CLCCCCCCCCG // *v CGCCGCCCCCCCCCCCGGCGu lCUGCClOGL 3 JZZn CGOCGGOGCGGCCGCGGGGCG-> LCl-CCCCCCCCC t- KGCCOCCCGGGGGCCGGOGO'JuC6 CiuQGuUGGGGGGCCK.KCCGGGGGGGCCCGCCCCGGCGQGG7 GGGuOGGGGuGCGLDGCGGGGJuCGOOGaGCCGCGGGGGG5 gggccccccccgcccgOcucccgccccccgccgcgoogcci GCQGCGCCGCCCGtGGfcGOCCOGCOCCGCOCCCCCGGGGC

: j GCGGOGGCOCGGGuGGGGGGGOGCQCGGOGOCCOOGOOCGLI CGCCCCCCCCDCCrCOCCJt GCCCCGCCOCeCCCCCCCGCG12 GGuGuGGGGCGCOUGGGUGGOGGGQCOGOOGCCGGCCQCGi 3 CGCClClGGCGCGCGCCCLGGCGCGCCGGGCCCCOGGGGGI -t GGGGGtCCCC GCGCGCCGCCCCCCCCCCGCCCCCGCCCGG

1 15 GGGCGGGGGCCGGCGGCGGGGGGCOCGGOOCCCGOQGGGG1

i Q GG'uCGi I CGCCGGCGGt CGCCGCCOCCOCCOCCQSQOUGG17 GGGGCGCGCCGGGCGl GUOGGGGCOCGGOOCCCCGGGGGC

1 ] ^ GGOGGICGGCCCCCCGOCOGCOGCQOGOOOOGOGOGGGOG j

* 19 CCCCCCCCCCCCGCCi*CCGCCCCCGCCGCCCCCCCCCGGO21 GGUGGGUGGGGGuLG{3GGUdGGGGGOQGOGGCOGG-GGGGO\21 CCGGGCGCCGCCnCCCCCCCGGCCGCCOGOCCGCGCCGOG \ '

22 GGGGGCGGnGGCGCGdGGGt CCCCLCCrCGCGCCCCCuCG \;2 GGOCGGGGGaCCGC GCCdOGC.GCCGGCGOGGCGCUGGOQG^^JX2h GuJL CGGGLCGCCGGCCOGCGGCCOCGOOOGCGGGGGGOG T? 5 LGuGGGCGuGGCGCCGCGGGOOCCGQGOGQQCCCCGCGGC2o CCGGGGGC.GLCCCCGQCCGGOOCCOOOQCaOGQGOQG'JGa2 7 GGGGCC.CCCGGGCGCGCGOCCCCCCCGCCGCCCCCGCGGG

•< GGGGGGGQGGGGGCGC CGC GC GGCGCGQGGCCCCCCGGGOZ 9 CCGGGGCGCCGCGCCCCCGCCOCCGCCCGGCCCGGGCGGC_ - GGGGGGGGCCOGGGGGGCCCCOCCGOGGGGCCCCOGCOCCH lull CI GGGG'CCGCGGGGl.'CCGCCOGGGGGGCC0GGGGGC •

- 2 GGGCCGGCCCCCCCCl CGGCl GCCGCCGGGGGCOOGGGGG_ - GCCcCLLLL"CCCLLGGCL. r CGGCCCCCGCCCCCCCCCGGC3<* GGGCGGCCCCGCGCCC CCLGGGCGOGCOOOOGCQQQGGGO33- LGCCCCCCGCGGGCG.C CCl llCC CCCCGCCCCCCCGbGGL36 GGGCGGCGGCCCGCGnCOGGGOGCGGOOGCGCCGGGGG'CC37 GGGCGCCCCCCCGXC LCCGCCGCCCCCGOCCCCGGGGOQGit1 GUuGGCGCGGCCCf CCCGGCCGCCCCCCCQCCCCCGCGCC3 T CCQGGCGuGGCCGGGi GGCCGCCCGOCGOGCGCOGGOGGC4c GCGCGGGCC CC CCGGC CGGCCGC C GGGGGGGCCOOGGaGG4 1 OCUGCCCCCGGCGGGOCGGQC GCCGGCGGGCCGCOG'CGCCh2 GLGCCGCGGGCCGGGOCGGCl GCCGGCCGGCCGGGGGGOO-» 3 CEOCCCCCGCCCOGCGCCQCC CCCCGCCGCCCCCGGCGCC*4 UGJCGGGuGCGGGCGGCOGGGUCCCOCOGGCGCCGCCGGC+ b GGGCCCCCCCGCCCGCCGGCCCCCOCGCCGCCGGGGGGGG4 c GGGGGGGGGCaCGCGCCCGCCGCCCCCCCCCCCGGOGOCC47 CCGCCCCUOGCCGCCGCGGCCGCGGCGOG.CCCCCGCCGGC4 8 GGOGGCGOGCGCGCGGCGGGCCCCfJCGCGGGCGCQOGGO.G4 ; c.rGCCLGi:;'GGG ! JLJGGC n GCCGLGCGCCOCCCCCCLQGGo G L GGGCCCGGCGCGCGC CGGCCOGCOOGGGOGOGOGGOOOG12 3 4

: c c c c

i —**

T Transition zoneF Forcing function application point

Figure 38. Portion of the printer contour plot showinggeneration of the dilatational wave. .

... ...

(see Table X for scaled values)

- - . .

93

DILATATION: CB F5A B4 L2 K=91FF

i oppo no nr,P rnpnofi ononnnon rnpnnnrinQnooGO inn> j r, o\> \" "H bbonp ww zzfv bnhn•j •-• < r n COO i jon w p mh h oono

"G.TJPJ m n n \ r n r' n k ijW P7C KOOOQOC

<? if* v»p k n o no n km ^v p k oooop6 ij km n '} KOO n o nn q cphk noono7 j km N »*OK n.nn vk ROF JK OOOOOq 1 M NM K M V ) OKMRTOJ p JK OOOOO-> '"jj k m\ kkk mm n n N ph oonobo

in pj km vj p < M 00 PS30 00000011 HJ K" P J.\P KPNN"1

C P J F JK COOOOO1? 3 K f N J 00 Hmm mht- H K 000000i i

!

: P n IM KK SOKGFG 0000000I {* ^K KO M >>QM n «< MP h JK 0000000l<b jkk r>p h h mj n KG G ooonooo16 P K KO F M r

)J FFNPQ H JK OPOOOPOn17 KJ KT GH HA QP N FG 00000000l?. •: < JJ OP gkjzgp o mjt hjk oooonoooo1"!

~ n k hh v v 7 u mr khf G nnpnppooo?0 n G wCMWG H C F JK noOOOOOOOO?l pqp K jh ;-,r, mw wF OAC FG 000000000->-> Q00 X G FKM W UWNi 00 D£ H K 00000000000?'} 0000 K KKOV ° OMn jj KK 00000000000->u hnnr k n QM np KKKK nppnpOOOOOOO>*; oooo kkk co )Gc.o kkkkk onooooooooor~>i Onpo kkk kkkkkk oooooooooooq>-r nonno kkkkk kkkkkkk ooonooooo nooo?8 oruion kkkkkkkkkkkkkkk nnonoooooooon29 oobooo kkkkkkkkkkkkkk onnnoooooonooo"*C riOOOOO KKKKKK KKK KKK OOOOOOnOOOOOOOII 0000000 KKK KKKKKK GOOOOOOOOOOOOQO3? 0000000 KKKKKKK 00000000000000003i oooooooo rcmooooonooooooo?4 oooronooo '">Gnooooooopnoooo no35 oooooccoooo corocoooobooooooobo*f> nnonopooooooo nonononononnooooonnnoo37 ooPDoroonrocooopooooooocoaoooooboooooobois uoo noon cooooooocjconooooooooooooooooooooo3<? ocooooooooooooooooooooooocnooooooooooooo40 100 oonooo gopocoocopoooqoocoooooooooooqoo41 iioooopnoornrncoooooof'cnrnrrnonnoooonnono4? onoobrbcnooooooroooooooooooooooooooobooo4^ nOOOQOGCOCOOOOOOCOOOOOCCOCbOOOOOOOOQOOOO^4 ooooooooooooooonoooooooooooooooooooooooo4<> ooooooooooooooot ooroooocoroooooooooooooo4 6 oooooooooooooooocooooooooooooooooooooooo47 oonooooroooooooroooorcooocoooooooooooooo4P 000 000000 0OGOO0C00OOOO00O0O00OOOOOOO0O0O49 100 oono co rn nonno crirornorpcnopononooopooo50 000000000000000c oobooooboobooooooooooooo0.1 ? 3 4

G C C

T Transition zoneF Forcing function application point

Figure 39. Portion of the printer contour plotshowing transmission of the dilatationalwave into the lower media

(see Table X for scaled values)

8^

94

Table X.

SCALE DF CCNTCURED QUANTITY

I SYM(I) VALUE

1 A -0.00854172 -0.00812503 B -0.00770834 -0.00729175 C -0.00687506 -0.00 645837 -0.00604178 -0,0056250Q E -0,0052083

10 -C, 004791711 F -0.004375012 -0.003958313 G -0.003541714 -0.003125015 H -0.002708316 -0,002291717 J -0,001875018 -0,001458319 K -0.001041720 -0.00 0625021 -0.000208322 0.000208323 M 0.000625024 0,001041725 N 0.001458326 0,001875027 P 0,002291728 0.002708329 Q 0,003125030 0.003541731 R 0.003958332 0.004375033 S 0.00479 1734 0,005208335 T 0,005625036 0.006041737 U 0,006458338 0,006875039 V 0.007291740 0.007708?41 w OVEPSCALE42 z UNDERSCALE

95

DILATATION: CB F5A B4 L2 K=200

i gogoooogooooopoooooooopopooooooooooooooooo2 WH7GWWS77ZF qu OGOGnoooGooooooooooGG^ j p p ophg nnGGnnnonncoonccnnnnn n4 ZCWWW 7ZC GGGGGGGGOGGGOGGGGOOGOn5 GNH K VyjF K GGGGGGGGGGGGGGGGOGGGGOGGft J NM nM o nGGGGGGGOGGGGGGGGCOGGOOGG7 R wWPO JK ^GGnOGGGGGGorooOGGGOGGGGG=> N G G K GGGnnGOGGOnnGGGPOGGGOGOGOo M NJ PS F JK GOOGOGOPnOGOGGOGGGOnGOOGG

if pqrg e 9mh gh k oggoonopogoooogoooogooppp11 pppj p g ggh k gcggogogngonogogogpqgqogg12 mkj qh gh pogggoooogggoooooogoooopooH M R JH p K G CGGGPPGGGGGGGOPOPOQOGOOOCO14 M K P GG K OGGGGPGGnOOOGGOGGGOGOGGGG1 ^ QM G N G K GG nPGnGGnnGPnGOGPGGOQHC©«-16 N M M M 0J HJ K GOGGOGGGOGGPrGGJ^efn^riQPGn17 K P NNNM HG JKK 00^O0G0O<mp^lTO0CPnpG0dP01q (< p p n G GGGC^fTDPPGOGOOOGPGGOPP

]q p rphhFFG 000 OPPOOPOOOOOOOCCnOPOOP?0 G S n FF OPnpp 0GO000OO0O00OPPnOC0d?A K K N mm QO 00 GOOOOGOOPOPGG2? JM W PH H C MM GO QfOOCOOOPGn-5 QnctM J J n 000 000 OPOPOOOGGOOO-74 nnriOO KK K OPG Ppp GOP OOOOGOGGOOGG? c GGOGO KKKK 0000 GGO GPP OOOOCOCGOOOP~>h PGOPP KK OOO n 0P PGP POO OOOPOPOOnPOO2 7 POOOO KK OPOOGG GOO GOG GOPOCOGOOOGO?3 00000 nnngO0PPO0O npp OOPPGPGOOOPn?o nnnOG GnnccCGOOOG OHO ObOGOOOGOCOn3,: QPGOGO OGGGGCGGPnP POO OGGGGOGOOOGnn GGGGPP POOGPOnOGOGG GOG GGOGOOGOGPnp2? OGOOOO CPGOCCGGOHGr1 PGG OOGGGOOnGGGn*"* GOOOOO GGGGOGOnGGGG riGO OOnoCOGOOGGG^4 nOOPOP OGPGGppPOO^G n GPG GGGOOOOGOGOGG3^ OOHGOG OOGOOCCGGPnGG POG OOOCOCOOOOOGG16 CnoOOO GGnOGGPOGOGOGGG GGOO POOOOOGGGGPGP^7 POOOOOOOOOOOOCOOOOOOOO 0000 GGOGOPOGGGGCG38 n-<nGGGOGGPGPG nGGnGG rinG 0000 GGOnOGOGGOOGn'2 000000000000000000000 GOGP OOOPOCOGGOGGG40 GGO GOOGG OOCCOGGGOG 000 GGGOOCOOOGPGG41 GG GOPG OOOOOGOOOn GIG GOOOnCOOOOOOn42 GO OPG 0000000000 POO OOOOnnoOOOOOOG4* P P nGOOnOHGHG GPG GGGOOGGOGOOGGG44 000000000 OOnp fiodGOOGOOGOnGG45 000000000 GGO PGOOQCOGOOPC^n46 OOOOOQOPO GOP noOGOOOOGnGOnn47 g PGGGdnnG PGG QOOOdOOnoOOOCO40 on nnnnppnn f]DQ 00O0O nP00nG0O0040 000 00000000 OPO OdnooddcOOOOOOnSQ nno npnooGG O^H OGPOOOOOOPGGGOn

u 5 6 7 800000

H

>

T Transition zoneH Head wave

Figure 40. Portion of the printer contour plotshowing the development of a dilatationalhead wave

.

