23
Presented by Guido Haefeli EPFL Lausanne, Switzerland, NDIP, 4.July 2014, Tours (On behalf of the LHCb SciFi Tracker group) Silicon Photomultipliers for the LHCb Upgrade Scintillating Fibre Tracker

Silicon Photomultipliers for the LHCb Upgrade ...Série3 Série5 Série7 Série9 Série11 Série13 Série15 Série17 Série19 Série21 128Ch arrays have +-300mV V BD spread, larger

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Silicon Photomultipliers for the LHCb Upgrade ...Série3 Série5 Série7 Série9 Série11 Série13 Série15 Série17 Série19 Série21 128Ch arrays have +-300mV V BD spread, larger

Presented by Guido Haefeli

EPFL Lausanne, Switzerland, NDIP, 4.July 2014, Tours

(On behalf of the LHCb SciFi Tracker group)

Silicon Photomultipliers for the LHCb

Upgrade Scintillating Fibre Tracker

Page 2: Silicon Photomultipliers for the LHCb Upgrade ...Série3 Série5 Série7 Série9 Série11 Série13 Série15 Série17 Série19 Série21 128Ch arrays have +-300mV V BD spread, larger

The LHCb Upgrade

New data acquisition scheme

40MHz event rate – no hardware

trigger to get high efficient

software trigger!

As a consequence:

Replace most of the FE

electronics to cope with new

readout scheme.

Replace the VELO with a pixel

detector to cope with higher

multiplicity.

Replace other trackers, silicon

strip (UT) and a SciFi Tracker

for (IT and OT).

Page 3: Silicon Photomultipliers for the LHCb Upgrade ...Série3 Série5 Série7 Série9 Série11 Série13 Série15 Série17 Série19 Série21 128Ch arrays have +-300mV V BD spread, larger

Requirements on detector performances:

Hit detection efficiency greater than 98%, with noise less than 10% of signal

Spatial resolution better than 100 μm

Operation at 25 ns interaction rate, 40 MHz readout

High occupancy, up to 2.5 clusters for a detector array of 128 channels

(32mm) in the hottest region

Low material with X/X0≤1% per detection layer

Radiation environment, fibres up to 35 kGy, SiPMs 6×1011neqv/cm2 fluence

(with neutron shield) + 100 Gy ionising dose

The LHCb SciFi Tracker

Technical Design Report:

LHCb Tracker Upgrade Technical Design Report,

LHCb Collaboration, LHCB-TDR-015, Feb. 2014.

Page 4: Silicon Photomultipliers for the LHCb Upgrade ...Série3 Série5 Série7 Série9 Série11 Série13 Série15 Série17 Série19 Série21 128Ch arrays have +-300mV V BD spread, larger

3 x

X U V X 52cm

fibres

fibres

mirror

SiPM

SiPM

U & V at 5º

5m

6m

Page 5: Silicon Photomultipliers for the LHCb Upgrade ...Série3 Série5 Série7 Série9 Série11 Série13 Série15 Série17 Série19 Série21 128Ch arrays have +-300mV V BD spread, larger

SciFi working principle

Scintillating fibres: 250μm diameter, 2.5m long, 6

layers near the beam-pipe and 5 every where else

Multichannel array of SiPM 128 channels (Hamamatsu

or KETEK devices under development

Channel: size 0.25×1.5mm2, 96 pixels (57.5x62.5μm2)

Channel and fibres are not aligned (250μm channel

and 275μm fibre pitch)

Entries 49249Mean 2.327

RMS 0.8849

Cluster size0 2 4 6 8 10

Nu

mb

er

of

clu

ste

rs

210

310

410

Entries 49249Mean 2.327

RMS 0.8849

Threshold based clustering algorithm is used to

calculate the hit position

Typical signal produced by a traversing particle is larger than one channel

275μm

Entries 49249

/ ndf 2c 15.5 / 12

MPV 0.04± 14.57

Integral 5.073e+02± 8.122e+04

Sigma of gauss 0.075± 3.978

Scale 0.056± 1.666

Cluster charge [p.e.]10 20 30 40 50 60 70 80

Nu

mb

er

of

clu

ste

rs

0

1000

2000

3000

4000

5000Entries 49249

/ ndf 2c 15.5 / 12

MPV 0.04± 14.57

Integral 5.073e+02± 8.122e+04

Sigma of gauss 0.075± 3.978

Scale 0.056± 1.666

MPV=14.5PE

Page 6: Silicon Photomultipliers for the LHCb Upgrade ...Série3 Série5 Série7 Série9 Série11 Série13 Série15 Série17 Série19 Série21 128Ch arrays have +-300mV V BD spread, larger

