85
Simple Heteroclinic Orbit Examples in the Plane Stephen Lucas & James Sochacki Department of Mathematics and Statistics James Madison University, Harrisonburg VA July 4, 2012 9th AIMS Conference on Dynamical Systems, Differential Equations and Applications Special Session 10

Simple Heteroclinic Orbit Examples in the Plane

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Simple Heteroclinic Orbit Examples in the Plane

Simple Heteroclinic Orbit Examples in the Plane

Stephen Lucas∗ & James Sochacki

Department of Mathematics and StatisticsJames Madison University, Harrisonburg VA

July 4, 20129th AIMS Conference on Dynamical Systems, Differential

Equations and ApplicationsSpecial Session 10

Page 2: Simple Heteroclinic Orbit Examples in the Plane

Background First ODE Second ODE PSM

Outline

Planar Systems

Heteroclinic Orbits

First ode, spirals, every point on a heteroclinic orbit

Second ode, heteroclinic limit points along a line

Power Series Method for odes

Stephen Lucas∗ & James Sochacki Simple Heteroclinic Orbit Examples in the Plane

Page 3: Simple Heteroclinic Orbit Examples in the Plane

Background First ODE Second ODE PSM

Planar Systems

x = P(x , y), y = Q(x , y) for real polynomials P(x , y), Q(x , y) inx and y form a polynomial differential system in the plane, andhave been extensively studied over the decades.

Stephen Lucas∗ & James Sochacki Simple Heteroclinic Orbit Examples in the Plane

Page 4: Simple Heteroclinic Orbit Examples in the Plane

Background First ODE Second ODE PSM

Planar Systems

x = P(x , y), y = Q(x , y) for real polynomials P(x , y), Q(x , y) inx and y form a polynomial differential system in the plane, andhave been extensively studied over the decades.

Hilbert’s 16th problem: how many limit cycles when bounding thepolynomial order.

Stephen Lucas∗ & James Sochacki Simple Heteroclinic Orbit Examples in the Plane

Page 5: Simple Heteroclinic Orbit Examples in the Plane

Background First ODE Second ODE PSM

Planar Systems

x = P(x , y), y = Q(x , y) for real polynomials P(x , y), Q(x , y) inx and y form a polynomial differential system in the plane, andhave been extensively studied over the decades.

Hilbert’s 16th problem: how many limit cycles when bounding thepolynomial order.

Over a thousand papers on quadratic systems alone, with abibliography compiled by the Delft University of Technology(1904-1997)

Stephen Lucas∗ & James Sochacki Simple Heteroclinic Orbit Examples in the Plane

Page 6: Simple Heteroclinic Orbit Examples in the Plane

Background First ODE Second ODE PSM

Heteroclinic Orbits

A heteroclinic orbit is a solution to the system of odes x = f (t, x)where x → xa as t → ∞ and x → xb as t → −∞ for given pointsxa, xb.

Stephen Lucas∗ & James Sochacki Simple Heteroclinic Orbit Examples in the Plane

Page 7: Simple Heteroclinic Orbit Examples in the Plane

Background First ODE Second ODE PSM

Heteroclinic Orbits

A heteroclinic orbit is a solution to the system of odes x = f (t, x)where x → xa as t → ∞ and x → xb as t → −∞ for given pointsxa, xb.

A homoclinic orbit is the special case xa = xb.

Stephen Lucas∗ & James Sochacki Simple Heteroclinic Orbit Examples in the Plane

Page 8: Simple Heteroclinic Orbit Examples in the Plane

Background First ODE Second ODE PSM

Heteroclinic Orbits

A heteroclinic orbit is a solution to the system of odes x = f (t, x)where x → xa as t → ∞ and x → xb as t → −∞ for given pointsxa, xb.

A homoclinic orbit is the special case xa = xb.

Heteroclinic orbits typically occur when a system can cyclebetween different states, spending substantial time near each one.They often separate the solution space into regions withqualitatively different behavior.

Stephen Lucas∗ & James Sochacki Simple Heteroclinic Orbit Examples in the Plane

Page 9: Simple Heteroclinic Orbit Examples in the Plane

Background First ODE Second ODE PSM

Heteroclinic Orbits

A heteroclinic orbit is a solution to the system of odes x = f (t, x)where x → xa as t → ∞ and x → xb as t → −∞ for given pointsxa, xb.

A homoclinic orbit is the special case xa = xb.

Heteroclinic orbits typically occur when a system can cyclebetween different states, spending substantial time near each one.They often separate the solution space into regions withqualitatively different behavior.

Numerically locating heteroclinic orbits (if they exist) ischallenging, and often reduces to solving an infiniteboundary value problem.

Stephen Lucas∗ & James Sochacki Simple Heteroclinic Orbit Examples in the Plane

Page 10: Simple Heteroclinic Orbit Examples in the Plane

Background First ODE Second ODE PSM

Heteroclinic Examples

Very simple examples include the simple pendulum with orbitsjoining the unstable equilibria,

Stephen Lucas∗ & James Sochacki Simple Heteroclinic Orbit Examples in the Plane

Page 11: Simple Heteroclinic Orbit Examples in the Plane

Background First ODE Second ODE PSM

Heteroclinic Examples

Very simple examples include the simple pendulum with orbitsjoining the unstable equilibria, Rayleigh-Bernard convection withroll patterns orienting themselves at 0◦, 120◦ or 240◦,

Stephen Lucas∗ & James Sochacki Simple Heteroclinic Orbit Examples in the Plane

Page 12: Simple Heteroclinic Orbit Examples in the Plane

Background First ODE Second ODE PSM

Heteroclinic Examples

Very simple examples include the simple pendulum with orbitsjoining the unstable equilibria, Rayleigh-Bernard convection withroll patterns orienting themselves at 0◦, 120◦ or 240◦, and fromBorelli & Coleman: x = x(1 − x − (15/4)y + 2xy + y2),y = y(−1 + y + (15/4)x − 2x2 − xy). Heteroclinic orbits arestraight lines joining (0, 0), (1, 0), (0, 1), orbits from within spiralout to the triangle, spending increasing amounts of time near thecorners.