(see Table X for scaled values)

96

SHEAR: CB F5A B4 L2 K=84FF

1 OOOCOGOCCCaCOCOOOOOCCOCCOCOOOOOCOOOOOOOO2 00000000000000000000000000000000000000003 OOOCOCOCCGOCOOOOCOOOOOOOOOGOOOOOOOOOOOOO4 OOOOOOOOOQOCOOOOCOOOOOOCOOOOOOOOOOOOOOOO5 ooooooooooo noooooonncooGoooooooooooooQOo6 noocooooococoooooocoooocoooooooooooooooo7 0OOOO00O0C00OGOOCOOC000GO00O0000GOG00OO08 OCOOOOOOOOOOOOOOGOOOCOOCOOOOOOOOOOOOOOOO9 OOOGOOOOOOOCOOOOGCGOOOOCOOOOOOOOOOOOOOOO

10 00000000000000000000000000000000000000001

1

ooooooooocooocoocoooooocoooooooooooocooc12 OOOO00OO000GO0OGCOO0000GO00O0O0C0O00OOOO1

3

000000000000000000000000000000000000000014 OOOOOOOOOOOCOOOOCOOOGOOCOOOOOOOOOOOOOOOO1

5

OOOOOOOCOOOCOOOOCOOOGOCCOOOOOOOCOOOOOOOO1

6

GOOOOOOOOOOCOOOOCOOOOOOGOOOOOOOOOOOOOOOO1

7

OOOCOOOOOCOCOOOOOOOCOOOCOCOOOOOOOOOOOOOO1 a OGOOOOOOOOOOOOOOL'OOOOOOOOOOOOOOOOOOOOOOO1

9

COOCOOOOOQOOOOOOOOOOCOOOOOOOOOOOOOOOOOOO20 OOOOOOOOOOO CGOOOOOOOCOOCOOOOOOCGOOOOOOOG21 000000 M NNM K JJ K 00000000000000022 OOOOC MM NM KO JKJJ K 0000000000000023 GQOOOOO 00 KO 00000000000000024 000000000 G 000 000000000000000025 00000000 COGCO OGOOOOOOOOOOOOOO26 00000000 00000 0000000000000000027 OOOGOGOOO QOOOO 0000000000000000028 OOOOOOOOOOO OOOGOOOG OCCOOOOOOOOOOOOOOOO29 OOOOOOOOOCOCOOOOOOOOGOOGOOOOOOOOOOOOOOOO30 OOOOOOOOOCOOOOOCOOOCCOOCOOOOOOOOOOOOOOOO31 OOOOGOOOOOOOOOOGCOOOOOOCOOOOOOOOGOOOOOOO3 2 OOOOOOOOOOOCOCOOOOOOOOOCOOOOOOOQOOOOOOOO33 OOOOOOOOOCOCOOOGOOOOOOOGOOOOOOOOGOOOOOOO34 OOOOOOOOOGOOOQOOOOOOOOOOOOOOOOGOOOOOOOOO3 5 OOOOOCOOGOOCOOOOOOOOOOOCOOOOOOOOOOOOOOOO36 OOOOOOOOOOOOOGOGGOGOOOOGOGOOOOCCCOOOOOOO37 OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOGOOOOOOO38 OOOOOCOOCCOCOCOOCOOOOOOCOOOOOOOOOOOOOOOO39 OOOCOOOOOOOCOOOGGOOOCOOCOGOOOOOCCOOOOOOO40 OOOGOOOOOOOOOOOOOOGOOOOGOOOOOOOOOOOOOOOO41 GOOOOOOOOOOOOOOOCOGOOOOOOOOOOOOOOOOOOOOO42 OOOOOOOOOOO COOOOOOOOOOOOOOOOOOOOOOOOOOOO43 OOOOOOOOOOOOOOOOOOOOCOOOOOOOOOOOOOOOOOOO44 OOOOOOOOOOOOOGGGOOOOOGCOOCOOOOCCOOGOOOOO45 QOOOOOOOOCOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO46 OOOOOOOOOOOCOOOOOOGCOOOCOOOOOOOOOOOOOOOO47 OOOOOOOOOOOCOOOOCOOGOOOCOOOOOOGCOOOOOOOO48 OOOOOGOGOOOCOGOOOOOOOOOCOOOOOOOOOOOOOOOO49 OOOGOOOCOCOOOGOOOOOCOOCCOOOOOOOOOOOOOOOO50 OOOOOOOOOGOOOOOOOOOOOOQOOOOOOOOOOOOOOOOO12 3 4ooooo

T Transition zoneF Forcing function application point

Figure 41. Portion of the printer contour plotshowing generation of a shear wave atthe transition zone by the dilatationalwave.

(see Table X for scaled values)

97

SHEAR: CB F5A B4 L2 K=1781?

34567R

91011121314151617181920212223242526272929303132333435363738TO404142434445^647484Q50

cpgococooocooooooooooooocoooooooooooooooooooooooooooooooocooGoooooooooooooooocoooaoooooooocooooooonooonooooooooooooooaaoooonoooooGOOOCOCOOCOOOGCOOOOOOOOOCOOOCOOOOOCOOCCOOOOoooooooooooooooooooooaoooooooooooocooooooooCGOCCOCGGOOOCOCOOOOOOOOOOOOOOGGOGOCOOOOOOOGOGOOCGOOOOOGOOOOGOOOOCOOCGOOOOOOOOGOOOOOOOOGOOOCOCGGGGOGOOGOOOOOOOOOOOOOGGQGOOOOOOOOOOGGOGCOCOOOGGGOCOOOOOOOOOGOOQOOOOOOOGGGOOOOGGOOGCOCOOGOGOGCOOOOOOOGQOOOOOGGOOOCOGOGOOOGGGOGCGGOOOGOOOOGOOOOOOOOGOOOOOOOOGOOOOOQOOGCGCGCOCOOOOOGOOOOOOOGOOOGOOOCGOGGCCOOGOOGOOGGOOGOOOOOOOGOOOOOOOOOOGGOOGOOOOOOGOOOOOOOOOrOOCOCOOOOOQOCCOOOOOGOOOOOOOOOOOOOOOOOOOOOOQOOCOOOOOGOaOGGGOQaOOOGGOOOOOOCOOOGGGOCOOGQGOOGGOGCOOOCOGOOOQOaOOOOGOOOGOOOGOOOOOOOOOOOGGCOCCGGOCGOOOOOOOOGOOOOOGOOOOOOGOOOOOOGOOGOCCGOOOOOOOOGOGOOOOOGOOOOOOGOOOOCOOOGGCOOOCOOOOOOOOOOOOOOOOOOGOOOOOOOOOOOOOOqSflOOonaococGoooQcooooooooooooooocooooccoogifoooc

00 JKKJJK JGD ZACE JK OOOOOSTJOOOG FFF CNPORR NMMQ WWW R MMMMM COGGGOOGOGOGOOCOOOOQOOOCOOCOOOGGOOOcoooroooGOGGCGCGG00G0000 G0000 OOHQOCOOGOOOOOOOCOOCOOGOC000000000CQOOCOOOOGOOGGOOOOOOOOGOOOO

OKKQ KJ N000 MMO K

OGG GGOOOO M KK000 00 GO

u

HMM

OGOGGCQOO0000000000000

0000GO

00 GOGG

GGCCOOOG

aooocoooooooocc000000000000 GC 00000000OOOOGOOOOOO OG OOOOOCOOOOOCOOGOOO OG 0000000OOOOCGOOOn 00COOOCOOGO 00OGCOCOOC OOGOGOOOOOOOOOoroocoooo

KKKKKKKKKKKKK

00000000 OG OOOOOOOOOOG000000 00 00000000000000 oc 00000000000OOG OOG OOG 0000002 3 4coo

OOOCOOOOGOGO00000000000000000000000000oooocoooooooo0000000000000OOOOCGOQGOOOOOOOOCOOOOCOOO000000000000000000000000000000000000000

K OOOOGOOOOOOOOOOOOGOOOOOOOG

00000000000000ooooocooocooooOOOOG00O0OOOOG00000000000000OOOOOGOOOOGOOOOOOOOOOOOOGOOOOO0000000000000000

ooocoooocooccoooo00000000000000000G

OOOOOQOOOGOOOOOOOOGGOOOOOOOOOOOOOOOOOOGOOOOOOCCOOOCOOOO

OOOOOOOOOOOCOOUOOOOOOOOOOOOOO

>

000000000OGQOO00000

0000000000

00 000000 00000000000

00000000000000

OGOGGOOGCGCOO0000000000000OOOOCOOGGOOOOOCOOOOCGGOCOOOG5 6

T Transition zone

I Interface wave

Figure 42. Portion of the printer contour plot

showing development of an interface

shear wave.(see Table X for scaled values)

98

V . SUMMARY

The two seismic models presented here were developed primarily as

tools to assist in marine geophysical field exploration. The models

produce synthetic seismograms similar in format to that of actual field

records in order to facilitate direct comparison. Although both models

present two-dimensional records (horizontal distance versus time) , the

reflection profiling model is made up of a series of one-dimensional

model solutions. The complete solution simulates a moving source of

vertically incident pulses where the velocity structure is slightly

altered between transmissions. In contrast, the reflection/refraction

model treats the propagation of energy in two dimensions. Each complete

solution simulates a single pulse travelling through the solution space.

The synthetic seismograms are produced as records from a series of

detectors in a horizontal array.

The models are based on numerical solutions to the wave equations

in one and two dimensions in bounded domains. The equations are

expressed in unsimplified forms which are not amenable to direct

analytical solution. The stability of these numerical solutions and

their convergence to the analytical solutions was investigated. Sta-

bility and convergence criteria were established in terms of mesh

ratios and wave velocities.

In order to provide a wide variability of physical simulation, the

solution domains are modeled by a number of easily varied non-dimen-

sional parameters. These parameters are used to set the size and sub-

division of the solution space as well as the distribution of elastic

parameters and the shape and extent of the forcing function.

99

The structures modeled in this paper were, in general, based upon

realistic distributions of the non-dimensional elastic parameters in

marine environments. Some of these models have inherent resonance with

the type and width of the forcing function used and the mesh sizes.

Records are produced with some features which reflect this resonance.

In particular, there is some tuning of the pulses in the narrow transi-

tion zone in some of the models. Care should be taken when trying to

extrapolate features found in these records to cover a more general

case.

100

VI. FUTURE WORK

The applicability of these models to a wide variety of studies was

the primary consideration in their design. The interpretation of various

velocity structures in this study was limited to a gross overview of

simpler problems that might be encountered in field exploration. Al-

though a full presentation of the use of all of the variable parameters

was not attempted here, there are areas in both models where improvements

could be made which would increase their variability.

A first step in improvement of the one-dimensional model might be

the inclusion of a variable depth source. It was felt that this was not

warranted in the model due to the complexity of a forcing function at

depth that could not be included as part of one boundary condition.

The same improvement might be applied to the two-dimensional model.

However, this would involve an additional order of magnitude of com-

plexity and the model could no longer be called "simplified." A more

reasonable improvement could be made which would remove the requirement

that all transition zones be horizontal. The wave velocities and

density could be put into the model as two-dimensional arrays instead

of vectors. Terms involving the y-derivative of Lame's constants and

of density would then be retained. This improvement would approximately

double the main core storage required (to 550K bytes) and increase the

main program run time by about one-third (to 24 min)

.

Although the attenuation parameters used in both models are con-

sidered adequate for the purpose for which they were included (elimi-

nation of boundary reflections), they are by no means definitive.

101

These models could be used to study the effects of various velocity

attenuation functions by entering A(x) or B(x,y) as functions of other

physical parameters (e.g. overburden pressure, Lame's constants or

particle displacement).

Only a single forcing function is presented for each model. Several

functions were examined in the development of the models including a

flat-topped pulse, spike pulse and "sine" function. The models could

be used to study the reflection and/or refraction of a wide variety of

forcing functions, limited only by the size of the time mesh increment

(DT).

In Section III, it was noted that an interface wave was observed in

shear stress on the contour plot output. This model could certainly be

used to study the various classes of such waves under a variety of

conditions. Some preliminary work was done in generating particle

motion plots from the vertical and horizontal displacement outputs

available. Although elliptical particle motions were observed as pre-

dicted I Alterman and Rotenberg 1969 J , limitations of distance from

the generating point did not permit identification of the interface

phases.

Neither model is by any means limited to the homogeneous layer-

transition zone structure presented in this paper. The velocity

structure could consist entirely of transition regions of various

gradients. This could be applicable to investigation of the effects of

the gradients on reverberation.

A collection of records is on file at the Naval Postgraduate School,

Department of Oceanography (Code 58Ad)

.