Fibre mat views

Page 7: Silicon Photomultipliers for the LHCb Upgrade ...Série3 Série5 Série7 Série9 Série11 Série13 Série15 Série17 Série19 Série21 128Ch arrays have +-300mV V BD spread, larger

Important characteristics of the SiPMs for

the LHCb SciFi Tracker

High PDE! The 2.5m long fibres and the radiation damage of the fibres in the center of the detector,

reduce the light output. We need typically 12-13 PE at the end of lifetime to get 98% efficiency!

Low x-talk! The noise cluster rate increases exponentially with the x-talk probability.

Support the radiation environment! DCR increases with neutron fluence, best possible technology

is desired.

Small temperature dependence! The operation temperature of the detector is set to -40 ºC.

Temperature non-uniformity can be allowed if dependence is small.

Small dead regions! Dead regions at the edges between adjacent SiPM arrays reduce the overall

hit detection efficiency.

Thin entrance window! The entrance window defuses the light and therefore the thick window

increases the cluster size and makes the spatial resolution worse.

Hamamatsu (2010) (Hamamatsu Photonics K.K., Japan)

KETEK (highest

possible fill factor) (KETEK GmbH, Germany)

Channel 250μm gap

Detector edge Window

Page 8: Silicon Photomultipliers for the LHCb Upgrade ...Série3 Série5 Série7 Série9 Série11 Série13 Série15 Série17 Série19 Série21 128Ch arrays have +-300mV V BD spread, larger

Cold box for SiPM characterization

1. SiPM array

2. VATA64 card

3. USB based ADC board

4. SiPM single

5. Fast amp

6. Peltier

7. Liquid coolant

9. Dry gas injection

10. Humidity sensor

11. LED for light injection

12. Isolation

8. Temp sensor

Page 9: Silicon Photomultipliers for the LHCb Upgrade ...Série3 Série5 Série7 Série9 Série11 Série13 Série15 Série17 Série19 Série21 128Ch arrays have +-300mV V BD spread, larger

Hamamatsu VBD uniformity 128CH

1.00E-09

1.00E-08

1.00E-07

1.00E-06

1.00E-05

1.00E-04

1.00E-0370.5 71 71.5 72 72.5 73 73.5 74 74.5

Cou

rant

Iph

[A

]

Tension Uph [V]

Iph=f(Uph)

Série3

Série5

Série7

Série9

Série11

Série13

Série15

Série17

Série19

1.00E-09

1.00E-08

1.00E-07

1.00E-06

1.00E-05

1.00E-04

1.00E-0370.5 71 71.5 72 72.5 73 73.5 74 74.5

Cou

rant

Iph

[A

]

Tension Uph [V]

Série1

Série3

Série5

Série7

Série9

Série11

Série13

Série15

Série17

Série19

Série21

Série23128Ch arrays have +-300mV VBD spread, larger difference between arrays.

Array #1

Array #2

Page 10: Silicon Photomultipliers for the LHCb Upgrade ...Série3 Série5 Série7 Série9 Série11 Série13 Série15 Série17 Série19 Série21 128Ch arrays have +-300mV V BD spread, larger

KETEK channel-to-channel uniformity

SiPM channel0 10 20 30 40 50 60

Bre

akd

ow

n V

oltag

e [V

]

31.6

31.8

32

32.2

32.4

32.6

32.8

33

33.2

33.4

W7C3

SiPM channel0 10 20 30 40 50 60

Bre

akd

ow

n V

oltag

e [V

]

22.6

22.8

23

23.2

23.4

23.6

23.8

24

24.2

24.4

W1C3

SiPM channel0 10 20 30 40 50 60

Bre

akd

ow

n V

oltag

e [V

]

31.6

31.8

32

32.2

32.4

32.6

32.8

33

33.2

33.4

SiPM channel0 10 20 30 40 50 60

Bre

akd

ow

n V

oltag

e [V

]

22.6

22.8

23

23.2

23.4

23.6

23.8

24

24.2

24.4

W1C2 W7C2

For KETEK devices the VBD is uniform to +-100mV, it is probably

the measurement that has more fluctuations (measure photo peak distance in this case).

