181
Signal Processing First LECTURE #1 Sinusoids 4/3/2006 © 2003-2006, JH McClellan & RW Schafer 3 READING ASSIGNMENTS This Lecture: Chapter 2, pp. 9-17 Appendix A: Complex Numbers Appendix B: MATLAB Chapter 1: Introduction 4/3/2006 © 2003-2006, JH McClellan & RW Schafer 4 CONVERGING FIELDS EE CmpE Math Applications Physics Computer Science BIO 4/3/2006 © 2003-2006, JH McClellan & RW Schafer 5 COURSE OBJECTIVE Students will be able to: Understand mathematical descriptions of signal processing algorithms and express those algorithms as computer implementations (MATLAB) What are your objectives?

Signal Processing First Lecture Slides

  • Upload
    cfsenel

  • View
    102

  • Download
    10

Embed Size (px)

Citation preview

Page 1: Signal Processing First Lecture Slides

Signal Processing First

LECTURE #1Sinusoids

4/3/2006 © 2003-2006, JH McClellan & RW Schafer 3

READING ASSIGNMENTS

This Lecture:Chapter 2, pp. 9-17

Appendix A: Complex NumbersAppendix B: MATLABChapter 1: Introduction

4/3/2006 © 2003-2006, JH McClellan & RW Schafer 4

CONVERGING FIELDS

EECmpE

Math

Applications

Physics

ComputerScience

BIO4/3/2006 © 2003-2006, JH McClellan & RW Schafer 5

COURSE OBJECTIVE

Students will be able to:Understand mathematical descriptions of signal processing algorithms and express those algorithms as computer implementations (MATLAB)

What are your objectives?

Page 2: Signal Processing First Lecture Slides

4/3/2006 © 2003-2006, JH McClellan & RW Schafer 6

WHY USE DSP ?

Mathematical abstractions lead to generalization and discovery of new processing techniques

Computer implementations are flexible

Applications provide a physical context

4/3/2006 © 2003-2006, JH McClellan & RW Schafer 7

Fourier Everywhere

TelecommunicationsSound & Music

CDROM, Digital VideoFourier OpticsX-ray Crystallography

Protein Structure & DNAComputerized TomographyNuclear Magnetic Resonance: MRIRadioastronomyRef: Prestini, “The Evolution of Applied Harmonic Analysis”

4/3/2006 © 2003-2006, JH McClellan & RW Schafer 8

LECTURE OBJECTIVES

Write general formula for a “sinusoidal”waveform, or signalFrom the formula, plot the sinusoid versus time

What’s a signal?It’s a function of time, x(t)in the mathematical sense

4/3/2006 © 2003-2006, JH McClellan & RW Schafer 9

TUNING FORK EXAMPLE

CD-ROM demo“A” is at 440 Hertz (Hz)Waveform is a SINUSOIDAL SIGNALComputer plot looks like a sine waveThis should be the mathematical formula:

))440(2cos( ϕπ +tA

Page 3: Signal Processing First Lecture Slides

4/3/2006 © 2003-2006, JH McClellan & RW Schafer 10

TUNING FORK A-440 Waveform

ms 3.285.515.8

=−≈T

Hz4353.2/1000

/1

≈== Tf

Time (sec)

4/3/2006 © 2003-2006, JH McClellan & RW Schafer 11

SPEECH EXAMPLE

More complicated signal (BAT.WAV)Waveform x(t) is NOT a SinusoidTheory will tell us

x(t) is approximately a sum of sinusoidsFOURIER ANALYSIS

Break x(t) into its sinusoidal componentsCalled the FREQUENCY SPECTRUM

4/3/2006 © 2003-2006, JH McClellan & RW Schafer 12

Speech Signal: BAT

Nearly PeriodicPeriodic in Vowel RegionPeriod is (Approximately) T = 0.0065 sec

4/3/2006 © 2003-2006, JH McClellan & RW Schafer 13

DIGITIZE the WAVEFORM

x[n] is a SAMPLED SINUSOIDA list of numbers stored in memory

Sample at 11,025 samples per secondCalled the SAMPLING RATE of the A/DTime between samples is

1/11025 = 90.7 microsec

Output via D/A hardware (at Fsamp)

Page 4: Signal Processing First Lecture Slides

4/3/2006 © 2003-2006, JH McClellan & RW Schafer 14

STORING DIGITAL SOUND

x[n] is a SAMPLED SINUSOIDA list of numbers stored in memory

CD rate is 44,100 samples per second16-bit samplesStereo uses 2 channelsNumber of bytes for 1 minute is

2 X (16/8) X 60 X 44100 = 10.584 Mbytes

4/3/2006 © 2003-2006, JH McClellan & RW Schafer 15

Always use the COSINE FORM

Sine is a special case:

))440(2cos( ϕπ +tA

SINES and COSINES

)cos()sin( 2πωω −= tt

4/3/2006 © 2003-2006, JH McClellan & RW Schafer 16

SINUSOIDAL SIGNAL

FREQUENCYRadians/secHertz (cycles/sec)

PERIOD (in sec)

AMPLITUDEMagnitude

PHASE

A tcos( )ω ϕ+ω A

ϕω π= ( )2 f

Tf

= =1 2π

ω 4/3/2006 © 2003-2006, JH McClellan & RW Schafer 17

EXAMPLE of SINUSOID

Given the Formula

Make a plot)2.13.0cos(5 ππ +t

Page 5: Signal Processing First Lecture Slides

4/3/2006 © 2003-2006, JH McClellan & RW Schafer 18

PLOT COSINE SIGNAL

Formula defines A, ω, and φ5 0 3 12cos( . . )π πt+

A = 5ω = 0.3πϕ = 1.2π

4/3/2006 © 2003-2006, JH McClellan & RW Schafer 19

PLOTTING COSINE SIGNAL from the FORMULA

Determine period:

Determine a peak location by solving

Zero crossing is T/4 before or afterPositive & Negative peaks spaced by T/2

)2.13.0cos(5 ππ +t

3/203.0/2/2 === ππωπT

0)2.13.0(0)( =+⇒=+ ππϕω tt

4/3/2006 © 2003-2006, JH McClellan & RW Schafer 20

PLOT the SINUSOID

Use T=20/3 and the peak location at t=-4

)2.13.0cos(5 ππ +t

→← 320

Page 6: Signal Processing First Lecture Slides

8/22/2003 © 2003, JH McClellan & RW Schafer 1

Signal Processing First

LECTURE #2Phase & Time-ShiftComplex Exponentials

8/22/2003 © 2003, JH McClellan & RW Schafer 3

READING ASSIGNMENTS

This Lecture:Chapter 2, Sects. 2-3 to 2-5

Appendix A: Complex NumbersAppendix B: MATLABNext Lecture: finish Chap. 2,

Section 2-6 to end

8/22/2003 © 2003, JH McClellan & RW Schafer 4

LECTURE OBJECTIVES

Define Sinusoid Formula from a plotRelate TIME-SHIFT to PHASE

tjXetz ω=)(

Introduce an ABSTRACTION:Complex Numbers represent SinusoidsComplex Exponential Signal

8/22/2003 © 2003, JH McClellan & RW Schafer 5

SINUSOIDAL SIGNAL

FREQUENCYRadians/secor, Hertz (cycles/sec)

PERIOD (in sec)

AMPLITUDEMagnitude

PHASE

)cos( ϕω +tA

f)2( πω =

ωπ21 ==

fT

A

ϕ

ω

Page 7: Signal Processing First Lecture Slides

8/22/2003 © 2003, JH McClellan & RW Schafer 6

PLOTTING COSINE SIGNAL from the FORMULA

Determine period:

Determine a peak location by solving

Peak at t=-4

)2.13.0cos(5 ππ +t

0)( =+ ϕω t

3/203.0/2/2 === ππωπT

8/22/2003 © 2003, JH McClellan & RW Schafer 7

ANSWER for the PLOT

Use T=20/3 and the peak location at t=-4

)2.13.0cos(5 ππ +t

→← 320

8/22/2003 © 2003, JH McClellan & RW Schafer 8

TIME-SHIFT

In a mathematical formula we can replace t with t-tm

Then the t=0 point moves to t=tm

Peak value of cos(ω(t-tm)) is now at t=tm

))(cos()( mm ttAttx −=− ω

8/22/2003 © 2003, JH McClellan & RW Schafer 9

TIME-SHIFTED SINUSOID

))4((3.0cos(5))4(3.0cos(5)4( −−=+=+ tttx ππ

Page 8: Signal Processing First Lecture Slides

8/22/2003 © 2003, JH McClellan & RW Schafer 10

PHASE <--> TIME-SHIFT

Equate the formulas:

and we obtain:

or,

)cos())(cos( ϕωω +=− tAttA m

ϕω =− mt

ωϕ−=mt

8/22/2003 © 2003, JH McClellan & RW Schafer 11

SINUSOID from a PLOT

Measure the period, TBetween peaks or zero crossings

Compute frequency: ωωωω = 2π/T

Measure time of a peak: tm

Compute phase: φφφφ = -ω tm

Measure height of positive peak: A

3 steps

8/22/2003 © 2003, JH McClellan & RW Schafer 12

(A, ω, φ) from a PLOT

ππωϕ 25.0))(200( =−=−= mm tt

πω ππ 20001.022 === T100

1period1

sec01.0 ==T

sec00125.0−=mt8/22/2003 © 2003, JH McClellan & RW Schafer 13

SINE DRILL (MATLAB GUI)