Stephen Lucas∗ & James Sochacki Simple Heteroclinic Orbit Examples in the Plane

Page 13: Simple Heteroclinic Orbit Examples in the Plane

Background First ODE Second ODE PSM

Heteroclinic Examples

Very simple examples include the simple pendulum with orbitsjoining the unstable equilibria, Rayleigh-Bernard convection withroll patterns orienting themselves at 0◦, 120◦ or 240◦, and fromBorelli & Coleman: x = x(1 − x − (15/4)y + 2xy + y2),y = y(−1 + y + (15/4)x − 2x2 − xy). Heteroclinic orbits arestraight lines joining (0, 0), (1, 0), (0, 1), orbits from within spiralout to the triangle, spending increasing amounts of time near thecorners.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Stephen Lucas∗ & James Sochacki Simple Heteroclinic Orbit Examples in the Plane

Page 14: Simple Heteroclinic Orbit Examples in the Plane

Background First ODE Second ODE PSM

Heteroclinic Examples

Very simple examples include the simple pendulum with orbitsjoining the unstable equilibria, Rayleigh-Bernard convection withroll patterns orienting themselves at 0◦, 120◦ or 240◦, and fromBorelli & Coleman: x = x(1 − x − (15/4)y + 2xy + y2),y = y(−1 + y + (15/4)x − 2x2 − xy). Heteroclinic orbits arestraight lines joining (0, 0), (1, 0), (0, 1), orbits from within spiralout to the triangle, spending increasing amounts of time near thecorners.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 1000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Stephen Lucas∗ & James Sochacki Simple Heteroclinic Orbit Examples in the Plane

Page 15: Simple Heteroclinic Orbit Examples in the Plane

Background First ODE Second ODE PSM

First ODE

Consider the system

x = a(x2 − y2) − 2bxy + cx − dy + e,

y = b(x2 − y2) + 2axy + dx + cy + f ,with

x(0) = g ,y(0) = h,

for given constants a to h.

Stephen Lucas∗ & James Sochacki Simple Heteroclinic Orbit Examples in the Plane

Page 16: Simple Heteroclinic Orbit Examples in the Plane

Background First ODE Second ODE PSM

First ODE

Consider the system

x = a(x2 − y2) − 2bxy + cx − dy + e,

y = b(x2 − y2) + 2axy + dx + cy + f ,with

x(0) = g ,y(0) = h,

for given constants a to h.

With z(t) = x(t) + iy(t),

z = (a + ib)z2 + (c + id)z + (e + if ) with z(0) = g + ih,

with all constants a to h being real.

Stephen Lucas∗ & James Sochacki Simple Heteroclinic Orbit Examples in the Plane

Page 17: Simple Heteroclinic Orbit Examples in the Plane

Background First ODE Second ODE PSM

First ODE

Consider the system

x = a(x2 − y2) − 2bxy + cx − dy + e,

y = b(x2 − y2) + 2axy + dx + cy + f ,with

x(0) = g ,y(0) = h,

for given constants a to h.

With z(t) = x(t) + iy(t),

z = (a + ib)z2 + (c + id)z + (e + if ) with z(0) = g + ih,

with all constants a to h being real.

By completing the square and scaling by a + ib, any quadraticcomplex ode can be reduced to

z = z2 + (a + ib) with z(0) = c + id ,

where a, b, c and d are real constants.Stephen Lucas∗ & James Sochacki Simple Heteroclinic Orbit Examples in the Plane

Page 18: Simple Heteroclinic Orbit Examples in the Plane

Background First ODE Second ODE PSM

Analytic Solution

Let e =

a +√

a2 + b2

√2

and f =b

2(

a +√

a2 + b2)

so

√a + ib = ±(e + if ) and

−(a + ib) = ±(−f + ie).

Stephen Lucas∗ & James Sochacki Simple Heteroclinic Orbit Examples in the Plane

Page 19: Simple Heteroclinic Orbit Examples in the Plane

Background First ODE Second ODE PSM

Analytic Solution

Let e =

a +√

a2 + b2

√2

and f =b

2(

a +√

a2 + b2)

so

√a + ib = ±(e + if ) and

−(a + ib) = ±(−f + ie). Then

z = (e + if ) tan((e + if )t + C ), C = arctan

(

c + id

e + if

)

= g + ih.

Stephen Lucas∗ & James Sochacki Simple Heteroclinic Orbit Examples in the Plane

Page 20: Simple Heteroclinic Orbit Examples in the Plane

Background First ODE Second ODE PSM

Analytic Solution

Let e =

a +√

a2 + b2

√2

and f =b

2(

a +√

a2 + b2)

so

√a + ib = ±(e + if ) and

−(a + ib) = ±(−f + ie). Then

z = (e + if ) tan((e + if )t + C ), C = arctan

(

c + id

e + if

)

= g + ih.

Using the definitions of complex arctan, log, sin and cos, we get

z(t) =e sin(2(et + g)) − f sinh(2(ft + h))

cosh(2(ft + h)) + cos(2(et + g))

+if sin(2(et + g)) + e sinh(2(ft + h))

cosh(2(ft + h)) + cos(2(et + g)).

Stephen Lucas∗ & James Sochacki Simple Heteroclinic Orbit Examples in the Plane

Page 21: Simple Heteroclinic Orbit Examples in the Plane

Background First ODE Second ODE PSM

Zero Constant

If a + ib = 0, previous working invalid, solve z = z2, z(0) = c + id .

Stephen Lucas∗ & James Sochacki Simple Heteroclinic Orbit Examples in the Plane

Page 22: Simple Heteroclinic Orbit Examples in the Plane

Background First ODE Second ODE PSM

Zero Constant

If a + ib = 0, previous working invalid, solve z = z2, z(0) = c + id .

Then z(t) = x(t) + iy(t) =−

t+ c

c2+d2

−id

c2+d2“

t+ c

c2+d2

”2+

d

c2+d2

”2 .