102

LUX•

LU Oic LL) > t/) LUh-^Uj X •—

i

LU Zo> • h- K o »—

1

*-» od. a. <. LU O t- (- ro »—

1

CX3e o LL LL'•—

•» COLL»- Z a • -J o u Z Z *»

_JLL'< > LL LU • o w LU ze _JUL<CC>- 00 K LU k—

I

o -J X <«»

O uj>Z oo U-i t—i CC _J CL LU o •*

Z C<OZh «_> O •t a • LU > LU Q oi—

i

OJm<IQ z c </) > Q->- N4 z LU *_) 5: f-o LU -J z -J <ct »- c z •»LU _J< u. ac LU o 1- <r LU z >—

1

*! o XCi o<i-zo LU > «-

«

O ooO CC LU t/1 </> e t— <vo wZ<ro UL h- UJ ooz < TL z LU «* CO5: X Cj~00 LL LL « 1—

<

LL LU3 LU LU CO Z z ocn»— •—it—

Z

•—

*

>a o CC ceo uo o 3T oo «-» LU LUu MhC<Q o «3lu z LU »~co h- < 1-4 LU X Z•—

'

LU< 3«— ZZi- o a. (/) z -J o QC o »—

-

o3T 00 1_ LLiZh- LU LU o a: LU Cl K LU Q t—

1

OO <IUJU H- js oo LULU X «/> • oo z c;i—

i

J-JHt-Z NM << -J •-< _JCL LU »—

»/) o ZLL <»-• 1-3 TT ZQL < coo. o a • K _) •—

1

• LU •00 ZCKU. »—

l

K 0«a cc >- <3 < o Z <i oo a X zo o LL «—

.

«a LU a: »—

«

_J -Jet: LU z z o •—

<

c_J •— H- «-i>-a 3 K K- <r QCLL a <LU X o LU k- c t—

i

_J < oOZXH-< V ««. <z < Q <x i/> .—•rvj LU >—

'

X o Ku_< z ZLu3J«—LU CO < t-O -J Z >t- M »~ O K »-« LU • oC o LUO CJZ <•- _J 3 o H-tLU < < o > cc LUc t—

1

ST—ZO^h z + _Jh- o O za —1 »~ C CC2" I/) '-'O'-'-J-J o •—< o CO -J H-KI a < • CC »- •—

i

^1 OZ UJ 1—4 •• X 03 o <r 00 _l CC LU LJ oo UJ l-HOU. KZ «• z o cc II M «— »—

1

o K- LUz 2: li! «-« O do X LULL. z LU X >- • o D K LU > X»— •—

i

Z>-OLL _)•— —

»

XI- t—t 3T t—

1

o o X_

i

o O_JLUC00 Ol- 3 l-H- 3f o z z II LL u LU < z LUi—

i

jy z 00< — < O -J o »-H - o a > CC o Xu LLI <K 1— 3 > LL -J < »— *-

O z fUZn -JO v o> -J —

.

z >- a: >• a. K(X o l/lttM^h <LU t- o © K • o < C h- o za u-icao<r O n LL_ UL o «— o CC »- »—< z z »—

»

LL ^>~ZCT.2^ — LU CtCJ LL o CC u O o 3z o 3 0C<I»- a> K <o LU II II < LU o •—

<

LL LUr 0<ri— cc LU< h- 3-J X II II > _j K- INJ

c o ollx X3 — OLU »~ — n o LU < o —

.

K o am/lie jj 3 oo> K X o 1- •• z K > 3 z COO X a.o»-">-o ZU •^ a •» a •> Q K »— 3 Z t—

u_ h- t—

<

LULU »- -J s X v. ir, ic a LU UJ u X_J UJ i. <:>-q^ O-J XX •» 3 •V 3 •—

<

a. t~ > k- ct COu 5 <CJZ< •• LlO h->- »- 3 c 3 O _i O 3 < h- o LULU tti— LL'< O H-CC • • o 3 O z < LL Xar -J ldooio c o <ra a; oooo LU a

<x COOOO-LU X LULL! OC •—!•—« -i •• •fl •• • • LUo o a •— lu »— cc k o. a LL CO f-< r\j t-* t\j k • •

•—

<

1—4 Q-X >•-«•-. LU LU> X ><r 3 CO CO >—

i

»—

LU XX O-- oooooc* x arx 3t i/) X 3 o u < LL oCO LLJ WZZOu <•—

3: 1— <<_J(yO oca. 3 XoTOCLULU <oo z h-l—t->o a

ooool^oooooooooooooooooooooooooooljool^ooooooooo

103

O Oa: z zLU z •> —*- o •LU 1—

1

oo • z K>- x k- OO > •w LU Oh- < o LU < z -J1— cc z cc cc etc m CL

a o <r 3 k- cc. <LU —1 CC Uiz o D a LL u~ < JZ 00 K Xo o -J 3C z K 3 »-»—

t

CM UJ o o k- >- UJ O—

>

a u CLH- « > z z 3 k- X —•00 X UJ t- z3 LU — 1— 0. —

<

t— KZ — > 3 •_l -J LU a o h» am a O UiO e > x ct 3 O LL <r 00 00 XOO X < < o O —i O CL—

.

• 00 UJ UJ 1—3C o LL LU O • h- UJ X z UJ \~

UJ ? UJ > OO <t 00 Z a K- —

*

X> Z LU LU LU X z LU »—1 k- _J K 00** o X X X k- LU C! LL e 3 O 00 z 31/1 —

»- k- k- X — OZ -J CL I—* Z 00(/) f—

1

»- X k- 1- • O < UJ —

<

O CtLU in 3 o o o o <— X-- > k- X cc Ulo CM -J z z z •— Z OO hh c h- UJ 00 >o • o — •—

<

•—

X >— OZ a<i >- X 00 LU3 LU OO z z z 2 -J— LLl>- K 0^ IX 3 LU O 00

• i/) -J •—1 •—

1

•—

1

00 OoO >— X < 00

z • X LL LU LU k- z zo O K X —

»

Ct LUc z z o LU LU LU <r Olu OO _l O OO K O f- k- CC—

<

a < O o C •—

«

•-Z LU<I -I CC O z h-»- UJ LU k- k- KO >h- UJ —

t

-J 1—

<

z z 00o jE • — tfMt — z < <—

1

—z > IX a UJ LUuu H- CO z I- « k- e X • *—

I

k- KOO oa Ct LU LU LLcc UJ k- i— oo <o LUO o 00 ooz m LL C UJ u 2 3E C•—

1

CD Z *<\J »fV f\i a. UJ •— O K X a t- » f- *O —

<

oo X • X e k- « -J -IX • ct t- LUX UJX <s-

UJ o a OLU <LU LULU X c < <—

.

000 CC LU 00 CD< CQ< XK- o a LU •— _J ~*_l — —I 000 k- •-a LUX O cc H- Ct Ct a

z \~ « • • LULU Z z t— K z *—

OOO 000 <LU < X oo OOO oo< oou. Xk- O »-x O < IX Z LUO LUO ctX h- 1/5 »-z H-Z k-X 3 INJ m • —.0 LU *- 3 XX XX et- oo IX LU z Z z xa — >-> o«x > 00 Ct' 000 00-1

—' x X »— e i—i e •— • i a: QC< Olu 1—

1

c Z z*-* z*- LU

z a —

1

OZ OZ C2 LUO c Cot -j O t- «—

—'LU —>UJ >•— X I'- Q.C cue ao xu X la: LU>- z CJ 00 00 ^H

—i O o o k- < >< —

i

-J < u. z z OOLU <r • IX ll LL>- LL>- LU> OO LL LU NJ <I LL _j >-o —•0 OOM i-W C O O-J O-J c-i LL—

1

O LU> —

<

h- < 1—

'

l»4 LU—

zz C c c C 1- o»- -J z O UJ OK Ot- OOO oo cc a eta. eta. ctcu cc ar Qf —

t—

1

< a z 00 ZLU Zuj OKJ—I IX) LU LU LU LU xo LU 00 >-o »—

i

NJ >—

—x —x 3X •—*h— cc cc OC- CD—

.

cc— LUk- cc >-o <o k- —l -J UJ CJK Ul- 0000 ct ^ 5 X Xi— Xl— Xi— OO X U-J Cc_J —1 (X <! X <Z «zIX. Ch- •-S 3 3«- 3~ 3** ZLU 3 LULU auj z O — CL> a> *:

5: Xoo z Z ZU z< ZU- —> Z >> •-< X OO h- OOOO 0000 it

• • • •

MUJ • • • «

• •

a a »•

- * • t • • o < LU a O X LU h- UJ 00 00 00 00 »-•

o o z X z z X •—1 z LU LU UJ t- X V 3CL1-

3O

uuouuuuuuuuuuuouuouuuuuuuuuuuuuouuuuuuoouuouou

104

<\l

X<r» •

(NjUJ •-IT' —x—o— zO'-^U- «•*

ir— cd :* o •-•

-(\iU • ^ ^ Z II

o-'O— *: * •. -5

C X «-r-< f- r-4 *C •—-IT I- O II •—fV—OM O Z" -5 ->

«-o»-, <— Z! •> •* *»• «»IXO— UJ * CL <— H- —•-* — OoHa.' a t— -> o <u. co j—-<\JUJ •> I—l * , —

'

•• Z2 _J •"

,-»<— ••— » _JUJ K——• -.«.» u_

l\j »-oiri _juj •-U. 1 -ZZ Z II II •" O«— -~f-lfM »-UJ O •• — —

• » •> -!>—• O 9 —<0— -^ O •> Zoo O o•--• «-i * * o O iri

OXO-ZoO +t- Z Z\\ II II —- o *-*•O UJ CC »-4 ••— — U- •» •> «—'—

i •-- mh« » u_ Z•-<fM «-r-<LL • O 2TCO •""* <-• » * * w«— <t Z! ••

iTi«— -~-» +z*s> z *o ii ii —>-~ — H-fr- z • h<MC«-<»-*«~i ..C •• O •» *-' •-«»—1»—

""3 <U_ • — II

«-> ——i<C\ II o * *-< ZX. + »-w«— » « » H- U. »-i

(.^wMmZ^ || »-OQ-— ->hh •-' —*' < •" -o*-"-- » "OaH < (/>»-> ~3<u_ — -«•— •• x ——'(\jh-U— <C ••</} •« 2^|->-w «••. u_i —'-' X L!_ •—

p-i— ocDt—z »—>--* *a »x •——•*- ixi xx < •• w»k •• »w ».o h* <-> r »c uj —»-i>—

i

•— — <u_ » h- <*v^--!U- ~*»«Z •.Q.— K-O »XW •• a.'— '*- K » X O CD *(J- - ITi Or-l»— ».X1/>X OOZCXH LUXX o -> l-• ,-, Q * —i»-| _JMUjM^irinOZCXuj w (v ^<ll «-» w,^. •• -J «-CC> —0(\(Mw w —»«^. ^-» ^ »'w<- —

.

—— Z -Ji— ~f^-'~'———— *-" cr»t-if\)r"»t<£iif\ •»< lo —»—»—. CTt-i^ocroo —X -» r*' fv-j-

z>»- wt5cc(\jro^-<o^ a'»-ti-'.-<t-n-<»-^ —>-«/) moo cr^o—'croo <s> * o ooo» • zxyooccooo af\jr\j(Njf\rvM X v. h- OOO o^cgrvKMorsjco >-h >- f\jc\irv

-V^vOU. HHrtHiH •.•.*•.„*» Q C> # ^H»-»t-< •.•.*•.»•»» _J|| o_J * * •>

(J5<t_ »«.«. ».«»»« »0<->C^vO'£ <t'-»hMS e k- •••»• o *a O <>OO >€ C~5 *C v0>0^Okw- Ot-i^iriir\irMri ww^.w«—-^«-

i i i i— o^-» o irinm «^*»»**».^w«-. q. ocl «-*>.—.zoinir—w- aaiujUJiLUJUjZS"2:o • 11 # <——— luiuuuul:u-ujuj «*" ii LLianuOOO hhKKKKl- _)*-•— _J l-l-K

uuluui aaaaaao: <o«^< a a or:

ca:o<xccaaaQ:ct XJ33j«zsiai-H>^ oroca 3E3:33E33:x ucilu ^jC^

zoinirw-*w- a ,aiuJujiLUJUJZS"2:o • 11 *< _iLuf^rvr\jOOQOO »-h-H-H->-»-h- H II II -hu >l-<5" ww^<<<<<T wMwMwwi-^lr-KV' II llZXll<u_,^"f- o<iijju-'ujuju-' acta: ororocors jitviai- n *-^^ /-*• ^*^ ^^ ^^ i-K>. ^w i^' i*r r^ rv "9 -» ~» -ar » -^ -ar -jy ^ * **^ l i *»^ i s\

<<NJ(TN

rf^

O O Ul

105

(V)

»Oo

—I

CO

< Xxc c—

ceoO Z•• —> t-— O <^UJ

U- X <4"00_J * *o ••• a oooO to •—J

»o >- o o ••

* oo • olu O. •> o orLU 00 »—0 •• UJ— UJ X h-m »- M

_J » • O *tOJ O X *>* » O• Z < ^—iK •—

•""• * 5" .-» »0 —

*

ii - > «oz h w-J UJ •> O • •—« * 3!