Page 11: Silicon Photomultipliers for the LHCb Upgrade ...Série3 Série5 Série7 Série9 Série11 Série13 Série15 Série17 Série19 Série21 128Ch arrays have +-300mV V BD spread, larger

General characteristics

* Possible operation point for SciFi application (note that the DCR increases strongly with over-voltage)

Detectors with trenches can be operated at higher over-voltage (3.5V) reaching better

relative gain uniformity.

Low TC in combination with high over-voltage reduces temperature dependence of the

gain to below 1% per K .

Good gain uniformity allows to operate all detectors at the same bias voltage. Tuning of

the gain can be restricted to detector arrays.

Detector type Pixel size [μm2] TC[mV/K ] VBD [V] Over-voltage [V]* Gain [e/PE]

H, S10362-11-050C 50×50 56 69 1.3 0.75*106

H, with trench (2013) 50×50 53 55 3.5 2.0*106

KETEK, W1C2, with trench 60×62.5 15 23.5 3.5 8.5*106

KETEK, W1C3, with trench 82.5×62.5 15 23.5 3.5 12.0*106

KETEK devices have very low temperature dependence, about 10 times better than S10362-11-050C!

Page 12: Silicon Photomultipliers for the LHCb Upgrade ...Série3 Série5 Série7 Série9 Série11 Série13 Série15 Série17 Série19 Série21 128Ch arrays have +-300mV V BD spread, larger

X-talk With low DCR (probability for two random pulses within shaping window small), the

probability of x-talk is given by ratio DCRth=1.5 pe/DCRth=0.5pe

Two methods (systems) were used to measure x-talk.

Use a fast (single channel) amplifier (FEMTO 2GHz bandwidth) and record threshold scan.

This allows to measure x-talk without after-pulsing due to the fast shaping.

Record dark spectrum with custom multichannel data acquisition system based on a VATA64

chip (64 channels, >50ns shaping time, sample and hold mode with serial readout, 12-bit

ADC). This cannot separate x-talk and after-pulsing due to the slow shaping.

The difference between the two methods allows to estimate the effect from after-pulsing.

Hamamatsu, 50um pixel with trench (2013),

different over-voltages, threshold scan.

Hamamatsu, 50um pixel, standard (ref.),

with trench (2013), without trench (2013), at

typical over-voltage, recorded with VATA64.

Page 13: Silicon Photomultipliers for the LHCb Upgrade ...Série3 Série5 Série7 Série9 Série11 Série13 Série15 Série17 Série19 Série21 128Ch arrays have +-300mV V BD spread, larger

X-talk Hamamatsu (50um pixels)

Difference due to after-

pulsing (1.3V over-voltage)

(17% vs 10%)

With trench, low after-

pulsing, 7% x-talk at 3.5V

over-voltage

No trench,

extremely high x-

talk

Page 14: Silicon Photomultipliers for the LHCb Upgrade ...Série3 Série5 Série7 Série9 Série11 Série13 Série15 Série17 Série19 Série21 128Ch arrays have +-300mV V BD spread, larger

X-talk KETEK

W1C2, with trench,

small pixels (3.5V

over-voltage) (8%

vs 7%)

W1C3, with trench, large pixels

(3.5V over-voltage) (10% vs

8%)

W7C3, double trench,

large pixels (3.5V over-

voltage) (3% vs 2%)

Page 15: Silicon Photomultipliers for the LHCb Upgrade ...Série3 Série5 Série7 Série9 Série11 Série13 Série15 Série17 Série19 Série21 128Ch arrays have +-300mV V BD spread, larger

Multichannel KETEK x-talk + afterpulse

w1c2

Page 16: Silicon Photomultipliers for the LHCb Upgrade ...Série3 Série5 Série7 Série9 Série11 Série13 Série15 Série17 Série19 Série21 128Ch arrays have +-300mV V BD spread, larger

DCR for irradiated Hamamatsu detector

The temperature dependence of the DCR is an important characteristic for the SciFi Tracker in LHCb.