Stephen Lucas∗ & James Sochacki Simple Heteroclinic Orbit Examples in the Plane

Page 23: Simple Heteroclinic Orbit Examples in the Plane

Background First ODE Second ODE PSM

Zero Constant

If a + ib = 0, previous working invalid, solve z = z2, z(0) = c + id .

Then z(t) = x(t) + iy(t) =−

t+ c

c2+d2

−id

c2+d2“

t+ c

c2+d2

”2+

d

c2+d2

”2 .

If we let m = c/(c2 + d2) and n = d/(c2 + d2) then

x(t) = − t + m

(t + m)2 + n2and y(t) = − n

(t + m)2 + n2.

Stephen Lucas∗ & James Sochacki Simple Heteroclinic Orbit Examples in the Plane

Page 24: Simple Heteroclinic Orbit Examples in the Plane

Background First ODE Second ODE PSM

Zero Constant

If a + ib = 0, previous working invalid, solve z = z2, z(0) = c + id .

Then z(t) = x(t) + iy(t) =−

t+ c

c2+d2

−id

c2+d2“

t+ c

c2+d2

”2+

d

c2+d2

”2 .

If we let m = c/(c2 + d2) and n = d/(c2 + d2) then

x(t) = − t + m

(t + m)2 + n2and y(t) = − n

(t + m)2 + n2.

(x(t), y(t)) → (0, 0) as t → ±∞, so the solution starting from anypoint is on a homoclinic orbit, with the same homoclinic point.

Stephen Lucas∗ & James Sochacki Simple Heteroclinic Orbit Examples in the Plane

Page 25: Simple Heteroclinic Orbit Examples in the Plane

Background First ODE Second ODE PSM

Zero Constant Orbits

x2 + y2 =(t + m)2 + n2

((t + m)2 + n2)2=

1

(t + m)2 + n2= −y

n,

Stephen Lucas∗ & James Sochacki Simple Heteroclinic Orbit Examples in the Plane

Page 26: Simple Heteroclinic Orbit Examples in the Plane

Background First ODE Second ODE PSM

Zero Constant Orbits

x2 + y2 =(t + m)2 + n2

((t + m)2 + n2)2=

1

(t + m)2 + n2= −y

n,

or

x2 +

(

y − 1

2n

)

=

(

1

2n

)2

.

Stephen Lucas∗ & James Sochacki Simple Heteroclinic Orbit Examples in the Plane

Page 27: Simple Heteroclinic Orbit Examples in the Plane

Background First ODE Second ODE PSM

Zero Constant Orbits

x2 + y2 =(t + m)2 + n2

((t + m)2 + n2)2=

1

(t + m)2 + n2= −y

n,

or

x2 +

(

y − 1

2n

)

=

(

1

2n

)2

.

All homoclinic orbits are circles,center and radius 1/(2n).

Stephen Lucas∗ & James Sochacki Simple Heteroclinic Orbit Examples in the Plane

Page 28: Simple Heteroclinic Orbit Examples in the Plane

Background First ODE Second ODE PSM

Zero Constant Orbits

x2 + y2 =(t + m)2 + n2

((t + m)2 + n2)2=

1

(t + m)2 + n2= −y

n,

or

x2 +

(

y − 1

2n

)

=

(

1

2n

)2

.

All homoclinic orbits are circles,center and radius 1/(2n).

−10 −5 0 5 10−20

−15

−10

−5

0

5

10

15

20

Stephen Lucas∗ & James Sochacki Simple Heteroclinic Orbit Examples in the Plane

Page 29: Simple Heteroclinic Orbit Examples in the Plane

Background First ODE Second ODE PSM

Positive Real Constant

If b = 0 and a > 0, then e =√

a, f = 0 and

z(t) = x(t) + iy(t) =√

a · sin(2(√

at + g)) + i sinh(2h)

cosh(2h) + cos(2(√

at + g)).

Stephen Lucas∗ & James Sochacki Simple Heteroclinic Orbit Examples in the Plane

Page 30: Simple Heteroclinic Orbit Examples in the Plane

Background First ODE Second ODE PSM

Positive Real Constant

If b = 0 and a > 0, then e =√

a, f = 0 and

z(t) = x(t) + iy(t) =√

a · sin(2(√

at + g)) + i sinh(2h)

cosh(2h) + cos(2(√

at + g)).

Orbits are circles x2 + (y − m)2 = m2 − a where m = a coth(2h),all of which are periodic, so no heteroclinic orbits.

Stephen Lucas∗ & James Sochacki Simple Heteroclinic Orbit Examples in the Plane

Page 31: Simple Heteroclinic Orbit Examples in the Plane

Background First ODE Second ODE PSM

Positive Real Constant

If b = 0 and a > 0, then e =√

a, f = 0 and

z(t) = x(t) + iy(t) =√

a · sin(2(√

at + g)) + i sinh(2h)

cosh(2h) + cos(2(√

at + g)).

Orbits are circles x2 + (y − m)2 = m2 − a where m = a coth(2h),all of which are periodic, so no heteroclinic orbits. z ′ = z2 + 1:

−10 −5 0 5 10−10

−8

−6

−4

−2

0

2

4

6

8

10

Stephen Lucas∗ & James Sochacki Simple Heteroclinic Orbit Examples in the Plane

Page 32: Simple Heteroclinic Orbit Examples in the Plane

Background First ODE Second ODE PSM

Positive Real Constant Period

z(t) = x(t) + iy(t) =√

a · sin(2(√

at + g)) + i sinh(2h)

cosh(2h) + cos(2(√

at + g)),

so the period is the same on each circular orbit.

Stephen Lucas∗ & James Sochacki Simple Heteroclinic Orbit Examples in the Plane

Page 33: Simple Heteroclinic Orbit Examples in the Plane

Background First ODE Second ODE PSM

Positive Real Constant Period

z(t) = x(t) + iy(t) =√

a · sin(2(√

at + g)) + i sinh(2h)

cosh(2h) + cos(2(√

at + g)),

so the period is the same on each circular orbit.