-» x « ooi- I a: x-9 UJ o • • •• •>< o—

'

• •• t-<ooirij^: c >u. a£ t— * » • • * 3: •>«-•

• O U0 00<\J(\JO I— >-»-->

. » • • •> *>• — i^Ow -* * — O HHOO * *- *J *-*

——

»

oo OO"? 5tX^< e —«— » eO ^ ^ O • «~

t\io z a: h- zz •• ~i!;« o jjoox cc »z zy r-—oo^oo » » * * •"-> o •o Q.—-oooc«—*^w m »-* *oo »s£ a£.~ir-«

CMCr • ••-l Xr-» I— .-tf-i— >i-lU COOHOCCOoOl— UJ U- II «-« • • •-"—' OCM<\)OO « Oil O II II LUUJ_I II II UJUJ VhOII^OZ >- ii ooujoo h Cuj *-•*• * *

>£>WD _*->.* -)mujDDm«D3 * tt_J>>-X_J»- O S^—'ll II 3 • ••-'OZJ I xooII II > > II z a. -JZZ >00-ooi/><Q._j z ——ZOO II z >-o-

LULU £>«-• It O*-* II COO*— •-« «-• •-'I— II »- >tO«-*CVJ»— II M CVi— •—

*£>UJUJt-l——>—^ I

— <\i I — <4-^-«-.»-_Hr\»-ih-K^X-IJ-l_J_l-J_J I— r-t^-t •> »-K——LO*-H- II II H-l-^- fc-,e-i t-« *-<-« ->-5 —Z—I »ZZ)C<JJ>JJJJJ K k-.^hZ-h(M *-Z xx<-"-CCCC—'~0 II "—O II

— OChO<DOOO II I«I«<I« UJ DQ O CXO OCffQE3JhXQ>XQ>l- OOUJOUQUUU»"UUUUUOU OO DODDUDODUO >>33

co o cr »-<co O f\j

r-«

o oooo o

106

IX. tf* >-

X COO CC

# +

<M -J•if »

3 CD Z>O I *a <-* -.

_j »—

<

ft * »-(\j a.

-5 «-» CC— D +O U. * —Z—• O — _l•.<! — »

•—i_l 00 ft •—

<

ii a. ~- +mU — —* " LU U. •—» » p-4 •— cc ac w—O *, ^ 21 +3_ r —.<!-. —<— UJ — #—O t-QCrH KOOf. 5T f< —I- • O*"— —«— 0-^<— —'— "-» •• •-"

UU> *t —•< f-tr-l # —'< •— •— f- UJ 3 wZ -~HCD «-.*- —* t_0C ww- 00 CC O UJ

—» HQ# <I< MQ« « < «•» 0£ CC«—H- «-"#•— CCCD w* — CCCO -J +wo <— <\j fc *- <-~rvi_>* S ~k *-* •"*

x » * «-* or «~— a-faro——» O —

I

+ _jox in-* ~-~ itvw* * -»— ^ » —, »•O 0<(M ft ft e<Jf\J<\ff f- < 2 ft •—

'

•— •> o*ejo"— -' — o-«oa«- *- z *~ ll <——x i it* coo ft i it* # oo i- ~

>

cc z>O O •0#CC/cG I O «0— CDCC OO — #—O t-t #— *o eM+ I f •© #*— + | or u^ -»-3 « j— h-

0*2 — ft I r\io£C\Jf\|f!«- f » r\i— <\if\j •— i-*-JO Z >.*—w r, wci*aas"u --o l octet u. SW — •» lu z~

rvc> ^-rxj"^ »o-~* •* Z I rvjv. »0* * * • » Oft II ~0> u*Ch sfTvjfM »»*oh oirr\jcv o pr,<\i (D- O roccx0—I I »«• « I m-UUNh* e I <\J »Ou Z II •• II 3 Z II II

cr>Ofi (\i m if\

o uuc ooo

107

X *«*- x

o*> o *

2 -co • coX » -k x -Q. <* »UJ » X —o - O ^• U- •-* "v- 2 •> mx - •

•»«•• o *. CO CO•v>* m x o u.*n>v -v <4- •• m S. » » •«"».-. m » X t.

t-i-5 > CJ O H-2-"-< CO• >o » •-<

I •- • < XC^ — «*-Q. xx >fri-tO ^» • •>

• »• vJ-(MX- X » «HO

3 m . ~_ <<OX OULi-4I *--5^Z 2*VO r-JOJ •»

m m r-t U-^PO•>*: » •—1-4

«—

lf>» r— »—»CO"»• •> «»o w>- ••

+ *s"VO>- tf> • x» nO» orO- mro h- u. 2Tm » v> «2t— »-«i-iULh- o • *x » x«- —

•> »ou «—»— •• o —cri—3 — PH • • C >* Xr-t-H •— »C«• hi » ii it o_j x^- tr\o *• — • x* •> •« pr> zlu <^< »2« xaooCO HO. | — C0o UJ> »—< • • X LUO»O *C0 * iri«->_J_J- * fOr* 2 »o - X* 2:>- > »iri» . „ * w m* x» •>• x— » » •> «— «— — en • • »xx «»x^. *$• * x »-cX DC O ©O —0»-i<MXX^iiri XOsfX »X—OXr-«

v. r- o o if oo>tir «oM!i- •> *v »*v •• •> » »a. • * *v.—O ww wliJO tqH<MOH »•»••••••• X* •-»• rvl«» • • •IT LUr- r-r-CvJ U-LLr-lO»-tlJLr^r^f-4rHOOCOOfO O* OhOO^H

UJ • UJ 20LU OO •• fM^i-<t-»LLlfM— >-'«« • » _J» • •-*• •»• U-» m m •DhOD »-_0 -J—IvO wwwwwwwwwwwwUJ**—Xw,£wwww2 + ~2 _JO.20a.0-w KKKH-Kr-r-r-KH-r-^-^p-r-r-H^r-'vKr-r-r-•—2 ii —> •- • uj <<r<<<<K<«s<«i<» <<<<•><• <<<<t-2— t- _j_j»-o_j-ir- xirixrrririi »zzz;> 2:1^5-2:2.2: Q-

2 11 "52 jjZhjjm cta:aa:a:ci£:a:c£a:QcaQCXCcaorct_jct:ujQc:oca:tx: 0002w0 <r<CJ |K«SaC OCOOCOOOOOODNOOOOJOUJCCOQ »-20200 000>003 U-U.U.U.U.U.U.U-U_U.IJ-U.fMU-U.U.tk» u-» u-u-au. COUJ

1—

(

t—' r-t

108

# fi o

m t. -^>-LO - » «/ ^c_iu- 5" -J lu-lu*— a • «~ ooO0»—< _J O0C >-

Ua'fc-LU — O LULU \-

iaiuz lli a;? -*

I->Oih O Z K-O 00O0_J_l LU C p !• OO.— 2

a. ?U' z m «• «• i/- lu

nou. •• o o^ x _i az cu.. or O oo •— z • «— »<lu

t-UJ CL 00 Ul -J — LUS" C-> _J >oo O Z X «- C -*_JX'- 2

C> lUKZ »- LU .— LU _J _j LOG <Z OC?3TC U 2L C C Z r _J —«-* CDX •-* UJ « lli O * -CX >_J X' CLUh- > O • Z •- -J X. O ZU t-u'ai<r oo o oo —' — lu < < •—C LjXh- Z O o h- *- Z ZLL' oO K-h- *- ZcOZoOUCCO-J O£ X ZlO < >— LU Z 5" LU LU •— <X « —

i

ooooljX. Z X. lu •-< Z « Z o~ zoo LUij _LLfc-0 OOLULUXOO — OZC?h- >*- lu>Xcj > x o •-, i—j^-uj >-z5" oo<r:i <uj<c »(/;-V!rHUJ O Li.

00 7*00 QtO_J O0Z Z t-l <Z r-t c-l O >*- _i z<r a<D.n LuaiOLuOH-iu r^ oo on <r»x* <!«:•-. < J i/:- i/i w 5 LU X <U r«e,3:OO Z< O a.MQ.hHZM |J< UJ LU LU

OLu<ui OooOai*-"OOOa *-_J « «• p. _i _i _j lu-J _J .— X^-CO Z •— »- O •-• C OCl Z Z Z « • -, XLU < U-OOO'-' i-iC_JLUC • O0 • h- 00 C CD O _J X Z -C- Z Z U'Ot * <" XL —ioOZoOOLL*-' m n- mO O ii'Oso a: -J - < lu uj w Z uj cO »— I— »— <Sx" •— yz oo o<zor:>~x:c> u o o • • • z

oo •—<c.uj 3: O o < k- i— »-< oo_j uj lu lu oo oo oo •—Z Z C LUC i- n a -1 '-' O h- r- or*1 or: a rx >— h- — zo uj _ia: a h- •— < <_) u D oi- •"-• *- •— z z z •—— z c><ujlu z or a z z o » z a kz o o c - •— — llt~ — -£Z>-C0 <LUCoO-JooXZ OO O O C LLi

u Q kC< >X»-««— a.' uj h m u.n xvt—CLao.00<f •-'_|Z oo »_(_>—i >.— <vor C' <i- < a u. a. «? < t- O z ct. aiiuLuXXXoonU. .5 O-Oe LuCO3K-0C'-'ZOK-O»«XXX000000t-LUU t— O0»-_J LLI H- Z<«IoO'-'»-XX U>»— h- H" LI I LU U' Z_Jor lu<i_j>-o uj>>-Lu-JLUzor-a o- x x x •— **^ a u;-J<rKZ x<i<rr->--XLuao »-C uiz z z ooZ C 3^t-^-< <ior:o£:»-CooC.CZ r>Z k»— —

• •— x > t- azO CCi^Ljt- or a or. « ll x c<f u.•— C C CC'OO < <l <I U-U.LU U. 5TUJLLiUJLL.aLL.U-*h- O aLLfsJ_J^-i ..a. LLCOCLL .._j<njnjkjCOC'Co^lj x Q-ot—u-ic f- o o o o o o<r ot>-< •—

•»—• z

ujt— q.> o^ Z Z Z or-orror. ZQ.cJ<ooooooo'or.D:or:0-JUi-t^OU.'-'Ci— •— >i_)UCJ>'— •"- Q. LU LU LU UJOLL 2 <CTCC jM^^<l-hl-<ICCfh XXXeCCDcCOOui or.— Z f-or-QCorooOaO^ Q-or. —Joo oo oo 5. ST X 5 _Jor _) C"oooj<:oo or XOOoiLULUU. orO »Ui <lu lu lu X^ X 3 Z50

< ooo»- ZLucc33<r>>><LL oo> us: z: ¥ z z: z zao o or^—oc k- •— a. ^*— •— af o*-M lu or: •• .. » a •• .. •• ••

x a ooqc»-«h- i. k- • •• X •• >-• O lux >- h- (_>

oo lu ooZkooo <ooX>CD(_)O0a u_u_a. x; o o c -J z z z— Z —'<l~!ZZ or: •— Xui 3 iai^ac < c zoo Z t—— •— OlL CL

UL'UUUUUUUUUUOUOUUUL'UOUOUUOUUUUUCUUOUOUUCUOUUOUUU

109

•> <t •»

CD •— -Jx •» -J• IX. fr

< z <X * M•i CD •»

-? CD U,-» z Z•» * »

cc < CD-9 CD CO« Z z^ •> m* o <•t z CO

o

LL

Z Z Z_J• CO O O LU<Z LU »- _* ,_« (_>O CC Z K- h- »-•—

Z O < LU < <X •— LU •• »o >- x o u act

Z « J W Hi O »-h jX»- «-*•-< *OKOLUU _J_J UJ r-h-~ »—><ia.<s>< a Lua •»».»» ,-1—. oi- 3 o _j a: a a <i>or^^-i —< z z lu a o o < <a cc »»n3 LU O a o"i .4- H UU •—O*-Z I- >-• K •- #o Z <~K —0<Xuj t~ k co o lu iu o o<r ho »a»— < o _j - t-i a_j r«-.-<—• *h- Z »- - • LU H- » — *«—< _j 3 3 3 *: o o ota: o—«r-i-i

< u. a a ^ • z ac •«co*'r-_it- H-H- - 00 3 *LL -»*»u-<ZO3 3«~00ceLL CO OlL<-Ju O zo O oo a o on a-- <\i» »<•—isji-i Ctt-HH-OtU »X w—.*» •>

K — OX X O LL O Z 3 03 h-i-*»-«-*

a a cc o o K lu'——i act: <cor-.-«UJ O 0»-» »— O LU I— O < —'Q •> •>wf«-> x ax X ujxaja> -He-

3 3 »- k o o ooa: of^<rs<: _j •• zUJ LU LU LU U- »— LUO P0— »< _l Z •»XXXHI-CiLLZ 3 •-< "CC— * » * OI- I- h- < <t —OLULUa h-*: X »»-*—. < X z

LU X *- l-<CO <—»»».-i •—o o o - i- ook-jt»-3 (--' o—f- * -j zZ Z ZZ Z ZZK O ZC —CX-- LL * *— _ _> M _ 0«-"LULL < mco<~5 Z O XZ Z ZO C -.OCDOLLi 3UJ »w *< • o •>

«-< «—i •— o. a »— a x c?a ,-«-.— •> co » «j

LLC? LLO LU < K OO H* < CO •»—«-* CO «-» 00 •»

LLIfM LU(\J LUX X • >— X Z LU a.h- *—'r-ii-< -~ZO0i-« »—

O

O • Q e O OO COO 00 O0 LU O a 3— ,~t,-iwfw r-( «Kr-i »0LU LU LU LULU LU T. i— C O f^00»—^. ^4< » » </) »

00-J O0-J O0 X X>- h- X LU O LL LL LU wwK>— *C000r^ O0—. 00*-•-•(- «33 az u >>-o<r hz^h *,--• »-z< zco z xo xa a >- o •— a uj'— •.•.•. n >-> Ki-iI-.CO i—CO >-t LU X K Z CJ X> ——.-» mUH- »CC * O0OZ CZ CD LUK LUO 3 LU •-« LU I— »-LU fOHOH *2rO<~^- *«-< 00a a axoxoox >o o r»->frf>»- <— » »>t-i •> m ••