Page 9: Signal Processing First Lecture Slides

8/22/2003 © 2003, JH McClellan & RW Schafer 14

Ttt

t

mm

m

−=−==

=−+−

ωπ

ωϕ

ωπϕ

ωϕ

2)2(2

then, if

PHASE is AMBIGUOUS

The cosine signal is periodic Period is 2π

Thus adding any multiple of 2π leaves x(t) unchanged

)cos()2cos( ϕωπϕω +=++ tAtA

8/22/2003 © 2003, JH McClellan & RW Schafer 15

COMPLEX NUMBERS

To solve: z2 = -1z = jMath and Physics use z = i

Complex number: z = x + j y

x

y zCartesiancoordinatesystem

8/22/2003 © 2003, JH McClellan & RW Schafer 16

PLOT COMPLEX NUMBERS

8/22/2003 © 2003, JH McClellan & RW Schafer 17

COMPLEX ADDITION = VECTORVECTORVECTORVECTOR Addition

26)53()24()52()34(

213

jj

jjzzz

+=+−++=

++−=+=

Page 10: Signal Processing First Lecture Slides

8/22/2003 © 2003, JH McClellan & RW Schafer 18

*** POLAR FORM ***

Vector FormLength =1Angle = θ

Common Valuesj has angle of 0.5π−1 has angle of π−−−− j has angle of 1.5π also, angle of −−−−j could be −0.5π = 1.5π −2πbecause the PHASE is AMBIGUOUS

8/22/2003 © 2003, JH McClellan & RW Schafer 19

POLAR <--> RECTANGULAR

Relate (x,y) to (r,θ) rθx

y

Need a notation for POLAR FORM

( )xyyxr

1

222

Tan−=

+=

θ

θθ

sincosryrx

==

Most calculators doPolar-Rectangular

8/22/2003 © 2003, JH McClellan & RW Schafer 20

Euler’s FORMULA

Complex ExponentialReal part is cosineImaginary part is sineMagnitude is one

)sin()cos( θθθ jrrre j +=

)sin()cos( θθθ je j +=

8/22/2003 © 2003, JH McClellan & RW Schafer 21

COMPLEX EXPONENTIAL

Interpret this as a Rotating Vectorθ = ωθ = ωθ = ωθ = ωtAngle changes vs. timeex: ω=20π rad/sRotates 0.2π in 0.01 secs

)sin()cos( tjte tj ωωω +=

)sin()cos( θθθ je j +=

Page 11: Signal Processing First Lecture Slides

8/22/2003 © 2003, JH McClellan & RW Schafer 22

cos = REAL PART

Real Part of Euler’s}{)cos( tjeet ωω ℜ=

General Sinusoid )cos()( ϕω += tAtx

So,

}{}{)cos( )(

tjj

tj

eAeeAeetA

ωϕ

ϕωϕωℜ=ℜ=+ +

8/22/2003 © 2003, JH McClellan & RW Schafer 23

REAL PART EXAMPLE

Answer:

Evaluate:

{ }tjj eAeetA ωϕϕω ℜ=+ )cos(

{ }tjjeetx ω3)( −ℜ=

{ }{ } )5.0cos(33

)3()(5.0 πωωπ

ω

−=ℜ=−ℜ=

− teeeejetxtjj

tj

8/22/2003 © 2003, JH McClellan & RW Schafer 24

COMPLEX AMPLITUDE

Then, any Sinusoid = REAL PART of Xejωt

{ } { }tjjtj eAeeXeetx ωϕω ℜ=ℜ=)(

General Sinusoid

{ }tjj eAeetAtx ωϕϕω ℜ=+= )cos()(Complex AMPLITUDE = XComplex AMPLITUDE = X

ϕω jtj AeXXetz ==)(

Page 12: Signal Processing First Lecture Slides

1/12/2004 © 2003, JH McClellan & RW Schafer 1

Signal Processing First

LECTURE #3Phasor Addition Theorem

1/12/2004 © 2003, JH McClellan & RW Schafer 3

READING ASSIGNMENTS

This Lecture:Chapter 2, Section 2-6

Other Reading:Appendix A: Complex NumbersAppendix B: MATLABNext Lecture: start Chapter 3

1/12/2004 © 2003, JH McClellan & RW Schafer 4

LECTURE OBJECTIVES

Phasors = Complex AmplitudeComplex Numbers represent Sinusoids

Develop the ABSTRACTION:Adding Sinusoids = Complex AdditionPHASOR ADDITION THEOREMPHASOR ADDITION THEOREM

tjjtj eAeXetz ωϕω )()( ==

1/12/2004 © 2003, JH McClellan & RW Schafer 5

Z DRILL (Complex Arith)

Page 13: Signal Processing First Lecture Slides

1/12/2004 © 2003, JH McClellan & RW Schafer 6

AVOID Trigonometry

Algebra, even complex, is EASIER !!!Can you recall cos(θ1+θ2) ?

Use: real part of ej(θ1+θ2) = cos(θ1+θ2)

2121 )( θθθθ jjj eee =+

)sin)(cossin(cos 2211 θθθθ jj ++=

(...))sinsincos(cos 2121 j+−= θθθθ1/12/2004 © 2003, JH McClellan & RW Schafer 7

Euler’s FORMULA

Complex ExponentialReal part is cosineImaginary part is sineMagnitude is one

)sin()cos( tjte tj ωωω +=)sin()cos( θθθ je j +=

1/12/2004 © 2003, JH McClellan & RW Schafer 8

Real & Imaginary Part Plots

PHASE DIFFERENCE = ππππ/2

1/12/2004 © 2003, JH McClellan & RW Schafer 9

COMPLEX EXPONENTIAL

Interpret this as a Rotating Vectorθ = ωθ = ωθ = ωθ = ωtAngle changes vs. timeex: ω=20π rad/sRotates 0.2π in 0.01 secs

e jjθ θ θ= +cos( ) sin( )

)sin()cos( tjte tj ωωω +=

Page 14: Signal Processing First Lecture Slides

1/12/2004 © 2003, JH McClellan & RW Schafer 10

Rotating Phasor

See Demo on CD-ROMChapter 2

1/12/2004 © 2003, JH McClellan & RW Schafer 11

Cos = REAL PART

cos(ωt) = ℜe e jω t{ }Real Part of Euler’s

x(t) = Acos(ωt +ϕ )General Sinusoid

A cos(ω t +ϕ) = ℜe Ae j (ω t+ϕ ){ }= ℜe Ae jϕe jω t{ }

So,

1/12/2004 © 2003, JH McClellan & RW Schafer 12

COMPLEX AMPLITUDE

x(t) = Acos(ωt +ϕ ) = ℜe Ae jϕejω t{ }General Sinusoid

z( t) = Xe jωt X = Ae jϕComplex AMPLITUDE = XComplex AMPLITUDE = X

x(t) = ℜe Xe jω t{ }= ℜe z(t){ }Sinusoid = REAL PART of (Aejφ)ejωt

1/12/2004 © 2003, JH McClellan & RW Schafer 13

POP QUIZ: Complex AmpFind the COMPLEX AMPLITUDE for:

Use EULER’s FORMULA:

π5.03 jeX =

)5.077cos(3)( ππ += ttx

{ }{ }tjj

tj

eee

eetxππ

ππ

775.0

)5.077(

3

3)(

ℜ=

ℜ= +

Page 15: Signal Processing First Lecture Slides

1/12/2004 © 2003, JH McClellan & RW Schafer 14

WANT to ADD SINUSOIDS

ALL SINUSOIDS have SAME FREQUENCYHOW to GET {Amp,Phase} of RESULT ?

1/12/2004 © 2003, JH McClellan & RW Schafer 15

ADD SINUSOIDS

Sum Sinusoid has SAMESAME Frequency

1/12/2004 © 2003, JH McClellan & RW Schafer 16

PHASOR ADDITION RULE

Get the new complex amplitude by complex addition

1/12/2004 © 2003, JH McClellan & RW Schafer 17

Phasor Addition Proof

Page 16: Signal Processing First Lecture Slides

1/12/2004 © 2003, JH McClellan & RW Schafer 18

POP QUIZ: Add Sinusoids

ADD THESE 2 SINUSOIDS:

COMPLEX ADDITION:

π5.00 31 jj ee +

)5.077cos(3)(

)77cos()(

2

1

ππ

π

+=

=

ttx

ttx

1/12/2004 © 2003, JH McClellan & RW Schafer 19

POP QUIZ (answer)

COMPLEX ADDITION:

CONVERT back to cosine form:

j 3 = 3e j0.5π

1

31 j+ 3/231 πjej =+

)77cos(2)( 33ππ += ttx

1/12/2004 © 2003, JH McClellan & RW Schafer 20

ADD SINUSOIDS EXAMPLE

tm1

tm2

tm3

)()()( 213 txtxtx +=

)(1 tx

)(2 tx

1/12/2004 © 2003, JH McClellan & RW Schafer 21

Convert Time-Shift to Phase

Measure peak times:tm1=-0.0194, tm2=-0.0556, tm3=-0.0394

Convert to phase (T=0.1)φ1=-ωωωωtm1 = -2ππππ(tm1 /T) = 70π/180, φ2= 200π/180

AmplitudesA1=1.7, A2=1.9, A3=1.532

Page 17: Signal Processing First Lecture Slides

1/12/2004 © 2003, JH McClellan & RW Schafer 22

Phasor Add: Numerical

Convert Polar to CartesianX1 = 0.5814 + j1.597X2 = -1.785 - j0.6498sum =

X3 = -1.204 + j0.9476Convert back to Polar

X3 = 1.532 at angle 141.79π/180This is the sum

1/12/2004 © 2003, JH McClellan & RW Schafer 23

ADD SINUSOIDS

VECTOR(PHASOR)ADD

X1

X2

X3

Page 18: Signal Processing First Lecture Slides

8/31/2003 © 2003, JH McClellan & RW Schafer 1

Signal Processing First

Lecture 4Spectrum Representation

8/31/2003 © 2003, JH McClellan & RW Schafer 3

READING ASSIGNMENTS

This Lecture:Chapter 3, Section 3-1

Other Reading:Appendix A: Complex Numbers

Next Lecture: Ch 3, Sects 3-2, 3-3, 3-7 & 3-8

8/31/2003 © 2003, JH McClellan & RW Schafer 4

LECTURE OBJECTIVES

Sinusoids with DIFFERENT FrequenciesSYNTHESIZE by Adding Sinusoids

SPECTRUM RepresentationGraphical Form shows DIFFERENTDIFFERENT Freqs

∑=

+=N

kkkk tfAtx

1)2cos()( ϕπ

8/31/2003 © 2003, JH McClellan & RW Schafer 5

FREQUENCY DIAGRAM

Plot Complex Amplitude vs. Freq

0 100 250–100–250 f (in Hz)

3/7 πje 3/7 πje−2/4 πje− 2/4 πje

10

Page 19: Signal Processing First Lecture Slides

8/31/2003 © 2003, JH McClellan & RW Schafer 6

Another FREQ. DiagramFr

eque

ncy

is th

e ve

rtic

al a

xis

Time is the horizontal axis

A-440

8/31/2003 © 2003, JH McClellan & RW Schafer 7

MOTIVATION

Synthesize Complicated SignalsMusical Notes

Piano uses 3 strings for many notesChords: play several notes simultaneously

Human SpeechVowels have dominant frequenciesApplication: computer generated speech

Can all signals be generated this way?Sum of sinusoids?

8/31/2003 © 2003, JH McClellan & RW Schafer 8

Fur Elise WAVEFORM

BeatNotes

8/31/2003 © 2003, JH McClellan & RW Schafer 9

Speech Signal: BAT

Nearly PeriodicPeriodic in Vowel RegionPeriod is (Approximately) T = 0.0065 sec

Page 20: Signal Processing First Lecture Slides

8/31/2003 © 2003, JH McClellan & RW Schafer 10

Euler’s Formula Reversed

Solve for cosine (or sine))sin()cos( tjte tj ωωω +=

)sin()cos( tjte tj ωωω −+−=−

)sin()cos( tjte tj ωωω −=−

)cos(2 tee tjtj ωωω =+ −

)()cos( 21 tjtj eet ωωω −+=

8/31/2003 © 2003, JH McClellan & RW Schafer 11

INVERSE Euler’s Formula

Solve for cosine (or sine)

)()cos( 21 tjtj eet ωωω −+=

)()sin( 21 tjtjj eet ωωω −−=

8/31/2003 © 2003, JH McClellan & RW Schafer 12

SPECTRUM Interpretation

Cosine = sum of 2 complex exponentials:

One has a positive frequencyThe other has negative freq.Amplitude of each is half as big

tjAtjA eetA 72

72)7cos( −+=

8/31/2003 © 2003, JH McClellan & RW Schafer 13

NEGATIVE FREQUENCY

Is negative frequency real?Doppler Radar provides an example

Police radar measures speed by using the Doppler shift principleLet’s assume 400Hz 60 mph+400Hz means towards the radar-400Hz means away (opposite direction)Think of a train whistle

Page 21: Signal Processing First Lecture Slides

8/31/2003 © 2003, JH McClellan & RW Schafer 14

SPECTRUM of SINE

Sine = sum of 2 complex exponentials:

Positive freq. has phase = -0.5πNegative freq. has phase = +0.5π

tjjtjj

tjjAtj

jA

eAeeAe

eetA75.0

2175.0

21

72

72)7sin(

−−

+=

−=ππ

π5.01 jj ej ==−

8/31/2003 © 2003, JH McClellan & RW Schafer 15

GRAPHICAL SPECTRUMEXAMPLE of SINE

AMPLITUDE, PHASE & FREQUENCY are shown

ωωωω7-7 0

tjjtjj eAeeAetA 75.02175.0

21)7sin( −− += ππ

π5.021 )( jeA π5.0

21 )( jeA −

8/31/2003 © 2003, JH McClellan & RW Schafer 16

SPECTRUM ---> SINUSOID

Add the spectrum components:

What is the formula for the signal x(t)?

0 100 250–100–250 f (in Hz)

3/7 πje 3/7 πje−2/4 πje− 2/4 πje

10

8/31/2003 © 2003, JH McClellan & RW Schafer 17

Gather (A,ω,φω,φω,φω,φ) information

Frequencies:-250 Hz-100 Hz0 Hz100 Hz250 Hz

Amplitude & Phase4 -π/27 +π/310 07 -π/34 +π/2

DC is another name for zero-freq componentDC component always has φ=0 φ=0 φ=0 φ=0 or π π π π (for real x(t) )

Note the conjugate phase

Page 22: Signal Processing First Lecture Slides

8/31/2003 © 2003, JH McClellan & RW Schafer 18

Add Spectrum Components-1

Amplitude & Phase4 -ππππ/27 +ππππ/310 07 -ππππ/34 +ππππ/2

Frequencies:-250 Hz-100 Hz0 Hz100 Hz250 Hz

tjjtjj

tjjtjj

eeeeeeee

tx

)250(22/)250(22/

)100(23/)100(23/

4477

10)(

ππππ

ππππ

−−

−−

++

+=

8/31/2003 © 2003, JH McClellan & RW Schafer 19

Add Spectrum Components-2

tjjtjj

tjjtjj

eeeeeeee

tx

)250(22/)250(22/

)100(23/)100(23/

4477

10)(

ππππ

ππππ

−−

−−

++

+=

0 100 250–100–250 f (in Hz)

3/7 πje 3/7 πje−2/4 πje− 2/4 πje

10

8/31/2003 © 2003, JH McClellan & RW Schafer 20

Use Euler’s Formula to get REAL sinusoids:

Simplify Components

tjjtjj

tjjtjj

eeeeeeee

tx

)250(22/)250(22/

)100(23/)100(23/

4477

10)(

ππππ

ππππ

−−

−−

++

+=

tjjtjj eAeeAetA ωϕωϕϕω −−+=+ 21

21)cos(

8/31/2003 © 2003, JH McClellan & RW Schafer 21

FINAL ANSWER

So, we get the general form:

∑=

++=N

kkkk tfAAtx

10 )2cos()( ϕπ

)2/)250(2cos(8)3/)100(2cos(1410)(

ππππ

++−+=tttx

Page 23: Signal Processing First Lecture Slides

8/31/2003 © 2003, JH McClellan & RW Schafer 22

Summary: GENERAL FORM

∗+=ℜ zzze 21

21}{ k

jkk

feAX k

==

Frequency

ϕ{ }∑

=ℜ+=

N

k

tfjk

keXeXtx1

20)( π

{ }∑=

−∗++=N

k

tfjk

tfjk

kk eXeXXtx1

2212

21

0)( ππ

∑=

++=N

kkkk tfAAtx

10 )2cos()( ϕπ

8/31/2003 © 2003, JH McClellan & RW Schafer 23

Example: Synthetic Vowel

Sum of 5 Frequency Components

8/31/2003 © 2003, JH McClellan & RW Schafer 24

SPECTRUM of VOWEL

Note: Spectrum has 0.5Xk (except XDC)Conjugates in negative frequency

8/31/2003 © 2003, JH McClellan & RW Schafer 25

SPECTRUM of VOWEL (Polar Format)

φφφφk

0.5Ak

Page 24: Signal Processing First Lecture Slides

8/31/2003 © 2003, JH McClellan & RW Schafer 26

Vowel Waveform(sum of all 5 components)

Page 25: Signal Processing First Lecture Slides

1/28/2005 © 2003, JH McClellan & RW Schafer 1

Signal Processing First

Lecture 5Periodic Signals, Harmonics & Time-Varying Sinusoids

1/28/2005 © 2003, JH McClellan & RW Schafer 3

READING ASSIGNMENTS

This Lecture:Chapter 3, Sections 3-2 and 3-3Chapter 3, Sections 3-7 and 3-8

Next Lecture:Fourier Series ANALYSISFourier Series ANALYSISSections 3-4, 3-5 and 3-6

1/28/2005 © 2003, JH McClellan & RW Schafer 4

Problem Solving Skills

Math FormulaSum of CosinesAmp, Freq, Phase

Recorded SignalsSpeechMusicNo simple formula

Plot & SketchesS(t) versus tSpectrum

MATLABNumericalComputationPlotting list of numbers

1/28/2005 © 2003, JH McClellan & RW Schafer 5

LECTURE OBJECTIVESSignals with HARMONICHARMONIC Frequencies

Add Sinusoids with fk = kf0

FREQUENCY can change vs. TIMEChirps:

Introduce Spectrogram Visualization (specgram.m) (plotspec.m)

x(t) = cos(αt2 )

∑=

++=N

kkk tkfAAtx

100 )2cos()( ϕπ

Page 26: Signal Processing First Lecture Slides

1/28/2005 © 2003, JH McClellan & RW Schafer 6

SPECTRUM DIAGRAM

Recall Complex Amplitude vs. Freq

kk aX =21

0 100 250–100–250 f (in Hz)

3/7 πje 3/7 πje−2/4 πje− 2/4 πje

10

)2/)250(2cos(8)3/)100(2cos(1410)(

ππππ

++−+=

tttx

kjkk eAX ϕ=

∗kX2

1

1/28/2005 © 2003, JH McClellan & RW Schafer 7

SPECTRUM for PERIODIC ?