Velocity small near the origin, can become very large away fromthe origin.

Stephen Lucas∗ & James Sochacki Simple Heteroclinic Orbit Examples in the Plane

Page 34: Simple Heteroclinic Orbit Examples in the Plane

Background First ODE Second ODE PSM

Positive Real Constant Period

z(t) = x(t) + iy(t) =√

a · sin(2(√

at + g)) + i sinh(2h)

cosh(2h) + cos(2(√

at + g)),

so the period is the same on each circular orbit.

Velocity small near the origin, can become very large away fromthe origin. z = z2 + 1, z(0) = 0.05 + 0.05i :

0 1 2 3 4 5 6 7 8 9 10−10

−5

0

5

10

15

20

25

Stephen Lucas∗ & James Sochacki Simple Heteroclinic Orbit Examples in the Plane

Page 35: Simple Heteroclinic Orbit Examples in the Plane

Background First ODE Second ODE PSM

Negative Real Constant

If b = 0 and a < 0, then ±(e + if ) =√

a = i√−a, so e = 0 and

f =√−a, and

z(t) = x(t) = iy(t) =√−a · − sinh(2(

√−at + h)) + i sin(2g)

cosh(2(√−at + h)) + cos(2g)

.

Stephen Lucas∗ & James Sochacki Simple Heteroclinic Orbit Examples in the Plane

Page 36: Simple Heteroclinic Orbit Examples in the Plane

Background First ODE Second ODE PSM

Negative Real Constant

If b = 0 and a < 0, then ±(e + if ) =√

a = i√−a, so e = 0 and

f =√−a, and

z(t) = x(t) = iy(t) =√−a · − sinh(2(

√−at + h)) + i sin(2g)

cosh(2(√−at + h)) + cos(2g)

.

As t → ±∞, z(t) → ∓√−a,

every point lies on a heteroclinicorbit with limit points on thereal axis.

Stephen Lucas∗ & James Sochacki Simple Heteroclinic Orbit Examples in the Plane

Page 37: Simple Heteroclinic Orbit Examples in the Plane

Background First ODE Second ODE PSM

Negative Real Constant

If b = 0 and a < 0, then ±(e + if ) =√

a = i√−a, so e = 0 and

f =√−a, and

z(t) = x(t) = iy(t) =√−a · − sinh(2(

√−at + h)) + i sin(2g)

cosh(2(√−at + h)) + cos(2g)

.

As t → ±∞, z(t) → ∓√−a,

every point lies on a heteroclinicorbit with limit points on thereal axis. Orbits are arcs of cir-cles: x2 + (y − g)2 = g2 − a

where g = a cot(2e).

Stephen Lucas∗ & James Sochacki Simple Heteroclinic Orbit Examples in the Plane

Page 38: Simple Heteroclinic Orbit Examples in the Plane

Background First ODE Second ODE PSM

Negative Real Constant

If b = 0 and a < 0, then ±(e + if ) =√

a = i√−a, so e = 0 and

f =√−a, and

z(t) = x(t) = iy(t) =√−a · − sinh(2(

√−at + h)) + i sin(2g)

cosh(2(√−at + h)) + cos(2g)

.

z = z2 − 1:

−2 0 2−5

−4

−3

−2

−1

0

1

2

3

4

5

As t → ±∞, z(t) → ∓√−a,

every point lies on a heteroclinicorbit with limit points on thereal axis. Orbits are arcs of cir-cles: x2 + (y − g)2 = g2 − a

where g = a cot(2e).

Stephen Lucas∗ & James Sochacki Simple Heteroclinic Orbit Examples in the Plane

Page 39: Simple Heteroclinic Orbit Examples in the Plane

Background First ODE Second ODE PSM

Complex Constant

If b 6= 0 then e, f 6= 0 in

z(t) =e sin(2(et + g)) − f sinh(2(ft + h))

cosh(2(ft + h)) + cos(2(et + g))

+if sin(2(et + g)) + e sinh(2(ft + h))

cosh(2(ft + h)) + cos(2(et + g)).

Stephen Lucas∗ & James Sochacki Simple Heteroclinic Orbit Examples in the Plane

Page 40: Simple Heteroclinic Orbit Examples in the Plane

Background First ODE Second ODE PSM

Complex Constant

If b 6= 0 then e, f 6= 0 in

z(t) =e sin(2(et + g)) − f sinh(2(ft + h))

cosh(2(ft + h)) + cos(2(et + g))

+if sin(2(et + g)) + e sinh(2(ft + h))

cosh(2(ft + h)) + cos(2(et + g)).

As t → ±∞, (x , y) → ±(−f , e), every point on the plane lies on aheteroclinic orbit.

Stephen Lucas∗ & James Sochacki Simple Heteroclinic Orbit Examples in the Plane

Page 41: Simple Heteroclinic Orbit Examples in the Plane

Background First ODE Second ODE PSM

Complex Constant

If b 6= 0 then e, f 6= 0 in

z(t) =e sin(2(et + g)) − f sinh(2(ft + h))

cosh(2(ft + h)) + cos(2(et + g))

+if sin(2(et + g)) + e sinh(2(ft + h))

cosh(2(ft + h)) + cos(2(et + g)).

As t → ±∞, (x , y) → ±(−f , e), every point on the plane lies on aheteroclinic orbit.

Orbits cannot be represented as algebraic equations in x and y

only, and are spirals similar to Carnu or Euler spirals, withexponential convergence for large magnitude t.

Stephen Lucas∗ & James Sochacki Simple Heteroclinic Orbit Examples in the Plane

Page 42: Simple Heteroclinic Orbit Examples in the Plane

Background First ODE Second ODE PSM

First Example

z = z2 + (1 + i), z(0) = −1,−0.8, . . . , 1.

−8 −6 −4 −2 0 2 4 6 8

−6

−4

−2

0

2

4

6

−0.55 −0.5 −0.45 −0.4 −0.35

1.02

1.04

1.06

1.08

1.1

1.12

1.14

1.16

Stephen Lucas∗ & James Sochacki Simple Heteroclinic Orbit Examples in the Plane

Page 43: Simple Heteroclinic Orbit Examples in the Plane

Background First ODE Second ODE PSM

First Example, More Dramatic

z = z2 + (1 + i), z(0) = −2.