• c >-a i«- k i— •— < ll • ,-<*-«-'», i_< z>-«-'C0C'-, oh-a.a u.a ll x lu ll z </> ll oll>o ccxax — o»—x * •~.oCLU GU-J O LLO LLCO O LL »- 3 O'Z *V •• »a< •—X »- ».X—. •» ••

t- H OO O C O -J O O0*li-i - H— •» •• — \r- XO<Ow CD>-auj ctuj a o a a o z Luan- r-tr^o—'— cvO-jo—x —xcLU2. LUX LU XLU XK- LU X ^ •-< 3CJH- r-*woo«— —'*-' «— •—»'-' •»

CD< CC< CD LUCD LU CD LU X «— -J _J(— O >3<~»<ff^ _J-»——O-J^J-<Xxct xa x o olu x o to < <oo_j 3 —>—— ujoo^or^-o-sooxo3< 3<r 3 ZC Zee 3 z ll .. o >a» Z»-ooll uooo<v; »ro^ *za za z •-«- «-.< z •— x co <s> < vOu.a< z^^i-t *co •— ~5—

«

• • •« X *• LU O 0»— •> •• •> < •• •» »0"5iCi-i">i-tH< co .. # .. « .. t- x.zz ooo——-—-omtrMTtw •.—-' *. i

CO CO LL<I O ^C0-9<«/)3 K (J< 2HOHO %-'*-—'LUii:LULUCOLUZz z z«— .— ^"^-sxooa <iuco^-f^-vt-JOOoH-^>-t-"^t- it

»— h-x«^«-'«——»_K^<r>— •>—<—i »mh3 <»-<coCujc?<LuujLua-Jatt sca.3.a oocca<aoaaa3:_ij«3^jT^

uuuuuououuouuuuuuuuuouououuuuuu

110

— ec nj ^o-— * *^O 0OC_> OO •• » «-"

•z *z ^z-*< -~cc u. —. —

-~X *— •• ••— » <rco coco— » -~ -~ -j _jOft.MOonp-'OOrHCD » cd »u_o —i -J * * a '

Z HZ »ll Z »lt ZO ZCZ • •« * r-« «H0>-» »C »-h ••©>—

• » e • « *-0 •—' »-" •• II C

r-( e "•«-! » ••«-< e »r-»o >-tO<-i •> II II •—'•— K

II O—> II O— II O—> II •• II • II U- IT !-*»-«»•.toH •.(_)•_! .__>—I -*•—I^ i—«cc»—<Z «»»*»*» CD»0»- »0"— »o«^ »CC »CO • o «•»«« o— — Zl— zi Zl—z — z-~»- »- - •- — *-

>- <-> -<*-> <>— <-. • l-H •*.— < CO _ —r I < «-

O — (- — (~ »-<~K »«^K «-K~ - O O ^ ff CD CC* -<-»(-<— >-<—»-< l-<»-X O CS ».•»»» 5-

X <. -*-*<S —< •"(—!< •- < »-«K K «* «» «~ «» «

O X— Xw X— »X »X ••> — -• »-4 »-« —* K— ~<rx«<x-<x-< "<—h O — —' —' — — O"V -. •.<*-• <!(— kii-i 1— ».^-.Q O -} X X X X •«•» wx »^x •—'X '—x —»>-— •» «— »oo -a - » -?

CM XOwXOwXQmxC XOXO — CD ^—•X.~>£.~CD—' •

cv*<v< •—-< •»<—< •*»-< •• < ••< o _i cd *: —- »- «-^— a:* * w _J—.—-_J—.— _l——-_J — a.—,_4 X —» e —« —« -~—>———— —» C* (— * — *~0-»wO-*«-»0-~^- *»«-— ». o -J - -3 1— r-^rVOCVf-JrviCOfV -J •

-Q-OOhOOhOOhOO OOOOJ K X«— XO— "~ OONONOOOr —1<X-VOHO-HCV^OV 0>0> • XO »-CD •• #CD < Hr^f<H^l^tHH • >- *5"

O* C«-<—J •>-< -J »i-l_l »r-«_J^-rH_Jt-l_J^-l C »f-«CC f-t—'CO CCLL'U^ »•.»•••>•. •.#-! D«-« »(n ^->vir> ,>». »0^ »CvO »CsO »-0<\i »C »0 II * -» II II —< II •— II >* II 33>0>0>0>0>C-0>CvO II * II *~

I 1 K<\j»-ir>a -~i/-nO-.~ iria.wir\a.«~if\a.inCL.-. kj»-.-j—. -5*.- ^.^^w—^^.w-^.—^-5 inj*:_jZ—IC •C«— UJ— U-l—' LU— X— <-» •-» II — "JO < -5C-5'— t-iUJUJUjUJliJaiUjUJ «—• I* •M II —.O—O-if-O—IKDJt~D_l<C-iCJ^ I —XfM -t->tcC> -h- »hhKh(-hhl-Kh>0 I — r^ -^Cvl^-« II II II <_Jl-.<I_Jt-.<_l»-l<_J II <_J«I_J »— ^.^, M —'t-H mZZhHHHHMMM -^"5 *"5"

"S. < cc ou.' <; a ai<i at lu< a: lu<_ju. j <iuj<io n —ito-ouu.-o^caccccocctococccccc: n«-cu.ZJo::ci:a:tfo3au3ctoJa:uxQ:oaoDNXwDccOO'-<ccoccuu3333X3J3QN>D'-

Cvj fT| IT>n}-i-«

111

<r<rx ocaD ##* -«—O XX

»-» • CO*»«-». <V~# *r-4i-i I eooo^^^» —<»< <• *OCO •-4rH<rvJ<\J

1 1 1 «f

*-»*». XK-J-J<\JOs) a<x<OGww # <wwU«/5 -*— I *ww (vjrvJOUMn** too •co<m^ -! 4> »-• • •r-«t-l ou-oo«i^^- «* 1

o•

<\j *~*~*i eooo u.

Iww «—.*»< <,« <<<<

fvjrvj | | wwi + + | c*oc**0 —— XK-J-J uj* *

* * C <NJOs) <X<X<00 «XXCO —w #*-<ww CD<cO

<<"v Uts> _»|** qc | ^ ** ominwwX * -K t/>C> •CM<\1 —

> •fMCvl»/)w *_ A* ++f~l • * f\J.-l 9 ©

*£ ——if _._. DU^OO COl/i—OO CO.w O * * OfVi«N «"— «* 4>| a I * + • QC MM<VJ•— • —-» •*•* <OOl>0O<«C<<C0#(\JOU-U.UJ» «M# * <XO* * U< +IXO«OQ#MOLL OU.IUU<<r<\J** GCaC** CtOC^* |<«JU «<<!<X II *« Ot OC— -*Ct CC *-*CCCC •<«!<JO •II r- II 3D«h*—* « OO* i*.OOrv)<«I<0«-(\i<«X<0»->—•—* #"-«*-* * w* « f\j<l<<0«-<\l— —zz-—• + f-»t-»rM(\i • •cmco • • ii n ii ii ii ii ii ii ii ii ii t— •—cgcN—*-"f\jf\jiO© n n n n ii n u^O^mmH Jw*-uooMfvjUv1(MM-"*—•—-.•^-.^w*.OWOV)U(/)a • •—>——.—.—»—.-•*h- »^-t-oca:»-oon ii ii n ii ii \\~~-*+w4~4w**+w4w*i>+w+t+**v+^\a\\ ii M »i H n h m«m »-•-• •— •-. *-*-> »-.

"? izzii ii ii ii ii <roooouju. ii ii ww—ww.-.wwwww H iKeooouju-oii n wwwwwwwwawoox-J^rvjfM<<r<:<r<i<x_J<coooLuu-x>-'~5^-JCJ«vjfvj*r<<<<T<<x-J<cooouju-XU-OU.OOhhl-OW<«««IOC«<f<«««<Ou^«««<00«<<t<«

Xo <<# QCQCo ##• ***^fc

<N XX*»l^»

1 oo•»*« oo-#* «•»-*t-4 «0DOO u_

1 1 <T<I<t i* * <HM # * <CVI<V <VW —.COCVJ | <f 4-1of .-tt/H-X _j«j UJ

1 1 1 + + <co <— —

»

»—OU*<w— eo<t-»^< —<< 1 «

#

oc 1

•f X<<omm *o>—•—

«

IX* * •<V<\) <* •»»w 1****"—* t e f\j?-«

«_)</> -~»-.t—wOO CO(/)w^^^^ -*-"- 4 1 a I *

112

<<cc a.

* *

* ¥

(MM

oo+ I

U.U. u_<T<<

II ii ii

CL•»

«»-> Z"w ;zo »a «».

•» *—

o-3 v0

t/1 ma O

sO

o •>

UJ<

* *Oh< I

—>O I

+ -3

CC +<-3

* —

t

~3>

CM——

c

*

<x<:<i

-5 CMoo at at— <_>

* •—Ir—,—t || || ^r-lOOOO'-«»-l t*>~* IT>

S II || II —>—. II , • , „ I! It — || O OOi£*-*-5>^* ")OOOCh-5h^*0 vOII *0 II II II II —. —"OCOT5H O——<->— •-""-« UJf\JO C_,_h^,_* » * || ,_,c\j -5-^-5 -^f\J(\J J— t-lt— rOf\lr~t»—•»- »-<»—C0 II «_— .»..— l-H II II II

-jc uc—'CZODt^ocfOoaoown^o<cco^>jzoaa aacojooj-Jjo

l

o —Oli

—O I

• it

OO •> h-

• + it «-5on <—

•o—-> "5

CC LL— •>

o o on • »ooo *aasO >c nO~JO»— * * <c OCDCD

ujooo ooir» 1

O C OP-' ••••o*«»*«,-t CO CMJ— (V •-! rn h- 1-< h- •"-' ""» i£ <M fM—OOO r-< i-H

II II II II II II II —— II II II II II II II

—ij_jo_J-j-JOi-00'-i »--o <*c:r><Tcr)cecD

— -5

< »

1

-J—•O

— II •

—1-3

+

t-4^0—1 CM ro Nt IT rfVI f^Jf-»00 O O O

v^>>0 >£> sCJ «o >c nO

113

_l 1-4UU l-H_J

< w< w<# o* -}«"• »^-<»» <—«> ->-5* — * -*-5 -J-l 5 — ""J

-J •» »-)_J -}_J» ^-••—«__J •> _J »

f—

«

1 1 —

»»-*

1~>"5-9 1 "J 1

-9 * *""5 »-5— » •—tf—tf-4 » t-l

-»—

<

4 | »-«1—

f-*w MMt-lw »—•._

— 33 www> »*D"3 1 D>3 1 > 1

<— 1 1 + — 4 —

.

-} —>_—> —

>

— ~5

•— t-t » »cC«-i •—••-* x>->-x•-f r-H-4<I4 <4 OODC<-? +*#i *-? ss\sw •» T5-« * — • mirnnir# •-« » *">*-• "7»-» •ton—— •-<—•-J—- -J*- OOOO-5=5 I I •>> »0 www*-.-J— t-.*-.-->w -jw **«**4 ww + »-4 *»—.«-»—. —

.

T-* 3>_i—» r-i^. _»—._.«. _ «-» «J•>»-• | | 4 •—" 4 •—< (—it—ii^i-H "^ y i

N*» «»—.ww •——. _J_J-J_J *- • •>w^ ->""5wO *-:* •.»•» qc ,_« _•>< —i_o< >< <i-t^-i<t a ii ii

4# •> »4 # +* -5 1 1-5 * ""5 S*——X ,_»_»—-»;£*'— 3T »-^«S » -*» * »«-«-~C0 I I i—-~ CO >-•«-» CD i-*—)->*-* -5 •» «-»

-IV "^-5—'-5S*-)V I » - I — -55^I-J«~ * *<r_J-*X-J— <<<T< O <M w w^ *•©- *-4f—<< «0.< »-Q. •—«»—••—• »—t Cl <—

'

CO •—*.-lCO I l*r-tCC*^CD w w*SI • CD UL-~ i * -,.-,— i * — i * ro>>»-r-i/^—• o •> *-5"9—

>ww-j-?— -5 -5—

I I I I #*</)«/>-5 I- «— —-j ** o>_j *— * ••«-ww#«w -5 x

3E •>•—(_J f— 4 4 •>•—«_} •••—'—J MWM !—•(/)»/)•——.</) O WWCD-5«-' * O ——.-5«-» *-5w » -J-J—l_J-K-*f- •—H-a O > \~^ »>"5 * "5-? *0""5 •>>-> » • » »—'•— _J—J •> » •—».-«4 — _l_J«— + •*-• 4 » <^-<r-i<I>> * — — («sJ-5u.J^-»aw—»^ia"5 » »w— i-hw—.-( 00 00 n++^>x«-j #-< ^w^woCC>-5wCj • HH3^W>>^« e, » o „ x »<l<t •Q-0.-5~5-' 3l </)<-*—.-*—> •*——>— -• ++w_Ow_j> OO -IOO SC^-"-5-5^-f 4- ••O -J Z t->lf\itri(\JO— H * I — -5-5 11 •• I H * I II || nil »+»»+XXQOCL • «OOOOHX—'.-•— tMCD ••—.»-•——>»-l— —— «-<*—. _<<<T<KX >••—»»—• Oi-« »-• H-^-if-t»-<f-HU-_!•-" 4 »-• II # aQ-<-''-<'-< + i-i«-. 4. i-njjfc-i-.ro II

•— »-iUJ II wi-n—ta- O.Q.WW—» -5 LU4UJII 0»»» *CM•_J"5w»-ocOOC4 4_l-5"-»-J-5*-3«J_l^-ti—-J—13 -5wwwwwwr»r-*-5.-i *t^3X *>C^«C^»-

-5 *LL lf\ I 4«—-« * *LL •> *-U-2 * •• »2 Z5Z>>> II II II II w4 +iflOz (Kjwwwwj-•—5t-4<^ « « #ww«^»-i<-5i—<i—-jno^mwffloo-—<—.—.oiczo-iw^h 11 ujujljjuj<-« »w* hOhwD> »w* «-w# K » ••-•-« •> *»--5Csl II II II II

-5 -5 "5 -5K

"5Z -J II h-<\J I -ht-hhlw_«>< 11 ti 11 11 11 .-o<>-»i><z_i-j "->•—z 11 x>>x—www*-. 11 iiwi/)Z ^^mh— fc-a:

3 rcjari<«-«'«>«'w3o—oc>"»o<oxx>->owoaa:<izu.uuc ii-aaaao1 >4 4dcccoco3>r>4 4>+ +o3>OOD>uiDCv0.aaaaao.j^zmjuonk j333u.fV <-"C\l »-«f\J r-<fVJ

4" tf> >Of° cc csjrn >o O

114

Lf\»

•-<

Z" -X. X• xo o•0<M rviXMV *vo^-t IT(\i>$-*- ••v— •• OCf\ •»• w~*

>—« » •• UL•...«-} •*

• LL-5 »••Z> • •

i- •> H- »-x Oxo •XOrvj »•

ONV X00*^ c""vfli—

f\J

ir>t—i •« >^•—i •••• in•• »••«• •- t.cDV.O••CC"^"Vr-<_ICD» >*U-• z * —* .- X »*x »o » #•

OX<M ••>movoq"*sro>t -*<• *»\Nt-i » »>*.