Nearly Periodic in the Vowel RegionPeriod is (Approximately) T = 0.0065 sec

1/28/2005 © 2003, JH McClellan & RW Schafer 8

PERIODIC SIGNALS

Repeat every T secsDefinition

Example:

Speech can be “quasi-periodic”

)()( Ttxtx +=

)3(cos)( 2 ttx =?=T

3π=T3

2π=T

1/28/2005 © 2003, JH McClellan & RW Schafer 9

Period of Complex Exponential

Definition: Period is T

k = integer

tjTtj ee ωω =+ )(

?)()()(

txTtxetx tj

=+= ω

12 =kje π

kTe Tj πωω 21 =⇒=⇒

kkTT

k0

22 ωππω =⎟⎠⎞

⎜⎝⎛==

Page 27: Signal Processing First Lecture Slides

1/28/2005 © 2003, JH McClellan & RW Schafer 10

{ }∑

=

−∗

=

++=

=

++=

N

k

tkfjk

tkfjk

jkk

N

kkk

eXeXXtx

eAX

tkfAAtx

k

1

2212

21

0

100

00)(

)2cos()(

ππ

ϕ

ϕπ

Harmonic Signal Spectrum

0:haveonly can signal Periodic fkfk =

Tf 10 =

1/28/2005 © 2003, JH McClellan & RW Schafer 11

Define FUNDAMENTAL FREQ

00

1T

f =

(shortest) Periodlfundamenta(largest) Frequencylfundamenta

)2(

)2cos()(

0

0

000

100

==

==

++= ∑=

Tf

ffkf

tkfAAtx

k

N

kkk

πω

ϕπ

1/28/2005 © 2003, JH McClellan & RW Schafer 12

What is the fundamental frequency?

Harmonic Signal (3 Freqs)

3rd5th

10 Hz

1/28/2005 © 2003, JH McClellan & RW Schafer 13

POP QUIZ: FUNDAMENTAL

Here’s another spectrum:

What is the fundamental frequency?

100 Hz ? 50 Hz ?

0 100 250–100–250 f (in Hz)

3/7 πje 3/7 πje−2/4 πje− 2/4 πje

10

Page 28: Signal Processing First Lecture Slides

1/28/2005 © 2003, JH McClellan & RW Schafer 14

SPECIAL RELATIONSHIPto get a PERIODIC SIGNAL

IRRATIONAL SPECTRUM

1/28/2005 © 2003, JH McClellan & RW Schafer 15

Harmonic Signal (3 Freqs)

T=0.1

1/28/2005 © 2003, JH McClellan & RW Schafer 16

NON-Harmonic Signal

NOTPERIODIC 1/28/2005 © 2003, JH McClellan & RW Schafer 17

FREQUENCY ANALYSIS

Now, a much HARDER problemNow, a much HARDER problemGiven a recording of a song, have the computer write the music

Can a machine extract frequencies?Yes, if we COMPUTE the spectrum for x(t)

During short intervals

Page 29: Signal Processing First Lecture Slides

1/28/2005 © 2003, JH McClellan & RW Schafer 18

Time-Varying FREQUENCIES Diagram

Freq

uenc

y is

the

vert

ical

axi

s

Time is the horizontal axis

A-440

1/28/2005 © 2003, JH McClellan & RW Schafer 19

SIMPLE TEST SIGNALC-major SCALE: stepped frequencies

Frequency is constant for each note

IDEAL

1/28/2005 © 2003, JH McClellan & RW Schafer 20

R-rated: ADULTS ONLY

SPECTROGRAM ToolMATLAB function is specgram.mSP-First has plotspec.m & spectgr.m

ANALYSIS programTakes x(t) as input & Produces spectrum values Xk

Breaks x(t) into SHORT TIME SEGMENTSThen uses the FFT (Fast Fourier Transform)

1/28/2005 © 2003, JH McClellan & RW Schafer 21

SPECTROGRAM EXAMPLETwo Constant Frequencies: Beats

))12(2sin())660(2cos( tt ππ

Page 30: Signal Processing First Lecture Slides

1/28/2005 © 2003, JH McClellan & RW Schafer 22

( ) ( )tjtjj

tjtj eeee )12(2)12(221)660(2)660(2

21 ππππ −− −+

AM Radio SignalSame as BEAT Notes

))12(2sin())660(2cos( tt ππ

))648(2cos())672(2cos( 221

221 ππ ππ ++− tt

( )tjtjtjtjj eeee )648(2)648(2)672(2)672(2

41 ππππ −− +−−

1/28/2005 © 2003, JH McClellan & RW Schafer 23

SPECTRUM of AM (Beat)

4 complex exponentials in AM:

What is the fundamental frequency?

648 Hz ? 24 Hz ?

0 648 672 f (in Hz)–672 –648

2/41 πje 2/

41 πje−2/

41 πje−2/

41 πje

1/28/2005 © 2003, JH McClellan & RW Schafer 24

STEPPED FREQUENCIESC-major SCALE: successive sinusoids

Frequency is constant for each note

IDEAL

1/28/2005 © 2003, JH McClellan & RW Schafer 25

SPECTROGRAM of C-Scale

ARTIFACTS at Transitions

Sinusoids ONLY

From SPECGRAMANALYSIS PROGRAM

Page 31: Signal Processing First Lecture Slides

1/28/2005 © 2003, JH McClellan & RW Schafer 26

Spectrogram of LAB SONG

ARTIFACTS at Transitions

Sinusoids ONLY Analysis Frame = 40ms

1/28/2005 © 2003, JH McClellan & RW Schafer 27

Time-Varying Frequency

Frequency can change vs. timeContinuously, not stepped

FREQUENCY MODULATION (FM)FREQUENCY MODULATION (FM)

CHIRP SIGNALSLinear Frequency Modulation (LFM)

))(2cos()( tvtftx c += πVOICE

1/28/2005 © 2003, JH McClellan & RW Schafer 28

)2cos()( 02 ϕπα ++= tftAtx

New Signal: Linear FM

Called Chirp Signals (LFM)Quadratic phase

Freq will change LINEARLY vs. timeExample of Frequency Modulation (FM)Define “instantaneous frequency”

QUADRATIC

1/28/2005 © 2003, JH McClellan & RW Schafer 29

INSTANTANEOUS FREQDefinition

For Sinusoid:

Derivativeof the “Angle”)()(

))(cos()(tttAtx

dtd

i ψωψ

=⇒=

Makes sense

0

0

0

2)()(2)(

)2cos()(

ftttft

tfAtx

dtd

i πψωϕπψ

ϕπ

==⇒+=

+=

Page 32: Signal Processing First Lecture Slides

1/28/2005 © 2003, JH McClellan & RW Schafer 30

INSTANTANEOUS FREQof the Chirp

Chirp Signals have Quadratic phaseFreq will change LINEARLY vs. time

ϕβαψϕβα

++=⇒

++=

tttttAtx

2

2

)()cos()(

βαψω +==⇒ ttt dtd

i 2)()(1/28/2005 © 2003, JH McClellan & RW Schafer 31

CHIRP SPECTROGRAM

1/28/2005 © 2003, JH McClellan & RW Schafer 32

CHIRP WAVEFORM

1/28/2005 © 2003, JH McClellan & RW Schafer 33

OTHER CHIRPS

ψ(t) can be anything:

ψ(t) could be speech or music:FM radio broadcast

))cos(cos()( ϕβα += tAtx

)sin()()( ttt dtd

i βαβψω −==⇒

Page 33: Signal Processing First Lecture Slides

1/28/2005 © 2003, JH McClellan & RW Schafer 34

SINE-WAVE FREQUENCY MODULATION (FM)

Look at CD-ROM Demos in Ch 3

Page 34: Signal Processing First Lecture Slides

9/8/2003 © 2003, JH McClellan & RW Schafer 1

Signal Processing First

Lecture 6Fourier Series Coefficients

9/8/2003 © 2003, JH McClellan & RW Schafer 3

READING ASSIGNMENTS

This Lecture:Fourier Series in Ch 3, Sects 3Fourier Series in Ch 3, Sects 3--4, 34, 3--5 & 35 & 3--66

Replaces pp. 62-66 in Ch 3 in DSP FirstNotation: ak for Fourier Series

Other Reading:Next Lecture: More Fourier Series

9/8/2003 © 2003, JH McClellan & RW Schafer 4

LECTURE OBJECTIVES

Work with the Fourier Series Integral

ANALYSISANALYSIS via Fourier SeriesFor PERIODIC signals: x(t+T0) = x(t)

Later: spectrum from the Fourier Series

∫ −=0

0

0

0

)/2(1 )(T

dtetxa tTkjTk

π

9/8/2003 © 2003, JH McClellan & RW Schafer 5

HISTORY

Jean Baptiste Joseph Fourier1807 thesis (memoir)