−20 −15 −10 −5 0 5 10 15 20

−30

−25

−20

−15

−10

−5

0

−2 −1.5 −1 −0.5 0 0.5 1 1.5−1.5

−1

−0.5

0

0.5

1

1.5

−0.6 −0.55 −0.5 −0.45 −0.4 −0.35

1

1.05

1.1

1.15

1.2

Stephen Lucas∗ & James Sochacki Simple Heteroclinic Orbit Examples in the Plane

Page 44: Simple Heteroclinic Orbit Examples in the Plane

Background First ODE Second ODE PSM

First Example, More Dramatic

z = z2 + (1 + i), z(0) = −2.

−20 −15 −10 −5 0 5 10 15 20

−30

−25

−20

−15

−10

−5

0

−2 −1.5 −1 −0.5 0 0.5 1 1.5−1.5

−1

−0.5

0

0.5

1

1.5

−0.6 −0.55 −0.5 −0.45 −0.4 −0.35

1

1.05

1.1

1.15

1.2

Same exponential convergence after more dramatic intermediatecircular curve.

Stephen Lucas∗ & James Sochacki Simple Heteroclinic Orbit Examples in the Plane

Page 45: Simple Heteroclinic Orbit Examples in the Plane

Background First ODE Second ODE PSM

Second Example

z = z2 + 1 + i/2, with z(0) = 0, 0.1, 0.2, 0.3.

−4 −3 −2 −1 0 1 2 3 4−3

−2

−1

0

1

2

3

4

−0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

Stephen Lucas∗ & James Sochacki Simple Heteroclinic Orbit Examples in the Plane

Page 46: Simple Heteroclinic Orbit Examples in the Plane

Background First ODE Second ODE PSM

Second Example

z = z2 + 1 + i/2, with z(0) = 0, 0.1, 0.2, 0.3.

−4 −3 −2 −1 0 1 2 3 4−3

−2

−1

0

1

2

3

4

−0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

The smaller the ratio a/b, the faster the convergence ofthe spiral.

Stephen Lucas∗ & James Sochacki Simple Heteroclinic Orbit Examples in the Plane

Page 47: Simple Heteroclinic Orbit Examples in the Plane

Background First ODE Second ODE PSM

Second ODE

Consider x = −y(1 − ax − by) and y = x(1 − ax − by) withx(0) = c , y(0) = d .

Stephen Lucas∗ & James Sochacki Simple Heteroclinic Orbit Examples in the Plane

Page 48: Simple Heteroclinic Orbit Examples in the Plane

Background First ODE Second ODE PSM

Second ODE

Consider x = −y(1 − ax − by) and y = x(1 − ax − by) withx(0) = c , y(0) = d .

Every point on the line 1 − ax − by = 0 is an equilibrium point, aswell as (0, 0).

Stephen Lucas∗ & James Sochacki Simple Heteroclinic Orbit Examples in the Plane

Page 49: Simple Heteroclinic Orbit Examples in the Plane

Background First ODE Second ODE PSM

Second ODE

Consider x = −y(1 − ax − by) and y = x(1 − ax − by) withx(0) = c , y(0) = d .

Every point on the line 1 − ax − by = 0 is an equilibrium point, aswell as (0, 0).

Eliminating t, y = −y/x , or x2 + y2 = r2 where c2 + d2 = r2.

Stephen Lucas∗ & James Sochacki Simple Heteroclinic Orbit Examples in the Plane

Page 50: Simple Heteroclinic Orbit Examples in the Plane

Background First ODE Second ODE PSM

Second ODE

Consider x = −y(1 − ax − by) and y = x(1 − ax − by) withx(0) = c , y(0) = d .

Every point on the line 1 − ax − by = 0 is an equilibrium point, aswell as (0, 0).

Eliminating t, y = −y/x , or x2 + y2 = r2 where c2 + d2 = r2.

If r < 1/(a2 + b2), orbits will be periodic. Otherwise, orbits areheteroclinic on arcs of circles, with endpoints on the line1 − ax − by = 0.

Stephen Lucas∗ & James Sochacki Simple Heteroclinic Orbit Examples in the Plane

Page 51: Simple Heteroclinic Orbit Examples in the Plane

Background First ODE Second ODE PSM

Second ODE

Consider x = −y(1 − ax − by) and y = x(1 − ax − by) withx(0) = c , y(0) = d .

Every point on the line 1 − ax − by = 0 is an equilibrium point, aswell as (0, 0).

Eliminating t, y = −y/x , or x2 + y2 = r2 where c2 + d2 = r2.

If r < 1/(a2 + b2), orbits will be periodic. Otherwise, orbits areheteroclinic on arcs of circles, with endpoints on the line1 − ax − by = 0.

The line −ax − by = 0 could be called a heteroclinic line.

Stephen Lucas∗ & James Sochacki Simple Heteroclinic Orbit Examples in the Plane

Page 52: Simple Heteroclinic Orbit Examples in the Plane

Background First ODE Second ODE PSM

Analytic Solution

Starting with x = −y(1 − ax − by) and y = x(1 − ax − by) withx(0) = c , y(0) = d , let r =

√c2 + d2, x(t) = r cos(θ(t)) and

y(t) = r sin(θ(t)).

Stephen Lucas∗ & James Sochacki Simple Heteroclinic Orbit Examples in the Plane

Page 53: Simple Heteroclinic Orbit Examples in the Plane

Background First ODE Second ODE PSM

Analytic Solution

Starting with x = −y(1 − ax − by) and y = x(1 − ax − by) withx(0) = c , y(0) = d , let r =

√c2 + d2, x(t) = r cos(θ(t)) and

y(t) = r sin(θ(t)). Then θ = 1 − ar cos θ − br sin θ, which hassolutions

θ(t) = −2 arctan

(

−br+tanh“

t+C

2

√r2(a2+b2)−1

”√r2(a2+b2)−1

1+ar

)

when r2 > 1/(a2 + b2), and

θ(t) = −2 arctan

(

−br−tan“

t+C

2

√1−r2(a2+b2)

”√1−r2(a2+b2)

1+ar

)

+ 2kπ

when r2 < 1/(a2 + b2), and k is an integer chosen to ensure θ(t)stays continuous and monotonic.