*«• >J-fO •>X>v— «~—..-. ^-^—^^i--- XOf"v. •sk >v'»v ro*w» •• Of^ o•v "V>v>v o^os •>• ^TfM>».OPr*- r^r^-r- of-r^-x . ^^viru.—« »• •—•—< >—" _4t—i •—'^&<Jm >J" » »-U ' •. * U- • • »Cf *—o-• •» • - rv» • >^2rx t—• ••

II IT. II M II » II II <I - O » LLt/>O'-'CCfvJLL v^-l/^ttr-' »C\) • • »K^ ul *: *: 5«i ^^:^^x«vcc» -* C\Jm m. m •-» - «*£) ,$ J" «• •>

* XXXvJXXX c CXXO*V • OOvt,- vO vO vO —- e-~i-oi.»xO«-*>T» x» rj*>*>»•> if^O^' » • —<•• C 'v

f-tXt-" »-••-• •—!-•<• *-»• • ».jMXroIoiixmu-P-ioit-<»-<" jvo •

4TM0O«—w *•» «»—- ^» «_——w «—— 1_) »—— IX

ht-^hhi-Hhi-hi-i-zx •*- *•

«a<i «a <<i<i<< <i <i <i < « o m <«Jssjjjjzrsx? -ro ••x ••a.cr'Qc:aa:a:cca:Qc:aa:cxQCx'v<cicoooOc ccncccccpccc<tio^i-zULU-U-ULUl.U-U.U_U-LLU-U_<M>-i U_ » V> UJ

i-*(\lrO ,—

<

r-<Mrf >t^>CNorCCHO r-l

c OOOOC^OO»-«>JCv o oC\j

115

oLU

<XI-ttZ<UJoo>— Z <*

COUlCCfZIUUiUJ»- \~

X — I-H(SOGcOO_J

o<osot \rs

KOQtyO

uxxco^o.

UJ*->0

h- -J

JwUJOK-Q.

ZLU«TLUOIkl•—KwKl-Z1_>>-LUZ

-5U-.rzi

O ojczuCC«-0a aDOOLUOCZcotv

H- Oo—-J -JCLiUJ<o

XotO<oraCOCLm*- s:OOOOCO

>oU-lmQK

»—LUCO-J<aa:DD»-ZcO<

UJKX<H-3E

a:5-CanccaaO

Dh<oLULU

UIXLUCOOoo>- on—it—

CO

LU3L<<a

*COLU

<>OLU

ac

O

a:CO

Z

oCO

COa

CO31<raooCO•—I

LUCO

<<taLUCO

zLU LU

X LUI- 3

LUCD

COLU

Xoz

LUo<laCO

cc

«CO

<

<x oz >

occ zLU .—a

zCO LU1- LU

z3

LU-J<OCO

UJcc

COLUXo

< zLU O3l <•-* OlH- CO

aCO>

oLU»-—i LUSIX

5"

COQC5-LL<

lu ac—Z Ch

COLU

oCO

LU51

ZLULU3

COLL!

Xoz

CO •""• •-<

oz—

.

o<r

co

aCOx

LUI—co»- 9

I- COa lur>LuoOKLLh-OC

LU »X>LUt-JI

_lh-a:<ozzu-oo

oo *-«

coi-ZLUh- U)JOHhCt-

»- a:

..COQtCtCO-Ll.ii—'

o<r<•—ocah-<roiocooct*"* o

C -"*-<o<I-K3I

sea:. COoc*zOh— •.cc

a~z»o »

f-OOOwZ0— *ct'OZ— >- »•

1- »5T

CCCOz<CO

z

o— O-J—<0 *

o

t-x—

aCOX

cox

cococo>-

0. \0»0>0v0 »C •> •» •« »—J co>- o>-HH>-<i-1 II * O

CO «• || II II II —• »-»- •>

h-H— >—<«-.»—ih »OOI- Q*- vC •> •«— ». » »i •>«-. t—i » » Q0'«-'r-4 CO »———»*-•—l »>-t— »oa ii o co--- •—••—••—««— coo cc o

*^ >_. » »|— »-qcooqc:>-- *x^ •>

• LO •—.COCjCO»-<»-'*-h-'0<OQ- —Lurvi— t—S" •.q.h-kh-c-w'e ^ f_at— >£— »>- —«———— —.— » <\j j—•—c—h<o»——— ©-?.-<r^ a*:-) » «K col— 2T »0^fH^HOOOOZ^* z -- z^o .xooooon »f\jrsj » »q » qSOK-nDHHrtHpH »CC •> »-*-*r^ LUw-» ^-t *—.»— •-— -5— ••.»•. 0,sC">>C£> II II -»3 n >—

I— CO—>»-• •>—llTiLOLOLOLO—» »»"i<"5HZO ^ II +ZvO«^CCi«-w«-.—w«-LUaiLULU «->-'Z ^-*—Z

CUJ^CODOOOOOt-^H-l-HNQKwHir) | ZZ^K3TO<I <I<l<«a<r<i-i •-»—••—• <Z3C|| X.Z II ^<>~-«U-.*LULUUJLULUUJ0£-JttttCULUOLUZO II «-Z II

ODKa^aci:tt:a'aa3j3tjQOa:oazo>hz>fM^t f-t

OOOOOOOOOOOOOOOOUOOOO

116

o o* _J •»

C -JO• * •o < o

O I- U. K-J o z o<I <£) CO o^ o^ co <rOX » X> o < o* CO —

'

CO CO —

*

O >fr Z sfX C\» — • (\J —

—• LLi •»*" >$• O LU *•"*«$"

a < o o>t * z o o<r00 i^ O *>frO •> O •-tO>- •* O O * «? Z O O •> »•• •-* -J cr »c •• _j cr »o

Q- |l • »0^ >£> 51 • »0^oo I-* o ccr •• •> o ts>& +X • « »-) »0 C —J #1-1 »o• —• o »— <->0 h- * O K»-iOO *-• • o-K •» O • •— *_j —• *. -J-O-t O O •> <to*>* O >$ — f-> »«-< O ~> •• O <4" -*••—* ••r-*

•• >- t-( r-l «>J « » — O t-t r-4 #,4- «

O •• •«— •Or-*© — Z «-»—» t-4 oo •• e—» »'0«-'0• «"• •.fTt—t •>«>•> O Z rHf»"\«-» rH - O »CO»—• •».(}•.

o " n i »o ••»-« • •> •» I ro •> •> o m i «>o *«-*

«— • »< • • (1 ft— ^ «-••> I rH I/) * • •»•< • • •C O I O^OmO oZ • -Q- - II Ot/> — I O^OrOO_j x » e » •> » o h-Z c ZcnK- Ot— •— •> H. ««•>•> » »x< * onoaac «/>_j—' *- z>co •— ••»— •• onuaao>»^t_H c »>-o.q.cv a. ia h »•.••>—••» coo ""3 • »>-att-ao — ^o »xxx * — aoo •— s: » — —io *xxx

C>CN c-»— —• .o—'—-*-' CM———» — •» • e -~—» *> ^O —' • O*-"-'*-'K ^ITI-OOH JOXJJJii ^zm ^ KOO m«<OZi< * _JOX_j_i-J:*H- • •H-MMi^O—OOC^ Z "ZCM Cvi w*»*-UJOI-I •> •> »Q (/lO^-OOO^

Q. ft OO^OCvJ(Ni»— CCKUJCOCDCC « ,->*»(VIO<M UJ>— H-»— «CO »Xi-«^-lO »— co>- ajcccoco »*^ i- + +om oxozxjsh ^-*a » « •• zooo *«^->o ii it ujHOSOzrxrH>• coo. «.a nOvO_j>--j »->->->- ii n Cw«ort-OHHH_j_j_jso— -)—^",>—3 _j >-—i •-•>->>- n

* * jano— o-ooO-_joo</>i/)~5 i^: ii i/)— ii— i _jQ-a.a— »-• -*-* Hzocvwajoiooi/)-)^ >xx ii luuj — C0UJ-.UJZZ uj—cO'-'fn^twi-.zii ii ii ii o _i»-t-_j_j-jj_i_j_jir>^-isoz<h-Zh-zz_j—ujhOio^HCKHjj-i_j_i_i tr— •—

czonnzjHMjjjjjjj ii Zwi-.z'^-i ii ii _iu^jm< »<r <Z2-j-j-J_j-j-J-j ii

_j n _ia. a ^<rotcr <r<<<<<<i cJZO^u.ct;wQt:zz<r<i<<ocuJ5^LiJOOUJOUJ<<t<r<i<<<rCZ>->xxxKu32ououoooozcaH3a3ZZuuouJo;^aoooi:uaouuouuuoz

r—

1

117

o_J * -J-JO -J•• • »< o <•> • »

U. K U-ZO Z•- •>

CD «C CDOC 0^ COz z• X *< o <CO CD "• CO

z <t z•> <\J —

.

O UJ »—>* <JZ O OsT •• Z•> O •«$'0 »z o o * • z» -JO1 »o •>

co a: • -ocr x•• o 00 » •

O -J • *-• "O -J

o o * -4-o>*- o«•« Cj •—• r~* • *$ • h" * *

-» Z «-»»-> f-« t/» • »— MDi-tO z «—-» «* */>

O Z r-ifo— »-i h- «•» •.en.-* •> c • C Z r-«rn«» »-• —»-•-» *: t-* » 1 »-< i/> • • •>< ••• o. —' x. *< » 1 •-* t/>

•z •• »q. * 11 ot/> -j 1 o^omo *—z »o. •» 11 o*/>»—z t/i z</>»- ^h-^ • ,»» »„»«»» inoz o z»/>>— o»-«"— »

t/>_j«~ •— Z>CD i~ •>>- O O«-'OCl0lCj » •*" —• Z>CC •-• * *»-a. *o. t- •• * * -C0Q « • »>-Q.Ci.a OOQ. K ••••• K->COO-* — Q-OO *-X •• C -<0 »XXx fv#»-< Q.OO '-'X ••

*zir >t koo m i-<oz^ joxjjj^ zs^h-in "4- hoo m»-.<cjzi!:Z Zco <\i —*»—LUOt-X * »0 i/iO^^OOO^ * •-J<\» <V »»«»«ujo>-I * » ••_5»-'(\JO(\i UJ>->-»— '"00 »X,-(HQ t— CD I- UJ CD CO CO •• —*•"> •CsjOtNJ UJKkHOO »X^H

^—CJ- •> • • ZOOO •—'-JO II II UJ-hOIOZXIXh II *»— » • •- ZOOO *—"50 H II

II C^»vO^-«>0--"r-<>-l -J_J—l»C— -5-'Si:-J«-»3 _j >-_jt-">->> II ^DZ>OO^HH"-t_jj_jO- -5—^-5* 11 oow 11 ~- 4. 1 jaaa-wH *-• HZDtn/)0.ji"</n^n h Z"^ m«"+ 1 jQ-ao-^H *^«— COUJ—UJZZ UU^COwiTiO—«—Z 0-~—UJ-IUZZ UJ—'CC*-h-CO

w»«*l.^i -y -r 1 jL.ri"^n i_ini_^ 1 1 1 • I 1 in>_i i^r« L.yi-7-y 1 I 1it—C^Op^tH