Cooling to -40 ºC is foreseen to reduce the DCR to an acceptable level.

We express the dependence in a temperature difference required to reduce the DCR by a factor 2

(K1/2). The temperature dependence of the DCR is related to different SiPM technologies.

Hamamatsu S10362-11-050C, after irradiation K1/2=10ºC

Hamamatsu detector with trenches (2013), after irradiation K1/2=12.8 ºC

The detector with trenches (2013) can work at a higher over-voltage (to increase the PDE) but this

increases the DCR!

The detectors were annealed after irradiation (at 40 ºC, one week) to reduce the DCR. Annealing effect

can reduce the DCR by a factor 2-2.5 for detectors operated at low temperature.

Normalized to 0.33mm2 and 2×1011 neqv/cm2 irradiated Normalized to 0.33mm2 and 2×1011 neqv/cm2 irradiated

Page 17: Silicon Photomultipliers for the LHCb Upgrade ...Série3 Série5 Série7 Série9 Série11 Série13 Série15 Série17 Série19 Série21 128Ch arrays have +-300mV V BD spread, larger

DCR for irradiated KETEK detector

The temperature K1/2 dependence of the DCR also changes between, before and after

irradiation.

The DCR for the double trench KETEK device is a factor 2-3 higher than Hamamatsu with

trench, at 3.5V over-voltage and -40ºC.

Detector with 0.33mm2 area and 2×1011 neqv/cm2 irradiated

Sample with thicker EPI layer

W7C3 (irrad) [email protected]

W1C3 (irrad) [email protected]

Page 18: Silicon Photomultipliers for the LHCb Upgrade ...Série3 Série5 Série7 Série9 Série11 Série13 Série15 Série17 Série19 Série21 128Ch arrays have +-300mV V BD spread, larger

Noise cluster rate The noise cluster rate fC is defined as the frequency of noise clusters for a 128Ch SiPM array which

depends on:

DCR: the thermal noise increase with over-voltage (ΔV), depends on the temperature (T), the total surface of the

detector (S) and the neutron fluence (Nfluence)

Clustering algorithm: the algorithm combines single channels into clusters, depends on the thresholds

X-talk: The pixel to pixel optical x-talk probability increases linearly with ΔV and increases significantly the fC

After-pulsing: Small effect for LHCb SciFi application (because of very fast shaping), AP acts like DCR.

Shaping: Fast integration and shaping O(20 ns) allows to cope with high DCR

Simulation for different x-talk Illustration of the clustering algorithm

Page 19: Silicon Photomultipliers for the LHCb Upgrade ...Série3 Série5 Série7 Série9 Série11 Série13 Série15 Série17 Série19 Série21 128Ch arrays have +-300mV V BD spread, larger

Noise cluster rate for different ΔV

Simulation for different over-voltage

taking the increase in DCR and x-talk

into account.

Page 20: Silicon Photomultipliers for the LHCb Upgrade ...Série3 Série5 Série7 Série9 Série11 Série13 Série15 Série17 Série19 Série21 128Ch arrays have +-300mV V BD spread, larger

Photon Detection Efficiency

We perform a relative Photon Detection Efficiency (PDE) measurement:

PDErel,SiPM(λ) ISiPM(λ)-IDark )/(1+Px-talk) / G * QEPD/IPD(λ)

Corrections for: Dark current (Idark), x-talk (+after pulse) (Px-talk), lamp emission (IPD(λ))

• Calibrated light source with

photo diode

• Monochromator for

wavelength selection

• Light coupled to optical fibre

and optional illuminating PD

or SiPM

The 128 CH SiPM array from Hamamatsu (based on the

technology of the S10362-11-050C with adapted pixel

size) is used as the reference and its peak PDE is set to

30% (after corrections). This value has been confirmed by

different groups.

Page 21: Silicon Photomultipliers for the LHCb Upgrade ...Série3 Série5 Série7 Série9 Série11 Série13 Série15 Série17 Série19 Série21 128Ch arrays have +-300mV V BD spread, larger

Emission spectrum of the SCSF-78MJ

fibre

Wavelength (nm)

400 450 500 550 600 650 700 750 800

Inte

nsity (

a.u

.)