Stephen Lucas∗ & James Sochacki Simple Heteroclinic Orbit Examples in the Plane

Page 54: Simple Heteroclinic Orbit Examples in the Plane

Background First ODE Second ODE PSM

Example

x = −y(1 − x − y) and y = x(1 − x − y) with d = 0 andc = 0.05, 0.1, 0.15, . . . , 2:

−1 −0.5 0 0.5 1 1.5 2

−0.5

0

0.5

1

1.5

Stephen Lucas∗ & James Sochacki Simple Heteroclinic Orbit Examples in the Plane

Page 55: Simple Heteroclinic Orbit Examples in the Plane

Background First ODE Second ODE PSM

More General Case

x = −yf (x , y), y = xf (x , y) for any function f (x , y) has arcs ofcircles as orbits, with the solutions of f (x , y) = 0 as heterocliniclines.

Stephen Lucas∗ & James Sochacki Simple Heteroclinic Orbit Examples in the Plane

Page 56: Simple Heteroclinic Orbit Examples in the Plane

Background First ODE Second ODE PSM

More General Case

x = −yf (x , y), y = xf (x , y) for any function f (x , y) has arcs ofcircles as orbits, with the solutions of f (x , y) = 0 as heterocliniclines.

For example, x ′ = −y(y − x2) and y ′ = x(y − x2) with x(0) = 0and y(0) = −0.1,−0, 2,−0.3, . . . ,−6.

−6 −4 −2 0 2 4 6−6

−4

−2

0

2

4

6

Stephen Lucas∗ & James Sochacki Simple Heteroclinic Orbit Examples in the Plane

Page 57: Simple Heteroclinic Orbit Examples in the Plane

Background First ODE Second ODE PSM

Power Series Method

Taylor methods to solve y = f (t, y) writes y(t + h) as a Taylorseries around y(t), substituting successive derivatives of f .

Stephen Lucas∗ & James Sochacki Simple Heteroclinic Orbit Examples in the Plane

Page 58: Simple Heteroclinic Orbit Examples in the Plane

Background First ODE Second ODE PSM

Power Series Method

Taylor methods to solve y = f (t, y) writes y(t + h) as a Taylorseries around y(t), substituting successive derivatives of f .Runge-Kutta and related methods replace derivatives by additionalfunction evaluations and have the same accuracy.

Stephen Lucas∗ & James Sochacki Simple Heteroclinic Orbit Examples in the Plane

Page 59: Simple Heteroclinic Orbit Examples in the Plane

Background First ODE Second ODE PSM

Power Series Method

Taylor methods to solve y = f (t, y) writes y(t + h) as a Taylorseries around y(t), substituting successive derivatives of f .Runge-Kutta and related methods replace derivatives by additionalfunction evaluations and have the same accuracy.

BUT if the RHS of the ode is polynomial in the dependentvariables, we can write out y as a power series in t, substitute, andexplicitly find the coefficients – the Power Series Method.

Stephen Lucas∗ & James Sochacki Simple Heteroclinic Orbit Examples in the Plane

Page 60: Simple Heteroclinic Orbit Examples in the Plane

Background First ODE Second ODE PSM

Power Series Method

Taylor methods to solve y = f (t, y) writes y(t + h) as a Taylorseries around y(t), substituting successive derivatives of f .Runge-Kutta and related methods replace derivatives by additionalfunction evaluations and have the same accuracy.

BUT if the RHS of the ode is polynomial in the dependentvariables, we can write out y as a power series in t, substitute, andexplicitly find the coefficients – the Power Series Method. Usuallyonly seen when solving linear second order odes with non constantcoefficients (Frobenius around regular singular points).

Stephen Lucas∗ & James Sochacki Simple Heteroclinic Orbit Examples in the Plane

Page 61: Simple Heteroclinic Orbit Examples in the Plane

Background First ODE Second ODE PSM

Power Series Method

Taylor methods to solve y = f (t, y) writes y(t + h) as a Taylorseries around y(t), substituting successive derivatives of f .Runge-Kutta and related methods replace derivatives by additionalfunction evaluations and have the same accuracy.

BUT if the RHS of the ode is polynomial in the dependentvariables, we can write out y as a power series in t, substitute, andexplicitly find the coefficients – the Power Series Method. Usuallyonly seen when solving linear second order odes with non constantcoefficients (Frobenius around regular singular points). The PSMcan be used to approximate a system of first order initial valuepolynomial odes to arbitrary order.

Stephen Lucas∗ & James Sochacki Simple Heteroclinic Orbit Examples in the Plane

Page 62: Simple Heteroclinic Orbit Examples in the Plane

Background First ODE Second ODE PSM

Applying the PSM

Virtually every system of first order initial value odes can besystematically transformed into an equivalent polynomial form.

Stephen Lucas∗ & James Sochacki Simple Heteroclinic Orbit Examples in the Plane

Page 63: Simple Heteroclinic Orbit Examples in the Plane

Background First ODE Second ODE PSM

Applying the PSM

Virtually every system of first order initial value odes can besystematically transformed into an equivalent polynomial form.Even better, with a bit more care all terms can be made quadratic,and only Cauchy products involving power series are required.

Stephen Lucas∗ & James Sochacki Simple Heteroclinic Orbit Examples in the Plane

Page 64: Simple Heteroclinic Orbit Examples in the Plane

Background First ODE Second ODE PSM

Applying the PSM

Virtually every system of first order initial value odes can besystematically transformed into an equivalent polynomial form.Even better, with a bit more care all terms can be made quadratic,and only Cauchy products involving power series are required.