On the Propagation of Heat in Solid BodiesHeat !Napoleonic era

http://www-groups.dcs.st-and.ac.uk/~history/Mathematicians/Fourier.html

Page 35: Signal Processing First Lecture Slides

9/8/2003 © 2003, JH McClellan & RW Schafer 6 9/8/2003 © 2003, JH McClellan & RW Schafer 7

0 100 250–100–250 f (in Hz)

3/7 πje 3/7 πje−2/4 πje− 2/4 πje

10

SPECTRUM DIAGRAM

Recall Complex Amplitude vs. Freq

kk aX =21

Xk = Akejϕ k

12 Xk

*

{ }∑=

−∗++=N

k

tfjk

tfjk

kk eXeXXtx1

2212

21

0)( ππka{ *

ka0a

9/8/2003 © 2003, JH McClellan & RW Schafer 8

Harmonic Signal

PERIOD/FREQUENCY of COMPLEX EXPONENTIAL:

tfkj

kkeatx 02)( π∑

−∞==

( )0

00

001or22f

TT

f === πωπ

9/8/2003 © 2003, JH McClellan & RW Schafer 9

kjkk

N

kkk

eAX

tkfAAtx

ϕ

ϕπ

=

++= ∑=1

00 )2cos()(

kjkkk eAXa ϕ

21

21 ==

Fourier Series Synthesis

COMPLEXAMPLITUDE

tfkj

kkeatx 02)( π∑

−∞==

Page 36: Signal Processing First Lecture Slides

9/8/2003 © 2003, JH McClellan & RW Schafer 10

Harmonic Signal (3 Freqs)

T = 0.1

a3 a5

a1

9/8/2003 © 2003, JH McClellan & RW Schafer 11

SYNTHESIS vs. ANALYSIS

SYNTHESISEasyGiven (ωk,Ak,φk) create x(t)

Synthesis can be HARD

Synthesize Speech so that it sounds good

ANALYSISHardGiven x(t), extract (ωωωωk,Ak,φk) How many?Need algorithm for computer

9/8/2003 © 2003, JH McClellan & RW Schafer 12

STRATEGY: x(t) ak

ANALYSISGet representation from the signalWorks for PERIODICPERIODIC Signals

Fourier SeriesAnswer is: an INTEGRAL over one period

∫ −=0

0

0

0)(1

T

dtetxa tkjTk

ω

9/8/2003 © 2003, JH McClellan & RW Schafer 13

INTEGRAL Property of exp(j)

INTEGRATE over ONE PERIOD

0

)1(2

2

0

0

0

0

0

0

0

)/2(

20

0

)/2(0

0

)/2(

=

−−

=

−=

−−

TmtTj

mj

TmtTj

TmtTj

dte

emj

T

emj

Tdte

π

π

ππ

π

π

0≠m 00

2Tπω =

Page 37: Signal Processing First Lecture Slides

9/8/2003 © 2003, JH McClellan & RW Schafer 14

ORTHOGONALITY of exp(j)

PRODUCT of exp(+j ) and exp(-j )

=

≠=∫ −

k

kdtee

T

TktTjtTj

1

01 0

00

0

)/2()/2(

0

ππ

∫ −0

0

0

))(/2(

0

1 TtkTj dte

9/8/2003 © 2003, JH McClellan & RW Schafer 15

Isolate One FS Coefficient

∫∑∫

∫ ∑∫

−∞

−∞=

−∞

−∞=

−∞=

=⇒

=

=

=

=

0

0

0

0

00

0

0

0

0

0

00

0

0

0

0

0

0

)/2(1

0

)/2()/2(1

0

)/2(1

0

)/2()/2(1

0

)/2(1

)/2(

)(

)(

)(

)(

TtkTj

Tk

TtTjtkTj

Tk

k

TtTj

T

TtTjtkTj

kkT

TtTj

T

tkTj

kk

dtetxa

adteeadtetx

dteeadtetx

eatx

π

πππ

πππ

π

=kfor except zero is Integral

9/8/2003 © 2003, JH McClellan & RW Schafer 16

SQUARE WAVE EXAMPLE

0–.02 .02 0.04

1

t

x(t)

.01

sec. 04.0for 0

01)(

0

0021

021

=

<≤

<≤=

TTtT

Tttx

9/8/2003 © 2003, JH McClellan & RW Schafer 17

FS for a SQUARE WAVE {ak}

)0()(1 0

0

0

)/2(

0≠= ∫ − kdtetx

Ta

TktTj

02.

0)04./2(

)04./2(04.1

02.

0

)04./2(104.1 ktj

kjktj

k edtea ππ

π −−

− == ∫

kje

kj

kkj

πππ

2)1(1)1(

)2(1 )( −−=−

−= −

Page 38: Signal Processing First Lecture Slides

9/8/2003 © 2003, JH McClellan & RW Schafer 18

DC Coefficient: a0

)0()(1 0

0

0

)/2(

0== ∫ − kdtetx

Ta

TktTj

)Area(1)(1

0000

0

Tdttx

Ta

T

== ∫

21

02.

00 )002(.

04.11

04.1 =−== ∫ dta

9/8/2003 © 2003, JH McClellan & RW Schafer 19

Fourier Coefficients ak

ak is a function of kComplex Amplitude for k-th HarmonicThis one doesn’t depend on the period, T0

=

±±=

±±=

=−−=

0

,4,20

,3,11

2)1(1

21 k

k

kkj

kja

k

k …

…π

π

9/8/2003 © 2003, JH McClellan & RW Schafer 20

Spectrum from Fourier Series

=

±±=

±±=−

=

0

,4,20

,3,1

21 k

k

kkj

ak …

…π)25(2)04.0/(20 ππω ==

9/8/2003 © 2003, JH McClellan & RW Schafer 21

00 /1 FrequencylFundamenta Tf =

Fourier Series IntegralHOW do you determine ak from x(t) ?

component) (DC)(

)(

0

0

0

0

0

0

10

0

)/2(1

=

= −

T

T

TtkTj

Tk

dttxa

dtetxa π

real is )( when* txaa kk =−

Page 39: Signal Processing First Lecture Slides

Signal Processing First

Lecture 7Fourier Series & Spectrum

9/13/2006 EE-2025 Spring-2005 jMc 3

READING ASSIGNMENTS

This Lecture:Fourier Series in Ch 3, Sects 3Fourier Series in Ch 3, Sects 3--4, 34, 3--5 & 35 & 3--66

Replaces pp. 62-66 in Ch 3 in DSP FirstNotation: ak for Fourier Series

Other Reading:Next Lecture: Sampling

9/13/2006 EE-2025 Spring-2005 jMc 4

LECTURE OBJECTIVES

ANALYSISANALYSIS via Fourier SeriesFor PERIODIC signals: x(t+T0) = x(t)

SPECTRUMSPECTRUM from Fourier Seriesak is Complex Amplitude for k-th Harmonic

∫ −=0

0

0

0

)/2(1 )(T

dtetxa tTkjTk

π

9/13/2006 EE-2025 Spring-2005 jMc 5

0 100 250–100–250 f (in Hz)

3/7 πje 3/7 πje−2/4 πje− 2/4 πje

10

SPECTRUM DIAGRAM

Recall Complex Amplitude vs. Freq

{ }∑=

−∗++=N

k

tfjk

tfjk

kk eaeaatx1

220)( ππ

kjkk eAa ϕ

21=∗

ka

0a

Page 40: Signal Processing First Lecture Slides

9/13/2006 EE-2025 Spring-2005 jMc 6

Harmonic Signal

PERIOD/FREQUENCY of COMPLEX EXPONENTIAL:

tfkj

kkeatx 02)( π∑

−∞=

=

( )0

00

001or22f

TT

f ===πωπ

9/13/2006 EE-2025 Spring-2005 jMc 7

Example )3(sin)( 3 ttx π=

tjtjtjtj ejejejejtx ππππ 9339

883

83

8)( −− ⎟

⎠⎞

⎜⎝⎛ −+⎟

⎠⎞

⎜⎝⎛+⎟

⎠⎞

⎜⎝⎛ −+⎟

⎠⎞

⎜⎝⎛=

9/13/2006 EE-2025 Spring-2005 jMc 8

Example

In this case, analysisjust requires picking off the coefficients.