-10000

0

10000

20000

30000

40000

50000

60000

SCSF-78MJ

30 cm

100 cm

250 cm

wavelength / nm400 500 600 700

Inte

nsi

ty /

a.u

.

0

100

200

300

400

500

600 [x=0, y=248]ldirect arrival

[x=0, y=125]ldirect arrival

[x=0, y=0]ldirect arrival

Expected after irradiation (35kGy) based on MC study

Non irradiated: Fibre emission

spectrum (SCSF-78MJ). It extends

from 400 to 600 nm and peaks at 450 nm.

Irradiated fibre: The emission

spectrum changes with irradiation.

The simulated spectrum, taking into

account a graded irradiation, shows a green shift.

Page 22: Silicon Photomultipliers for the LHCb Upgrade ...Série3 Série5 Série7 Série9 Série11 Série13 Série15 Série17 Série19 Série21 128Ch arrays have +-300mV V BD spread, larger

PDE Hamamatsu and KETEK

The emission spectrum from a long and irradiated fibre peaks at 480nm and is therefore

green shifted compared to the peak PDE of SiPMs, especially for KETEK.

The Hamamatsu with trench (2013) has a peak PDE of 37% and has a rather flat PDE

over the full emission spectrum of the fibre.

The KETEK detectors tested reach a peak PDE of up to 43% at 3.5V over-voltage.

The weighted integral over the emission spectrum of the fibre reaches identical values for

Hamamatsu (pink line) and KETEK (red line) (each detector with trench and at 3.5V over-

voltage)

Overvoltage [ V ]1 2 3 4 5 6 7

PD

E P

ea

k

0.3

0.32

0.34

0.36

0.38

0.4

0.42

0.44

0.46

0.48

PDE Peak in function of the overvoltage w1c3PDE Peak in function of the overvoltage w1c3

Wavelength [ nm ]350 400 450 500 550 600 650 700

PD

E_

rel

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Relative PDE w1c3 for different OV

K. w1c3 Ch 60 at 1.5 ov

K. w1c3 Ch 60 at 2.5 ov

K. w1c3 Ch 60 at 3.5 ov

K. w1c3 Ch 60 at 4.5 ov

K. w1c3 Ch 60 at 5.5 ov

K. w1c3 Ch 60 at 6.5 ov

H. std at 1.3 OV (Ref)

Hammamatsu CB02 at 3.5 OV

Relative PDE w1c3 for different OV

Page 23: Silicon Photomultipliers for the LHCb Upgrade ...Série3 Série5 Série7 Série9 Série11 Série13 Série15 Série17 Série19 Série21 128Ch arrays have +-300mV V BD spread, larger

Summary Detector type H. S10262-11-050C H. with trench

(2013) K. W1C2, with

trench

K. W9C2, with trench

K. W7C3, double trench

Surface [mm2] 1 1 1/3 1/3 1/3

Pixel size [μm2] 50×50 50×50 60×62.5 60×62.5 82.5×62.5

TC [mV/K] 56 53 15 26 22

Over-voltage [V] 1.3 3.5 3.5 3.5 3.5

X-talk + After-pulsing 17% 7% 8% 9% 3%

VBD [V] 69 55 23.5 23.5 32.4

Gain [e/PE] 0.75×106 2.0×106 8.5×106 6.4×106 9.5×106

PDE @peak 30% 37% 42% 41% 40%

Weighted PDE integral 1.26 1.61 1.44 na 1.47

Scaled DCR in [MHz] at

-40ºC, 2x1011 neqv/cm2,

1/3mm2

1.5 6 22 3.8 12

For LHCb SciFi Tracker we evaluated custom SiPM arrays from KETEK and Hamamatsu, which both have

high PDE, low x-talk and sufficient radiation hardness.

The KETEK technology shows a very high peak PDE where for the Hamamatsu the broad sensitivity gives

an advantage for the green shifted emission spectrum of the fibre. They have equal weighted integral of

PDE at the 3.5 V over-voltage.

Detectors with (double) trenches have low x-talk and better gain uniformity due to lower TC and higher

over-voltage.

The high DCR for these detectors require cooling to -40 ºC in order to reach an acceptable noise cluster

rate. K1/2 dependence for different technologies might lead to lower DCR.