Advantages:

Arbitrary order available, at any level at any time.

Stephen Lucas∗ & James Sochacki Simple Heteroclinic Orbit Examples in the Plane

Page 65: Simple Heteroclinic Orbit Examples in the Plane

Background First ODE Second ODE PSM

Applying the PSM

Virtually every system of first order initial value odes can besystematically transformed into an equivalent polynomial form.Even better, with a bit more care all terms can be made quadratic,and only Cauchy products involving power series are required.

Advantages:

Arbitrary order available, at any level at any time.

A priori error estimate available.

Stephen Lucas∗ & James Sochacki Simple Heteroclinic Orbit Examples in the Plane

Page 66: Simple Heteroclinic Orbit Examples in the Plane

Background First ODE Second ODE PSM

Applying the PSM

Virtually every system of first order initial value odes can besystematically transformed into an equivalent polynomial form.Even better, with a bit more care all terms can be made quadratic,and only Cauchy products involving power series are required.

Advantages:

Arbitrary order available, at any level at any time.

A priori error estimate available.

Machine precision possible – effectively symplectic.

Stephen Lucas∗ & James Sochacki Simple Heteroclinic Orbit Examples in the Plane

Page 67: Simple Heteroclinic Orbit Examples in the Plane

Background First ODE Second ODE PSM

Applying the PSM

Virtually every system of first order initial value odes can besystematically transformed into an equivalent polynomial form.Even better, with a bit more care all terms can be made quadratic,and only Cauchy products involving power series are required.

Advantages:

Arbitrary order available, at any level at any time.

A priori error estimate available.

Machine precision possible – effectively symplectic.

Solution curve available at every value of t, leading to astraightforward approach to delay difference equations.

Stephen Lucas∗ & James Sochacki Simple Heteroclinic Orbit Examples in the Plane

Page 68: Simple Heteroclinic Orbit Examples in the Plane

Background First ODE Second ODE PSM

Applying the PSM

Virtually every system of first order initial value odes can besystematically transformed into an equivalent polynomial form.Even better, with a bit more care all terms can be made quadratic,and only Cauchy products involving power series are required.

Advantages:

Arbitrary order available, at any level at any time.

A priori error estimate available.

Machine precision possible – effectively symplectic.

Solution curve available at every value of t, leading to astraightforward approach to delay difference equations.

No transcendental function evaluation, sois much faster.

Stephen Lucas∗ & James Sochacki Simple Heteroclinic Orbit Examples in the Plane

Page 69: Simple Heteroclinic Orbit Examples in the Plane

Background First ODE Second ODE PSM

Simple Examples

y = sin t, y(0) = a.

Stephen Lucas∗ & James Sochacki Simple Heteroclinic Orbit Examples in the Plane

Page 70: Simple Heteroclinic Orbit Examples in the Plane

Background First ODE Second ODE PSM

Simple Examples

y = sin t, y(0) = a. Let u1 = y , u2 = sin t, u3 = cos t.

Stephen Lucas∗ & James Sochacki Simple Heteroclinic Orbit Examples in the Plane

Page 71: Simple Heteroclinic Orbit Examples in the Plane

Background First ODE Second ODE PSM

Simple Examples

y = sin t, y(0) = a. Let u1 = y , u2 = sin t, u3 = cos t. Thenu1 = u2, u1(0) = a; u2 = u3, u2(0) = 0; u3 = −u2, u3(0) = 1.

Stephen Lucas∗ & James Sochacki Simple Heteroclinic Orbit Examples in the Plane

Page 72: Simple Heteroclinic Orbit Examples in the Plane

Background First ODE Second ODE PSM

Simple Examples

y = sin t, y(0) = a. Let u1 = y , u2 = sin t, u3 = cos t. Thenu1 = u2, u1(0) = a; u2 = u3, u2(0) = 0; u3 = −u2, u3(0) = 1.

y = sin y , y(0) = a.

Stephen Lucas∗ & James Sochacki Simple Heteroclinic Orbit Examples in the Plane

Page 73: Simple Heteroclinic Orbit Examples in the Plane

Background First ODE Second ODE PSM

Simple Examples

y = sin t, y(0) = a. Let u1 = y , u2 = sin t, u3 = cos t. Thenu1 = u2, u1(0) = a; u2 = u3, u2(0) = 0; u3 = −u2, u3(0) = 1.

y = sin y , y(0) = a. Let u1 = y , u2 = sin y , u3 = cos y .

Stephen Lucas∗ & James Sochacki Simple Heteroclinic Orbit Examples in the Plane

Page 74: Simple Heteroclinic Orbit Examples in the Plane

Background First ODE Second ODE PSM

Simple Examples

y = sin t, y(0) = a. Let u1 = y , u2 = sin t, u3 = cos t. Thenu1 = u2, u1(0) = a; u2 = u3, u2(0) = 0; u3 = −u2, u3(0) = 1.

y = sin y , y(0) = a. Let u1 = y , u2 = sin y , u3 = cos y . Thenu1 = u2, u1(0) = a; u2 = (cos y)y = u3u2, u2(0) = sin(a);u3 = (− sin y)y = −u2

2 , u3(0) = cos(a).

Stephen Lucas∗ & James Sochacki Simple Heteroclinic Orbit Examples in the Plane

Page 75: Simple Heteroclinic Orbit Examples in the Plane

Background First ODE Second ODE PSM

Arbitrary Powers

y = yα, y(0) = a.

Stephen Lucas∗ & James Sochacki Simple Heteroclinic Orbit Examples in the Plane

Page 76: Simple Heteroclinic Orbit Examples in the Plane

Background First ODE Second ODE PSM

Arbitrary Powers

y = yα, y(0) = a. Let u1 = y , u2 = yα, u3 = 1/y .