-J-J-J—»•-<< •-<<t<<i<(Kuj5<:ujco

f—

I

cc r- vOiri o o^

118

in-fr-4 «f

<ta> >—

«

• • • • »Z -X X• xo o•>Ofv| fV »XMV "«v XOVv}- IT, orvj«4->- «i rvO

o »«• • • U- «• ••-3 » 00

O • U-~> • u,•• »«z» •» •• 3E» » J— •(- • »X O ••

o »xo • h-XOfVI •• I-

nC OfMV^ X -

v^m*— rj xx IT»|— v, Oo i— •>• in *\J

oc -~ ...-.« v>t - ..ocvo f^1 —

UJ »—.,$- -JCD» >tli- CO •C 0>t • Z •*-• Lt LUC *«t© *• X •»• • -C O * o X »C» »• • lb-J 0^*0 OXM«.> #. _»8 OO' rvJO^OQ K-—• CLO ccO" » v»rg^-fc-i» cov —.—.—-S"

O h-»-<0 CO >tr«"i • »>X—• •> • e » «o• •>- • r-i <•—• xcx^xp-— coo

— >t — «-* •«»-« O "^ •>• ^(MV(C(\I >». U-U-U-O:5£ t-< f-H »>fr e K- •» X ..5£«vtfMJ_'V» *fr COfVCOa• »«" •0»-*C Z «»«•• nO<T«» >f «• •.m».i-H j^^j^icjj

~^ •r^iT-i •> « •• o 2T »—irr*'*~ co »ho« «Q. •• » »• •>•

«» rv | *o •—• too •• • | m ^zx •*-• ••<©*"• — xxx •>

Q • •< ••• Q- «-» *£ r-4»| <T» 0» U.00U.X || r- c\jOvi<N>j-• I O^OfOO * —»Z * »0. » «-• »-(\j •» »H- »• <!—»»—i • * »<1C »•»•.»« tftcz cc Ztoi- a: »-*x»s,co» • • s^mm-'st^'N* «oo c»-ioaao • »«— »-« zr>-co •— »o>t>: •• .x» » •.pr>^-IH-^- •>

•• • »->aa.Q. ooq. — ••••. t— «-> xi\j»-» xkwo ivj't • •• •• »xo r-io »xxx cm* ^-i Q-Oo o o«v * »-ooa<\!X^<0" • * ou «- «c; ,«-*-'—'^ •>—

> »— <— •« e • *» • h^, x» rvj» sou. »D(\tCJi^QC v.• joxjjj^: z^h 1^ >t >-oo mo-~ •>•-•«c ***^ f' w *u-» - • v.c wo^^coo •• •>_i(\i ro «»*^«^ujo»-<Nt" »_j»Nxmx •• »-x •.»»•.•O K- CD »- UJ CC CO CTi •-« f-i-5 »fMOM lUh(-l-'Oll.<^« JSO (O^OOOXXXXOiLHDrczrxi ii— D -J>- J»-'>>>-5

t-lZC CL (/I Q. _l t/} CO t/>

DI-«jjjjjj_i< Z jt —I _l _J—I _J _J_Ju.'r-LLi<r<i<i<r<-<i<o2:Qt OCt OOOOOOOC

•-<•- »~i i-> OOO O O M(V|(M(VIOCOC

I\J*—' ^^ QJ *^ UJ ^. 4(^. UJ^A-**^** V-J • ** ^ ^J. » ^3. ** ^J, ^-l ^J. ^4 ^i ^l

ii z-'^-Z"— ii ii _j_j-j-j«-> ctc^ax^<rc^ooa:oooca.a:ct:act:a:otrcic.zO"U.*-azz<«<ftfuccc>tjrowG>oDoooor'rK^ZQ0u»-3:Q-3:zZOOOU3EIJ-LLU.fM>-» LL» U-» U-U. LLU-LLU.ULU-O0UJ

119

2O' *—

UJe O X

UJ UJ UJ 2 Kcc _J X X Oc •

zK K a

00 O _fm_

o X X UJ<v 2 O O a 2 • f\)

< Ul « »—< •-< cc O 2 ta#

LL K X X O MM OC U

O<IUJ

atz

3 3:UJ

2 a •—I X X 2 _J LUc 1/0 UJ x O C a —1 CV'

o UJ cc cc 3 3 02 X a «»

> -J UJ O O > eX-J a > »- cc CC _J-4 OO •>

o fc—

*

cc UJ X X O UIO rM.

a K h- • a 11 U-LLiO

OO

<i 3 UJ UJ O0 00 <\j UJM- _J»- aX K CO K 1- • X 00 a •_>

>- < Z 2 UJ e h~ 00 TtLCt aCO O a: c t—

«-* _j «» LU CO *2 UJ H- O C » r-i ZLL O 0"-« «K

D —

1

2 a CL 00 w OCC O a OUJ O UJ 00 z LL UJ 3 >-a OK O O — UJ • UJ • e 00X 00 -j 0^— < < « Xoo Xoo UJ UJ3E -JO <—

W

_J X — 00 a I-ILI l-UJ • O »- O 3UJ _JX•> >—

i

>x M"» OO 00 00 • < 2 U-K * •>

a X CO X U-00 U-OO h- M-« 2«» NH oo< a-»» o UJ UJ o< o< Z X M-«X K O0Z »o—

<

ccoo OD <t »—

*

a CL M- OO < UJMH •—iCVJ

X Ql»- UJ_J 00 • X 00 00 O CC* O OX x«-»« az H< O0 CO 2 ujz UJZ a t 1-* M OCC *o

00 < UJ <> •—

*

« 1-0 -0 UJ 6 O 3UJ 00 •»

2 x QC o + h- 1- <o <o -j K UU- 2 00 h- 2—•k 20 UJUJ CO •• < z z>- z> < < 1

•—

<

Oo Ouj zw <rx CO UJ *-«—

1

M-.J z 2 >- UJUJ Orvj» I-* 00 UJ< < cc 00 X 00 00 >—

00 CC 22 *M_<

LL M- Oco u_ UJ t- UJ ceo. cca O U.UJ UJ M-M-t U-U.» OUJ II h- Z cc c > QL Oh K KK » •> (VJ

X 2Z u < UJ 1—

>

00 00 _j < UJ 33 x—> <Mo 3m-. a: >-a 2: O z oz uz >2 X OO 00 c

•> U--J <o < < a >—

"

1 M- 1 Ml a <!-. < cccc •fvj h-O2 K cc cc XK >K t ceo CKUJCCC0 2w Kw <r>- 00 CC t. < u. X < < u_ X CCQC <2Z53 "CCc X 1x1x < a O u.x U-X c <o a»-«oooo 00> ujO K-O UL u. O— Om -J 1- >-—-J Km-. <r HO u_ CC X X cc < KO l-D _IO »»

o <x< Zt- 3 O UJ >o >c UJ t—

1

=3 1 DCOh Orvj —«—a JQ m-Z CLZ cc UJ <cc «ia CD H- ax ace 11 li a-- »-*o X

_lt- OUJ KO z X NJ cca cca X —

t

»- h-CO-J-J < —0 00u <00 ax Oh 3 •—

1

aa cca 3 2 DO 33 UJ ^ u-a 22 > OUJ OK >—

'

2 00 <T< << 2 »—

1

Ot- Ooo ^2 1 H • f **—* u.100 CC 3 K M-O OOOK-K F-H

>- UJ 00 UJO UJ-J a »-•- ZOJO 11

3 OOOlD X2 IO — • • • • •• 3oo • • • •—I

c Ot-_J K«- H-OO a • • X • • •• 00 M* •• •• 02 II 0*-2CC a z U- 2 X a -J CC UJ 11 x— o—icc a 00 ccsoxoo*- 11

z? 3 UJ 3«— 11 ooa.u~u_.-ooo a 00O-J2UJ'—11—11—.0

0000000000000000000000000000000000000

120

oo

o

onau.

e

I

C

o

f-ico

+

•a—

o

oo

LL e 7?Z>~lSC) r-<Z O| — —— w—_ | | O* » #—C •— «-" ULO »~-CMH f»si

f-lO — «— LU II II p-l^r-t^V— II 4-UJ+ w^a CO-*— ii * + sroi— »-i»— z)"-t^ + || || Z'.-if-**—h-i—o— i xz— CD*-* t— + + —— It || >—••— M ^-»^—» «—|| *0*~>C£-*BCu.<Mt-«i-M^if,oc—h — »- rf-x—^^Kh-O r>ii <- ii •"mz-w i, n —>>— n i—z ii —*: — zi- ii kocju-—. o o^>* c —a cu.— iilloouj ujz

li h>tD•-iifl+O zz

m ro>OfM

121

e 00

ooUJct

o • • UJ tart

«~0£ e UJ UJ QC 3>-Uj O e *- z • ta-

1

O—

.

»~ e o o i tart o 3 u._l XI- UJ UJ u- U.' on IT\ o cc h- UJ a QCta —O CD CO CO cc u_ r • in UJ 3 »- • UJ< -J X OO UJ • z C UJO oc 00* OOO- a o c c o U _j UJ UJ or _IUJ UJ•> f- »- K K K z I * -j o cc Q.K 00 oc

> zo. >—i O • 3 XUl UJ 1* —s UJ UJ UJ u- z o «» oo O-J oc 3X CO h- t- t~ t- z ta- UJ o oo OGL 1 o•> Q-O 1 1 •I < •—

(

z UJ ct u_ X 3 00> -J Z z z z z o z tart O >o oo U-*J n-i •—

1

tart tart tart tart o < JU oo X•> oo O o o o 9 OO tart a. 00 _J oX ct cc DC CC o z oo oo 3> X zo Uj< O G o o z • UJ z > Lb U.—I o tart

•» o o O O o t—

1

o X UJ » o oo-i zX zz o O o o o z *—

1

X X o oo3 tart u_

< LUO < tart o tart ta» 3 UlU- • _lx J3 X X > > o. o o 00 O UJ UJ <>- oc OO < 00 UhO z X•> UJta- U, * U! C UJ • UJ e 0l • I- O 30Z Oz coo: Xoo Xoo Iw Xoo o oo oo • z z oozi u.*-* o -UJ f-UJ KUJ t-UJ ta-

<

UJ UJ tart l-rtl oc u. oX < X X X X a o h~ 1 o H- UJUJ oV 1 u-u U-O U-O u-u O h—

*

1 on a. < ZZU. o•> 00 •• oz oz cz oz CL Z oo O N-ta-O o tart

X UJ>- oo •—

<

«

t—

I

•—

*

— o »—

i

tart c tart t-K *-4 ct

*« t-c ar UJ UJ UJ U' X o O tart o 33K oc oX 1_J UJ DZ oz oz oz ~-" «» oc CO OC z 003 oX CtCL K -J«~ jm -J—

1

-J 1-1 >- o 1 o tart a:orO X» UJ UJ «a < 1 < —J •^ • • • coco X oz zo X •• > > > > <I oo u. u. U-O OC 331 o zI—

1

LUK 1 00 • • • e t~ —J cc o o oo UJ OOOOj^ z tart

x O (X OC xo xo XO XO z < UJ tr. K tart •X C 1 UJ 3uj Old 3uj Ouj o o 1— ct oc ct • UJ •000w u'UJ a. h- xo xo xo xo r^j I—

1

UJ c o UJUJ X 0<-"M Ooo>c*-c Zi^ UJ >-o •~o —

c

o

*—

i

»- X h- - CC_I < II II II »-l- zta* —3 u. X Z~ Xh z~ X** ct ct 1 o o X • oc —

1

1—

1

z>—Of K o <t *-tt ipc •—

a

iac O IL, ct UJ UJ 31 1 >-•-cooO 3UJ

z 1xo 3LO iO xo X > <

a:> > z*: a. cou a

a. oc

UJ (X o a <£> o2 C0> —

(

z X z X H- ^)ZC0—

.

31 f- - fc-< < tart < • • • • O •• <CO<f\J»— oojr a 3 X X X X X > a ft • • •3 • •

3 —

>

D. X X > > o o k X > ^ -jQ o~XX (X z o ••

oc ta-oo- o -* o UJCD T>—< to >-

3 H-iar UJ coo 30 c z

oooooooooooooooooooooooooooooooooooooooooooooooo

122

it

>X>

XoX<5.

>

5"

X<XO

5 >X •

OO—

o

a itO—X

UJ

*-0t— •—

C2aU-:n? .-

3«-« I

>O

>•

o*

0>!

o

u OO

o

o

<

+

o

o

4<

C

ooX

ear

4 XZ"

CO o

Xo• II

O.-1

Xo<

Xo<

OxO

4

22

Ml II •—

i< •—

x

X0<r

>— iXZ^ZCU.<MHMocxur

•—xxNjin ex>x><tir5[ «—» <•— n} Ok I

> || II 4r-*-* II II M II 4r-0^0+ + + 4 •-'O

li _ ._-*——-»w-. #•— •< II II—.—._

r-ft-l <X •- OJ OkJ 0*> O I <I— •—'<00^ r-4,-4

— 4 4 ii i£> 4 4 4- 4 n *: > t_ 4- 4 ii

> X > i£ I—•-« X >- X >- i£ .—«.—< 0<f <— X >- X >- X£

O! O".

C

2xrz«<IX>HXV II It 4>

O OIT C « « IT.C

Or-* r-l OO 4 4 oi_-~<r <i (_«-.

X— — xC< Ci<cs + * crX X

—» P222X — p

OU .-«•—•—< OUJocxjri co cin »x>x>o*ilo • •O— 9— «4" Ok'

I— r-t II II II II 4r-mO + O 4 4 4 ro

<rwOkjrvjr<-)r^. <t^.^-<o*TX 4 4 4 4 II *:x K^.^.^—.^^ . || || Qu.a^-ww<fuu. on

or a:

hNt-DU-i II U-'Z"

tt _J<XLU

123

ze-iUJ

LU hiOl/ll/lDh- •

D^-h-LUO >uj>a.3cto Kr-CUJ_JcOZ t—

OQtOOO r-_JLUO-0>00_J h> Z •<-J < < < rZ UJ r- CO U_' O 3 <OtOOOUIUJIOO UJ O cc•— -3z>-»—

00 UJ •h

CXSTi—D C 3 O -J —

.