)3(sin)( 3 ttx π=

tjtjtjtj ejejejejtx ππππ 9339

883

83

8)( −− ⎟

⎠⎞

⎜⎝⎛ −+⎟

⎠⎞

⎜⎝⎛+⎟

⎠⎞

⎜⎝⎛ −+⎟

⎠⎞

⎜⎝⎛=

3=k1=k1−=k

3−=k

ka

9/13/2006 EE-2025 Spring-2005 jMc 9

STRATEGY: x(t) ak

ANALYSISGet representation from the signalWorks for PERIODICPERIODIC Signals

Fourier SeriesAnswer is: an INTEGRAL over one period

∫ −=0

0

0

0)(1

T

dtetxa tkjTk

ω

Page 41: Signal Processing First Lecture Slides

9/13/2006 EE-2025 Spring-2005 jMc 10

FS: Rectified Sine Wave {ak})1()(1 0

0

0

)/2(

0±≠= ∫ − kdtetx

Ta

TktTj

2/

0))1)(/2((2

)1)(/2(2/

0))1)(/2((2

)1)(/2(

2/

0

)1)(/2(21

2/

0

)1)(/2(21

2/

0

)/2()/2()/2(

1

2/

0

)/2(21

0

00

00

00

0

0

0

0

0

0

0

0

000

0

0

0

00

2

)sin(

T

kTjTj

tkTjT

kTjTj

tkTj

TtkTj

Tj

TtkTj

Tj

TktTj

tTjtTj

T

TktTj

TTk

ee

dtedte

dtejee

dteta

+−

+−

−−

−−

+−−−

−−

−=

−=

−=

=

∫∫

π

π

π

π

ππ

πππ

ππ

Half-Wave Rectified Sine

9/13/2006 EE-2025 Spring-2005 jMc 11

( ) ( )( ) ( )

( )( )⎪⎩

⎪⎨

±==−−−=

−−−=

−−−=

−=

−−

−−−+

+−+

−−−

+−+

−−−

+−

+−

−−

−−

even 1?

odd 01)1(

11

11

)1(1

)1(4)1(1

)1()1(4

1)1()1(4

1

2/)1)(/2()1(4

12/)1)(/2()1(4

1

2/

0))1)(/2((2

)1)(/2(2/

0))1)(/2((2

)1)(/2(

2

2

0000

0

00

00

00

0

kkk

ee

ee

eea

k

kk

kk

kjk

kjk

TkTjk

TkTjk

T

kTjTj

tkTjT

kTjTj

tkTj

k

π

π

ππ

ππ

ππ

ππ

π

π

π

π

FS: Rectified Sine Wave {ak}

41j±

9/13/2006 EE-2025 Spring-2005 jMc 12

SQUARE WAVE EXAMPLE

0–.02 .02 0.04

1

t

x(t)

.01

sec. 04.0for 0

01)(

0

0021

021

=⎪⎩

⎪⎨⎧

<≤

<≤=

TTtT

Tttx

9/13/2006 EE-2025 Spring-2005 jMc 15

Fourier Coefficients ak

ak is a function of kComplex Amplitude for k-th HarmonicThis one doesn’t depend on the period, T0

⎪⎪

⎪⎪

=

±±=

±±=

=−−

=

0

,4,20

,3,11

2)1(1

21 k

k

kkj

kja

k

k K

π

Page 42: Signal Processing First Lecture Slides

9/13/2006 EE-2025 Spring-2005 jMc 16

Spectrum from Fourier Series

⎪⎪

⎪⎪

=

±±=

±±=−

=

0

,4,20

,3,1

21 k

k

kkj

ak K

Kπ)25(2)04.0/(20 ππω ==

9/13/2006 EE-2025 Spring-2005 jMc 17

Fourier Series SynthesisHOW do you APPROXIMATE x(t) ?

Use FINITE number of coefficients

∫ −=0

0

00

)/2(1 )(T

tkTjTk dtetxa π

real is )( when* txaa kk =−tfkj

N

Nkkeatx 02)( π∑

−=

=

9/13/2006 EE-2025 Spring-2005 jMc 18

Fourier Series Synthesis

9/13/2006 EE-2025 Spring-2005 jMc 19

Synthesis: 1st & 3rd Harmonics))75(2cos(

32))25(2cos(2

21)( 22

ππ ππ

ππ

−+−+= ttty

Page 43: Signal Processing First Lecture Slides

9/13/2006 EE-2025 Spring-2005 jMc 20

Synthesis: up to 7th Harmonic)350sin(

72)250sin(

52)150sin(

32)50cos(2

21)( 2 ttttty π

ππ

ππ

ππ

ππ +++−+=

9/13/2006 EE-2025 Spring-2005 jMc 21

Fourier SynthesisK+++= )3sin(

32)sin(2

21)( 00 tttxN ω

πω

π

9/13/2006 EE-2025 Spring-2005 jMc 22

Gibbs’ Phenomenon

Convergence at DISCONTINUITY of x(t)There is always an overshoot9% for the Square Wave case

9/13/2006 EE-2025 Spring-2005 jMc 23

Fourier Series Demos

Fourier Series Java AppletGreg Slabaugh

Interactive

http://users.ece.gatech.edu/mcclella/2025/Fsdemo_Slabaugh/fourier.html

MATLAB GUI: fseriesdemo

http://users.ece.gatech.edu/mcclella/matlabGUIs/index.html

Page 44: Signal Processing First Lecture Slides

9/13/2006 EE-2025 Spring-2005 jMc 24

fseriesdemo GUI

Page 45: Signal Processing First Lecture Slides

9/14/2003 © 2003, JH McClellan & RW Schafer 1

Signal Processing First

Lecture 8Sampling & Aliasing

9/14/2003 © 2003, JH McClellan & RW Schafer 3

READING ASSIGNMENTS

This Lecture:Chap 4, Sections 4-1 and 4-2

Replaces Ch 4 in DSP First, pp. 83-94

Other Reading:Recitation: Strobe Demo (Sect 4-3)Next Lecture: Chap. 4 Sects. 4-4 and 4-5

9/14/2003 © 2003, JH McClellan & RW Schafer 4

LECTURE OBJECTIVES

SAMPLING can cause ALIASINGSampling TheoremSampling Rate > 2(Highest Frequency)

Spectrum for digital signals, x[n]Normalized Frequency

ππωω 22ˆ +==s

s ffT

ALIASING9/14/2003 © 2003, JH McClellan & RW Schafer 5

SYSTEMS Process Signals

PROCESSING GOALS:Change x(t) into y(t)

For example, more BASSImprove x(t), e.g., image deblurringExtract Information from x(t)

SYSTEMx(t) y(t)

Page 46: Signal Processing First Lecture Slides

9/14/2003 © 2003, JH McClellan & RW Schafer 6

System IMPLEMENTATION

DIGITAL/MICROPROCESSORConvert x(t) to numbers stored in memory

ELECTRONICSx(t) y(t)

COMPUTER D-to-AA-to-Dx(t) y(t)y[n]x[n]

ANALOG/ELECTRONIC:Circuits: resistors, capacitors, op-amps

9/14/2003 © 2003, JH McClellan & RW Schafer 7

SAMPLING x(t)

SAMPLING PROCESSConvert x(t) to numbers x[n]“n” is an integer; x[n] is a sequence of valuesThink of “n” as the storage address in memory

UNIFORM SAMPLING at t = nTsIDEAL: x[n] = x(nTs)

C-to-Dx(t) x[n]

9/14/2003 © 2003, JH McClellan & RW Schafer 8

SAMPLING RATE, fs

SAMPLING RATE (fs)fs =1/Ts

NUMBER of SAMPLES PER SECONDTs = 125 microsec fs = 8000 samples/sec

• UNITS ARE HERTZ: 8000 Hz

UNIFORM SAMPLING at t = nTs = n/fsIDEAL: x[n] = x(nTs)=x(n/fs)

C-to-Dx(t) x[n]=x(nTs)

9/14/2003 © 2003, JH McClellan & RW Schafer 9

fs = 2 kHz

fs = 500Hz

Hz100=f

Page 47: Signal Processing First Lecture Slides

9/14/2003 © 2003, JH McClellan & RW Schafer 10

SAMPLING THEOREM

HOW OFTEN ?DEPENDS on FREQUENCY of SINUSOIDANSWERED by SHANNON/NYQUIST TheoremALSO DEPENDS on “RECONSTRUCTION”

9/14/2003 © 2003, JH McClellan & RW Schafer 11

Reconstruction? Which One?

)4.0cos(][ nnx π=)4.2cos()4.0cos(

integer an is Whennn

nππ =

Given the samples, draw a sinusoid through the values

9/14/2003 © 2003, JH McClellan & RW Schafer 12

STORING DIGITAL SOUND

x[n] is a SAMPLED SINUSOIDA list of numbers stored in memory

EXAMPLE: audio CDCD rate is 44,100 samples per second

16-bit samplesStereo uses 2 channels

Number of bytes for 1 minute is2 X (16/8) X 60 X 44100 = 10.584 Mbytes

9/14/2003 © 2003, JH McClellan & RW Schafer 13

sfsTnAnx

ωωωϕω

==+=

ˆ)ˆcos(][

)cos()(][)cos()(

ϕωϕω

+==+=

ss nTAnTxnxtAtx

DISCRETE-TIME SINUSOID

Change x(t) into x[n] DERIVATION

))cos((][ ϕω += nTAnx s

DEFINE DIGITAL FREQUENCY

Page 48: Signal Processing First Lecture Slides

9/14/2003 © 2003, JH McClellan & RW Schafer 14

DIGITAL FREQUENCY

VARIES from 0 to 2ππππ, as f varies from 0 to the sampling frequencyUNITS are radians, not rad/sec

DIGITAL FREQUENCY is NORMALIZED

ss f

fT πωω 2ˆ ==

ω̂ω̂

9/14/2003 © 2003, JH McClellan & RW Schafer 15

SPECTRUM (DIGITAL)

sffπω 2ˆ =

kHz1=sf ˆ ω

12 X1

2 X*

2π(0.1)π(0.1)π(0.1)π(0.1)–0.2ππππ

))1000/)(100(2cos(][ ϕπ += nAnx

9/14/2003 © 2003, JH McClellan & RW Schafer 16

SPECTRUM (DIGITAL) ???

ˆ ω = 2π ffs

fs =100 Hz ˆ ω

12 X1

2 X*

2π(1)π(1)π(1)π(1)–2ππππ

?

x[n] is zero frequency???