Stephen Lucas∗ & James Sochacki Simple Heteroclinic Orbit Examples in the Plane

Page 77: Simple Heteroclinic Orbit Examples in the Plane

Background First ODE Second ODE PSM

Arbitrary Powers

y = yα, y(0) = a. Let u1 = y , u2 = yα, u3 = 1/y . Then u1 = u2,u1(0) = a;

Stephen Lucas∗ & James Sochacki Simple Heteroclinic Orbit Examples in the Plane

Page 78: Simple Heteroclinic Orbit Examples in the Plane

Background First ODE Second ODE PSM

Arbitrary Powers

y = yα, y(0) = a. Let u1 = y , u2 = yα, u3 = 1/y . Then u1 = u2,u1(0) = a; u2 = αyα−1y = αy2α−1 = αu2

2u3, u2(0) = aα;

Stephen Lucas∗ & James Sochacki Simple Heteroclinic Orbit Examples in the Plane

Page 79: Simple Heteroclinic Orbit Examples in the Plane

Background First ODE Second ODE PSM

Arbitrary Powers

y = yα, y(0) = a. Let u1 = y , u2 = yα, u3 = 1/y . Then u1 = u2,u1(0) = a; u2 = αyα−1y = αy2α−1 = αu2

2u3, u2(0) = aα;u3 = (−1/y2)y = −u2

3u2, u3(0) = 1/a.

Stephen Lucas∗ & James Sochacki Simple Heteroclinic Orbit Examples in the Plane

Page 80: Simple Heteroclinic Orbit Examples in the Plane

Background First ODE Second ODE PSM

Arbitrary Powers

y = yα, y(0) = a. Let u1 = y , u2 = yα, u3 = 1/y . Then u1 = u2,u1(0) = a; u2 = αyα−1y = αy2α−1 = αu2

2u3, u2(0) = aα;u3 = (−1/y2)y = −u2

3u2, u3(0) = 1/a.

Better, let u4 = u2u3 = yα−1.

Stephen Lucas∗ & James Sochacki Simple Heteroclinic Orbit Examples in the Plane

Page 81: Simple Heteroclinic Orbit Examples in the Plane

Background First ODE Second ODE PSM

Arbitrary Powers

y = yα, y(0) = a. Let u1 = y , u2 = yα, u3 = 1/y . Then u1 = u2,u1(0) = a; u2 = αyα−1y = αy2α−1 = αu2

2u3, u2(0) = aα;u3 = (−1/y2)y = −u2

3u2, u3(0) = 1/a.

Better, let u4 = u2u3 = yα−1. Then u1 = u2, u2 = αu2u4,u3 = −u3u4, only 3 Cauchy products.

Even better, let u1 = y , u2 = yα−1.

Stephen Lucas∗ & James Sochacki Simple Heteroclinic Orbit Examples in the Plane

Page 82: Simple Heteroclinic Orbit Examples in the Plane

Background First ODE Second ODE PSM

Arbitrary Powers

y = yα, y(0) = a. Let u1 = y , u2 = yα, u3 = 1/y . Then u1 = u2,u1(0) = a; u2 = αyα−1y = αy2α−1 = αu2

2u3, u2(0) = aα;u3 = (−1/y2)y = −u2

3u2, u3(0) = 1/a.

Better, let u4 = u2u3 = yα−1. Then u1 = u2, u2 = αu2u4,u3 = −u3u4, only 3 Cauchy products.

Even better, let u1 = y , u2 = yα−1. Then u1 = u1u2, u1(0) = aα;

Stephen Lucas∗ & James Sochacki Simple Heteroclinic Orbit Examples in the Plane

Page 83: Simple Heteroclinic Orbit Examples in the Plane

Background First ODE Second ODE PSM

Arbitrary Powers

y = yα, y(0) = a. Let u1 = y , u2 = yα, u3 = 1/y . Then u1 = u2,u1(0) = a; u2 = αyα−1y = αy2α−1 = αu2

2u3, u2(0) = aα;u3 = (−1/y2)y = −u2

3u2, u3(0) = 1/a.

Better, let u4 = u2u3 = yα−1. Then u1 = u2, u2 = αu2u4,u3 = −u3u4, only 3 Cauchy products.

Even better, let u1 = y , u2 = yα−1. Then u1 = u1u2, u1(0) = aα;u2 = (α − 1)yα−2yα

Stephen Lucas∗ & James Sochacki Simple Heteroclinic Orbit Examples in the Plane

Page 84: Simple Heteroclinic Orbit Examples in the Plane

Background First ODE Second ODE PSM

Arbitrary Powers

y = yα, y(0) = a. Let u1 = y , u2 = yα, u3 = 1/y . Then u1 = u2,u1(0) = a; u2 = αyα−1y = αy2α−1 = αu2

2u3, u2(0) = aα;u3 = (−1/y2)y = −u2

3u2, u3(0) = 1/a.

Better, let u4 = u2u3 = yα−1. Then u1 = u2, u2 = αu2u4,u3 = −u3u4, only 3 Cauchy products.

Even better, let u1 = y , u2 = yα−1. Then u1 = u1u2, u1(0) = aα;u2 = (α − 1)yα−2yα = (α − 1)y2α−2 = (α − 1)u2

2 , u2(0) = aα−1.

Stephen Lucas∗ & James Sochacki Simple Heteroclinic Orbit Examples in the Plane

Page 85: Simple Heteroclinic Orbit Examples in the Plane

Background First ODE Second ODE PSM

Arbitrary Powers

y = yα, y(0) = a. Let u1 = y , u2 = yα, u3 = 1/y . Then u1 = u2,u1(0) = a; u2 = αyα−1y = αy2α−1 = αu2

2u3, u2(0) = aα;u3 = (−1/y2)y = −u2

3u2, u3(0) = 1/a.

Better, let u4 = u2u3 = yα−1. Then u1 = u2, u2 = αu2u4,u3 = −u3u4, only 3 Cauchy products.

Even better, let u1 = y , u2 = yα−1. Then u1 = u1u2, u1(0) = aα;u2 = (α − 1)yα−2yα = (α − 1)y2α−2 = (α − 1)u2

2 , u2(0) = aα−1.Only 2 Cauchy products.

Stephen Lucas∗ & James Sochacki Simple Heteroclinic Orbit Examples in the Plane