Z K-O. UJ CO CC »-(

luu-xdxooo UJ ct < 0. r»10<OOlLf- e CO 3 •—

1

•"• Q^OCUCXZ « O cc XOl— OC0 i— •-« rr, c h- < • z ccocDoi^a H- Z >UJ •—

O -J ct ooZ uj o. a: O z _j —-

3:0.0. <c O OO O hN -j r-t

h» UJ D ec DK < COacoiciuiZ <\j UJ UJ 0-3 •»

uOZKUJCfc< •» K I hO CI MIOm 3< 1-4 O r- DOC r- LU PSJ

»-t--J «_J z 11 <I Occ »z X »zjoor * cc • O 3 r-UJ - •MIO<UJ>KD w <Q h- ujoo ZZ rvi

KOOCt l~l—

1

XUJ X UJUJ z >!•

— <-< Hl-OO c oar O r-LU 20 M *> «—OO 3Ctl±J00Z*--'O • UJ 3 UJ X UJ< OO Zo ujxujuj»- x a. oa •* Oh O-J O O >* ZkhDraO'- 3 •—»— -J z <a UJ •i 00

>- OZ ujOZqc C CtZ a *>> -j 00 00 > •»

o Xt— •U-UXK >- UJO a VCO a.i-1 00 O —

»

» xctX»~<i <c Z ZO < u. COQ 3 *. ro 10X 00.00 JClT c 3 »-o *—• c O X » Zo Lutuaoo Zoo UJ OUJ o_iz 00 r-

4

»i—t•• <ST-Joo ctiu 1 UJ CO UJf- <o « 1—

<

»> CO —> +

I Z Kmio X UJ <3 O-t- _!--• z O X •» fMOz »-< LU UJ •—Q UJ UJ t— 00 X-J 000 <z>~ c z t-4 ¥ •-1 «•> t-acy- 00Z o.< H- -J oo< ••—

<

UJ •> Xh- K iro* c<«— _jooou_ c _l> aa »-Mr-OC»- cc *: aw * »r-4»• UJctctC<Uj r- <r QC UJ »—•—<<!< < » > O r-* rnX tO UJ r- ZiJ> cc > a: O r-00 a"ar_iuj>- z 00 » • C-MO

•> LDZZ-S^-r- COCO _J <MX H- U_»~ ujo»-«:IC 00 » i^**^ CvJ trmoio-J UJLU r-OO ac UJ *H O X >XOoOi cc _j Om 1 •.om—

too Zq: xuj > < <x UJ «— *• •> —-O >0 e O1

t— ujOujZ»-<0cx«->>ujctcf

tUK-Hl— Xl-O

UJ-J

U_r-ozUJ

UL ctro

ax1—

UJ2:

Ja

NJODOrviCKir\ + i-00a. •• O •-<fvjrrt^ u^i ». •>

z Z <C3:<00 K X cc 00 z z II II 11 II II < z SH 1 »—»» ^ooua »-<.jctzz 5" 00 »—

«

OUJ I—

t

t- IIIII cc >-r~ hmJ r-t* Ocj kuju.Ii— <c y- >— ct KCt -1 r>^- 4CZZ.Z.Z < 00w -J—«^r-aLlT\-~ -»

DO>0 OUJU- _i 1- oa < O-fvJ CL •Zj— 00O* •'St— r-<

UJ OOC<JO)ILU < ujuj O z UJ > ^«*^«^*--Ot-*Lr\ »»-4stz QtX 0-<Ctr-_J a 2: >ct OO >—

1

(X z Zl^ II * * e II 0"5 • •«*»— CD UJ -•— UJ UJ ^^ 30-1-1—— cvj-jir j-f-oK Do_/a Z3ooO h- I K «—ICO 1—1»—1^^ «"ij01AD OO^CDUJOOUJZ UJ r- r> ZOO •0«-"-"»"^ «- • •O X<KinIUJO< 5: O oz—OIIJOODOGOct oooo»-Z»-iCt3 < • • a. 2: u-. —* in a: ctK ir>k «-»^ :*:KCC >-••- ct— cc on a' 2: t« • • _J CO rrN II II II II »-<«—

3 XUJ<ctOooujc «r • • >- OO X -J Z) U»-"-»crj^oocu-iicCO l-oo>ax<ctt- a *: 00 O z < 00 OCUOhht-OCy-'-iJ

9—

A

ma00irun

ooooooooooooooooo00000000000000

124

»— »— t

<?

* tf +»-

>- >- > IT.ceoill> * » X

•—

<

*- •—

i

c

> H 3ill ro.

V

o> O arOr—<»»» c O—IT + r-t ITi-fX X

CO O CDH"v « »— >v—

.

o _c—

o

.—

<

o—

c

o* - * O* o•.,-1 «•• •f—

i

— "5 + 1/1 — -3-» »o o •—

• »-C*r-« • e • »-< «

O 1 c <\j O 1 cW**T-> + UJ <—>#-<

e>—

*

</-< «w«->3— O -5>—P 1 IT* # e 1 IT,

cr-»(_j — ex—

c

CY « * O*: e

• ••r\j •> • »r\jr--7 + CT <f ~5 CT —< "5 + CT

i» l/lC" o »o » »COO0>— CMf LP. •—"IT'O •—'O ITi

iu—* — UJ'-'-*

Xa-

t—i— — •>

LTi | —XX T. <?

oo * *Kv. f-l - ~— II -" ~

o-~o -> ~ •Oi£ • •>•—>•• c

•,—1 «~ i—iX »—«-} + -5 <CT •>

r-< ».C — r-l X#»-i f> M 00" —"C^CIO rvj -C . » —lu*-1 ,-* — X" OCOCe>—

*

•> f\) » •*

-?>— *- *X -mel LO ~ ~* — — rvjfMxOtx—>0 l\( h U ** -.^>«i-<ov.OV • "4" >fr ^ <M Oh «-•.»••• «.f\J s— — — O r-tf-»X» » X

O e »-00O 0>0>-0>-Uj »-UJ » •"t-i- » «-•

^0*->Oir ir\ i/} mi/i it oo3 vC r> ^> sO—— *—uj— * it it nz-ZwvKi-yi-zOCChOO i>CC--c •>OCf<C i-~0—C—»i-.UJ»-'UJUj<I<o <iar

•——w(-Mt--h>-^-hM|-w-— t— CNJK-—>(— —3»— —51—hl-KI-f J S-Z)

<—ii ii ii ——it ii —ii ii — — —z •— ;z •-•»-' a: ac- a h-cu. ii C'oococa. ii Docuii ii acocNONCNcacoraoc^ou.^•-O v:o^rO^O.-0^0^0'-"O^Oy:OivlOtviOrNi030 3:3ELLU_» U-QLUJ

^ o -* r- » <v mc .-< —• c: o *-* «-•

U u\ tf> IP IP IP LP

r25

<\J C "4 '-* O OvJO »-•

o o oc O O""-1 »-<

IT. IP LP IP LP <J--4 >t

LIST OF REFERENCES

Alterman, Z.S. and Karal, F.C., 1968, Propagation of Elastic Waves in

Layered Media by Finite Difference Methods, Bulletin of the Seismo-logical Society of America, v. 58, n. 1, pp. 367-398.

Alterman, Z.S. and Rotenberg, A., 1969, Seismic Waves in a QuarterPlane, Bulletin of the Seismological Society of America, v. 59, n. 1,

pp. 347-368.

Bullen, K.E., 1959, An Introduction to the Theory of Seismology,Cambridge University Press.

Constantino, C.J., 1969, Two Dimensional Wave Propagation through Non-linear Media, Journal of Computational Physics, v. 4, n. 3, pp. 147-

170.

Dobrin, M.B., 1960, Introduction to Geophysical Prospecting, McGraw-Hill,

Forsythe, G.E. and Wasow, W.R., 1967, Finite Difference Methods forPartial Differential Equations, John Wiley.

Fox, L., and others, 1962, Numerical Solution of Ordinary and PartialDifferential Equations, Pergamon Press.

Grant, F.S. and West, G.F. , 1965, Interpretation Theory in AppliedGeophysics, McGraw-Hill.

Gupta, R.N., 1966a, Reflection of Elastic Waves from a Linear Transi-tion Layer, Bulletion of the Seismological Society of America, v. 56,n. 2, pp. 511-526.

, 1966b, Reflection of Plane Elastic Waves from TransitionLayers with Arbitrary Variation of Velocity and Density, Bulletin ofthe Seismological Society of America, v. 56, n. 3, pp. 633-642.

Officer, C.B., 1958, Introduction to the Theory of Sound Transmission,McGraw-Hill.

Sengbush, R.L., Lawrence, P.L. and McDonal, F.J., 1961, Interpretationof Synthetic Seismograms, Geophysics, v. 26, n. 2, pp. 138-157.

Smith, G.D., 1965, Numerical Solution of Partial Differential Equations,Oxford University Press.

Takeuchi, H. , 1966, Theory of the Earth's Interior, Blaisdell.

Tooley, R.D., Spencer, T.W. and Sagoci, H.F., 1965, Reflection andTransmission of Plane Compressional Waves, Geophysics, v. 30, n. 4,

pp. 552-570.

126

United States Naval Postgraduate School Computer Facility, 1969, Techni-

cal Note 0211-03, Plotting Package for NPGS IBM 360/67, by P. C.

Johnson.

Wolf, A., 1937, The Reflection of Elastic Waves from Transition Layersof Variable Velocity, Geophysics, v. 2, n. 4, pp. 357-363.

127

INITIAL DISTRIBUTION LIST

No. Copies

1. Defense Documentation Center 20

Cameron StationAlexandria, Virginia 22314

2. Library, Code 0212 2

Naval Postgraduate SchoolMonterey, California 93940

3. Professor R. S. Andrews 5

Department of OceanographyNaval Postgraduate SchoolMonterey, California 93940

4. Department of Oceanography 3

Naval Postgraduate SchoolMonterey, California 93940

5. Oceanographer of the Navy 1

The Madison Building732 N. Washington StreetAlexandria, Virginia 22314

6. LCDR C. D. Lodge 2

P.O. Box 274Pebble Beach, California 93953

7. Professor J. J. von Schwind 1

Department of OceanographyNaval Postgraduate SchoolMonterey, California 93940

128

Security Classification

DOCUMENT CONTROL DATA -R&DSecurity « lassification of title, body of abstract and indexing annotation must be entered when the overall report is classified)

on oin A ^ ing AC Ti vi ty (Corporate author)

Naval Postgraduate SchoolMonterey, California 93940

it. REPORT SECURITY CLASSIFICATION

Unclassified2b. GROUP

REPORT TITLE

Simplified Numerical Models for the Generation of Synthetic Reflection ProfilingSeismograms and Synthetic Reflection/Refraction Seismograms

DESCRIPTIVE NOTES (Type ol report and, inctusi ve dates)

tester's Thesis; (April 1970)*u tmoRiSi (First name, middle initial, last name)

Charles David Lodge

REPOR T D A TE

Ipril 1970

7a. TOTAL NO. OF PAGES

128

7b. NO. OF REFS

17• . CONTRACT OR GRANT NO

h. PROJEC T NO

9a. ORIGINATOR'S REPORT NUMBER(S)

9b. OTHER REPORT NOISI (Any other numbers that may be assignedthis report)

3 DISTRIBUTION STATEMENT

:his document has been approved for public release and sale; its distribution.s unlimited.

I SUPPLEMENTARY NOTES 12. SPONSORING MILI TAR Y ACTIVITY

Naval Postgraduate SchoolMonterey, California 93940

ABSTRACT

Two numerical models were developed which generate synthetic seismograms in:ormats similar to those of records obtained in field exploration. The modelsiolve the hyperbolic wave equations in one and two dimensions by finite differenceipproximations in initially undeformed solution domains of transversely-isotropic.ayered media subjected to a time varying, dilatational forcing stress applied athe surface. A velocity attenuation term was included in the models to inhibittrong boundary reflections.

The one-dimensional model produces synthetic reflection profiling seismogramsor arbitrary horizontal or dipping layers. The two-dimensional model generatesynthetic reflection/refraction seismograms for horizontal layered media withrbitrary distribution of wave velocities, Poisson's ratio and density. Severalample records were produced for some representative velocity structures. Theynthetic seismograms were interpreted and gross correlation was carried out asf they were actual field records.

D ,r»"..1473N 0101 -807-681

1

(PAGE 1)

Security Classification

129A-31408

Security Classification

KEY WORDS

Numerical

Seismic

Model

DD .'£" .1473 < BA«>S/N 0101-807-6821

ROLE W T

130Security Classification A- 31 409

Thes i s

L7912

I

Thesis

L7912c.l

117688

^"Simplified numerical

Jels for the 9«ne«• „ rtf synthetic « c

f,ection P"* 1 ' 1 "*

seismograms and syn

thetic reflection/

^fraction seismograms

117688

L°d9S^plHied numerical

models for the genera-

tion of synthetic re

flection P"-°f,V

n?n-

seismograms and syn-

thetic reflect. on/

refractionseismograms

,hesL7912

S^num^msaSJJiS

3 2768 002 12610 4

DUDLEY KNOX LIBRARY