))100/)(100(2cos(][ ϕπ += nAnx

9/14/2003 © 2003, JH McClellan & RW Schafer 17

The REST of the STORY

Spectrum of x[n] has more than one line for each complex exponential

Called ALIASINGMANY SPECTRAL LINES

SPECTRUM is PERIODIC with period = 2ππππBecause

A cos( ˆ ω n+ ϕ) = A cos(( ˆ ω + 2π )n +ϕ )

Page 49: Signal Processing First Lecture Slides

9/14/2003 © 2003, JH McClellan & RW Schafer 18

ALIASING DERIVATION

Other Frequencies give the same ˆ ω Hz1000at sampled)400cos()(1 == sfttx π

)4.0cos()400cos(][ 10001 nnx n ππ ==

Hz1000at sampled)2400cos()(2 == sfttx π)4.2cos()2400cos(][ 10002 nnx n ππ ==

)4.0cos()24.0cos()4.2cos(][2 nnnnnx ππππ =+==

][][ 12 nxnx =⇒ )1000(24002400 πππ =−

9/14/2003 © 2003, JH McClellan & RW Schafer 19

ALIASING DERIVATION–2

Other Frequencies give the same

ss f

fT πωω 2ˆ == π2+

ˆ ω

s

s

ss

s

ff

ff

fff πππω 22)(2ˆ :then +=+=

and we want : x[n] = Acos( ˆ ω n +ϕ ) If x (t) = A cos( 2π( f + f s )t + ϕ ) t ←

nfs

9/14/2003 © 2003, JH McClellan & RW Schafer 20

ALIASING CONCLUSIONS

ADDING fs or 2fs or –fs to the FREQ of x(t) gives exactly the same x[n]

The samples, x[n] = x(n/ fs ) are EXACTLY THE SAME VALUES

GIVEN x[n], WE CAN’T DISTINGUISH fo FROM (fo + fs ) or (fo + 2fs )

9/14/2003 © 2003, JH McClellan & RW Schafer 21

NORMALIZED FREQUENCY

DIGITAL FREQUENCY

ss f

fT πωω 2ˆ == π2+

Page 50: Signal Processing First Lecture Slides

9/14/2003 © 2003, JH McClellan & RW Schafer 22

SPECTRUM for x[n]

PLOT versus NORMALIZED FREQUENCYINCLUDE ALL SPECTRUM LINES

ALIASESADD MULTIPLES of 2ππππSUBTRACT MULTIPLES of 2ππππ

FOLDED ALIASES(to be discussed later)ALIASES of NEGATIVE FREQS

9/14/2003 © 2003, JH McClellan & RW Schafer 23

SPECTRUM (MORE LINES)

ˆ ω

12 X1

2 X*

2π(0.1)π(0.1)π(0.1)π(0.1)–0.2ππππ

12 X*

1.8ππππ

12 X

–1.8ππππ

))1000/)(100(2cos(][ ϕπ += nAnx

kHz1=sf

sffπω 2ˆ =

9/14/2003 © 2003, JH McClellan & RW Schafer 24

SPECTRUM (ALIASING CASE)

12 X*

–0.5ππππ

12 X

–1.5ππππ

12 X

0.5ππππ 2.5ππππ–2.5ππππˆ ω

12 X1

2 X* 12 X*

1.5ππππ

))80/)(100(2cos(][ ϕπ += nAnxkHz80=sf

sffπω 2ˆ =

9/14/2003 © 2003, JH McClellan & RW Schafer 25

SAMPLING GUI (con2dis)

Page 51: Signal Processing First Lecture Slides

9/14/2003 © 2003, JH McClellan & RW Schafer 26

SPECTRUM (FOLDING CASE)

ˆ ω = 2π ffs

fs = 125Hz

12 X*

0.4ππππ

12 X

–0.4ππππ 1.6ππππ–1.6ππππˆ ω

12 X1

2 X*

))125/)(100(2cos(][ ϕπ += nAnx

Page 52: Signal Processing First Lecture Slides

8/22/2003 © 2003, JH McClellan & RW Schafer 1

Signal Processing First

Lecture 9D-to-A Conversion

8/22/2003 © 2003, JH McClellan & RW Schafer 3

READING ASSIGNMENTS

This Lecture:Chapter 4: Sections 4-4, 4-5

Other Reading:Recitation: Section 4-3 (Strobe Demo)Next Lecture: Chapter 5 (beginning)

8/22/2003 © 2003, JH McClellan & RW Schafer 4

LECTURE OBJECTIVES

FOLDING: a type of ALIASINGDIGITAL-to-ANALOG CONVERSION is

Reconstruction from samplesSAMPLING THEOREM applies

Smooth InterpolationMathematical Model of D-to-A

SUM of SHIFTED PULSESLinear Interpolation example

8/22/2003 © 2003, JH McClellan & RW Schafer 5

A-to-DConvert x(t) to numbers stored in memory

D-to-AConvert y[n] back to a “continuous-time” signal, y(t)y[n] is called a “discrete-time” signal

SIGNAL TYPES

COMPUTER D-to-AA-to-Dx(t) y(t)y[n]x[n]

Page 53: Signal Processing First Lecture Slides

8/22/2003 © 2003, JH McClellan & RW Schafer 6

SAMPLING x(t)

UNIFORM SAMPLING at t = nTsIDEAL: x[n] = x(nTs)

C-to-Dx(t) x[n]

8/22/2003 © 2003, JH McClellan & RW Schafer 7

NYQUIST RATE

“Nyquist Rate” Samplingfs > TWICE the HIGHEST Frequency in x(t)

“Sampling above the Nyquist rate”BANDLIMITED SIGNALS

DEF: x(t) has a HIGHEST FREQUENCY COMPONENT in its SPECTRUMNON-BANDLIMITED EXAMPLE

TRIANGLE WAVE is NOT BANDLIMITED

8/22/2003 © 2003, JH McClellan & RW Schafer 8

SPECTRUM for x[n]

INCLUDE ALL SPECTRUM LINESALIASES

ADD INTEGER MULTIPLES of 2ππππ and -2ππππFOLDED ALIASES

ALIASES of NEGATIVE FREQS

PLOT versus NORMALIZED FREQUENCY

i.e., DIVIDE fo by fs ππω 22ˆ +=sff

8/22/2003 © 2003, JH McClellan & RW Schafer 9

EXAMPLE: SPECTRUM

x[n] = Acos(0.2πn+φ)FREQS @ 0.2π and -0.2πALIASES:

{2.2π, 4.2π, 6.2π, …} & {-1.8π,-3.8π,…}EX: x[n] = Acos(4.2πn+φ)

ALIASES of NEGATIVE FREQ: {1.8π,3.8π,5.8π,…} & {-2.2π, -4.2π …}

Page 54: Signal Processing First Lecture Slides

8/22/2003 © 2003, JH McClellan & RW Schafer 10

SPECTRUM (MORE LINES)

ˆ ω

12 X1

2 X*

2π(0.1)π(0.1)π(0.1)π(0.1)–0.2ππππ

12 X*

1.8ππππ

12 X

–1.8ππππ

))1000/)(100(2cos(][ ϕπ += nAnx

kHz1=sf

sffπω 2ˆ =

8/22/2003 © 2003, JH McClellan & RW Schafer 11

SPECTRUM (ALIASING CASE)

12 X*

–0.5ππππ

12 X

–1.5ππππ

12 X

0.5ππππ 2.5ππππ–2.5ππππˆ ω

12 X1

2 X* 12 X*

1.5ππππ

))80/)(100(2cos(][ ϕπ += nAnxkHz80=sf

sffπω 2ˆ =

8/22/2003 © 2003, JH McClellan & RW Schafer 12

FOLDING (a type of ALIASING)

EXAMPLE: 3 different x(t); same x[n]

])1.0(2cos[])1.0(2cos[]2)9.0(2cos[])9.0(2cos[))900(2cos(

])1.0(2cos[])1.1(2cos[))1100(2cos(])1.0(2cos[))100(2cos(

1000

nnnnnt

nntnt

fs

ππππππ

πππππ

=−=−=→

=→→

= )1.0(210001002ˆ ππω ==

900 Hz “folds” to 100 Hz when fs=1kHz8/22/2003 © 2003, JH McClellan & RW Schafer 13

DIGITAL FREQ AGAIN

ss f

fT πωω 2ˆ == π2+

ππωω 22ˆ +−==s

s ffT FOLDED ALIAS

ω̂

ALIASING

Page 55: Signal Processing First Lecture Slides

8/22/2003 © 2003, JH McClellan & RW Schafer 14

SPECTRUM (FOLDING CASE)

ˆ ω = 2π ffs

fs = 125Hz

12 X*

0.4ππππ

12 X

–0.4ππππ 1.6ππππ–1.6ππππˆ ω

12 X1

2 X*

))125/)(100(2cos(][ ϕπ += nAnx

8/22/2003 © 2003, JH McClellan & RW Schafer 15

FREQUENCY DOMAINS

D-to-AA-to-Dx(t) y(t)x[n]

ffω

ω̂

y[n]

sffπ

ω2ˆ

=

π2+sffπω 2ˆ =

8/22/2003 © 2003, JH McClellan & RW Schafer 16

DEMOS from CHAPTER 4

CD-ROM DEMOSSAMPLING DEMO (con2dis GUI)

Different Sampling RatesAliasing of a Sinusoid

STROBE DEMOSynthetic vs. RealTelevision SAMPLES at 30 fps

Sampling & Reconstruction

8/22/2003 © 2003, JH McClellan & RW Schafer 17

SAMPLING GUI (con2dis)

Page 56: Signal Processing First Lecture Slides

8/22/2003 © 2003, JH McClellan & RW Schafer 19

D-to-A Reconstruction

Create continuous y(t) from y[n]IDEALIDEAL

If you have formula for y[n]Replace n in y[n] with fsty[n] = Acos(0.2πn+φ) with fs = 8000 Hzy(t) = Acos(2π(800)t+φ)

COMPUTER D-to-AA-to-Dx(t) y(t)y[n]x[n]

8/22/2003 © 2003, JH McClellan & RW Schafer 20

D-to-A is AMBIGUOUS !

ALIASINGGiven y[n], which y(t) do we pick ? ? ?INFINITE NUMBER of y(t)

PASSING THRU THE SAMPLES, y[n]D-to-A RECONSTRUCTION MUST CHOOSE ONE OUTPUT

RECONSTRUCT THE SMOOTHESTONE

THE LOWEST FREQ, if y[n] = sinusoid

8/22/2003 © 2003, JH McClellan & RW Schafer 21

SPECTRUM (ALIASING CASE)

ˆ ω = 2π ffs

fs = 80Hz

12 X*

–0.5ππππ

12 X

–1.5ππππ

12 X

0.5ππππ 2.5ππππ–2.5ππππˆ ω

12 X1

2 X* 12 X*

1.5ππππ

))80/)(100(2cos(][ ϕπ += nAnx

8/22/2003 © 2003, JH McClellan & RW Schafer 22

Reconstruction (D-to-A)

CONVERT STREAM of NUMBERS to x(t)“CONNECT THE DOTS”INTERPOLATION

y(t)

y[k]

kTs (k+1)Tst

INTUITIVE,conveys the idea

Page 57: Signal Processing First Lecture Slides

8/22/2003 © 2003, JH McClellan & RW Schafer 23

SAMPLE & HOLD DEVICE

CONVERT y[n] to y(t)y[k] should be the value of y(t) at t = kTs

Make y(t) equal to y[k] forkTs -0.5Ts < t < kTs +0.5Ts

y(t)

y[k]

kTs (k+1)Tst

STAIR-STEPAPPROXIMATION

8/22/2003 © 2003, JH McClellan & RW Schafer 24

SQUARE PULSE CASE

8/22/2003 © 2003, JH McClellan & RW Schafer 25

OVER-SAMPLING CASE

EASIER TO RECONSTRUCT

8/22/2003 © 2003, JH McClellan & RW Schafer 26

MATH MODEL for D-to-A

SQUARE PULSE:

Page 58: Signal Processing First Lecture Slides

8/22/2003 © 2003, JH McClellan & RW Schafer 27

EXPAND the SUMMATION

SUM of SHIFTED PULSES p(t-nTs)“WEIGHTED” by y[n]CENTERED at t=nTs

SPACED by TsRESTORES “REAL TIME”

y[n]p(t − nTs ) =n= −∞

∑…+ y[0]p(t) + y[1]p(t − Ts ) + y[2]p(t − 2Ts ) +…

8/22/2003 © 2003, JH McClellan & RW Schafer 28

p(t)

8/22/2003 © 2003, JH McClellan & RW Schafer 29

TRIANGULAR PULSE (2X)

8/22/2003 © 2003, JH McClellan & RW Schafer 30

OPTIMAL PULSE ?

CALLED“BANDLIMITEDINTERPOLATION”

…,2,for 0)(

for sin

)(

ss

TtTt

TTttp

ttps

s

±±==

∞<<∞−= π

π

Page 59: Signal Processing First Lecture Slides

2/18/2005 © 2003, JH McClellan & RW Schafer 1

Signal Processing First

Lecture 10FIR Filtering Intro

2/18/2005 © 2003, JH McClellan & RW Schafer 3

READING ASSIGNMENTS

This Lecture:Chapter 5, Sects. 5-1, 5-2 and 5-3 (partial)

Other Reading:Recitation: Ch. 5, Sects 5-4, 5-6, 5-7 and 5-8

CONVOLUTIONNext Lecture: Ch 5, Sects. 5-3, 5-5 and 5-6

2/18/2005 © 2003, JH McClellan & RW Schafer 4

LECTURE OBJECTIVES

INTRODUCE FILTERING IDEAWeighted AverageRunning Average

FINITE IMPULSE RESPONSE FILTERSFIRFIR FiltersShow how to compute the output y[n] from the input signal, x[n]

2/18/2005 © 2003, JH McClellan & RW Schafer 5

DIGITAL FILTERING

CONCENTRATE on the COMPUTERPROCESSING ALGORITHMS

SOFTWARE (MATLAB)HARDWARE: DSP chips, VLSI

DSP: DIGITAL SIGNAL PROCESSING

COMPUTER D-to-AA-to-Dx(t) y(t)y[n]x[n]

Page 60: Signal Processing First Lecture Slides

2/18/2005 © 2003, JH McClellan & RW Schafer 6

The TMS32010, 1983

First PC plug-in board from Atlanta Signal Processors Inc.

2/18/2005 © 2003, JH McClellan & RW Schafer 7

Rockland Digital Filter, 1971

For the price of a small house, you could have one of these.

2/18/2005 © 2003, JH McClellan & RW Schafer 8

Digital Cell Phone (ca. 2000)

Now it plays video2/18/2005 © 2003, JH McClellan & RW Schafer 9

DISCRETE-TIME SYSTEM

OPERATE on x[n] to get y[n]WANT a GENERAL CLASS of SYSTEMS

ANALYZE the SYSTEMTOOLS: TIME-DOMAIN & FREQUENCY-DOMAIN

SYNTHESIZE the SYSTEM

COMPUTERy[n]x[n]

Page 61: Signal Processing First Lecture Slides

2/18/2005 © 2003, JH McClellan & RW Schafer 10

D-T SYSTEM EXAMPLES

EXAMPLES:POINTWISE OPERATORS

SQUARING: y[n] = (x[n])2

RUNNING AVERAGERULE: “the output at time n is the average of three consecutive input values”

SYSTEMy[n]x[n]

2/18/2005 © 2003, JH McClellan & RW Schafer 11

DISCRETE-TIME SIGNAL

x[n] is a LIST of NUMBERSINDEXED by “n”

STEM PLOT

2/18/2005 © 2003, JH McClellan & RW Schafer 12

3-PT AVERAGE SYSTEMADD 3 CONSECUTIVE NUMBERS

Do this for each “n”Make a TABLE

n=0

n=1

])2[]1[][(][ 31 ++++= nxnxnxny

2/18/2005 © 2003, JH McClellan & RW Schafer 13

INPUT SIGNAL

OUTPUT SIGNAL

])2[]1[][(][ 31 ++++= nxnxnxny

Page 62: Signal Processing First Lecture Slides

2/18/2005 © 2003, JH McClellan & RW Schafer 14

PAST, PRESENT, FUTURE

“n” is TIME

2/18/2005 © 2003, JH McClellan & RW Schafer 15

ANOTHER 3-pt AVERAGER

Uses “PAST” VALUES of x[n]IMPORTANT IF “n” represents REAL TIME

WHEN x[n] & y[n] ARE STREAMS

])2[]1[][(][ 31 −+−+= nxnxnxny

2/18/2005 © 2003, JH McClellan & RW Schafer 16

GENERAL CAUSAL FIR FILTER

FILTER COEFFICIENTS {bk}DEFINE THE FILTER

For example,

∑=

−=M

kk knxbny

0][][

]3[]2[2]1[][3

][][3

0

−+−+−−=

−= ∑=

nxnxnxnx

knxbnyk

k

}1,2,1,3{ −=kb

2/18/2005 © 2003, JH McClellan & RW Schafer 17

GENERAL FIR FILTER

FILTER COEFFICIENTS {bk}

FILTER ORDER is MFILTER LENGTH is L = M+1

NUMBER of FILTER COEFFS is L

∑=

−=M

kk knxbny

0][][

Page 63: Signal Processing First Lecture Slides

2/18/2005 © 2003, JH McClellan & RW Schafer 18

SLIDE a WINDOW across x[n]

x[n]x[n-M]

∑=

−=M

kk knxbny

0][][

GENERAL CAUSAL FIR FILTER

2/18/2005 © 2003, JH McClellan & RW Schafer 19

FILTERED STOCK SIGNAL

OUTPUT

INPUT

50-pt Averager

2/18/2005 © 2003, JH McClellan & RW Schafer 20

⎪⎩

⎪⎨⎧

==

00

01][

n

nnδ

SPECIAL INPUT SIGNALS

x[n] = SINUSOIDx[n] has only one NON-ZERO VALUE

1

n

UNIT-IMPULSE

FREQUENCY RESPONSE (LATER)

2/18/2005 © 2003, JH McClellan & RW Schafer 21

UNIT IMPULSE SIGNAL δ[n]

δ[n] is NON-ZEROWhen its argumentis equal to ZERO

]3[ −nδ3=n

Page 64: Signal Processing First Lecture Slides

2/18/2005 © 2003, JH McClellan & RW Schafer 22

]4[2]3[4]2[6]1[4][2][ −+−+−+−+= nnnnnnx δδδδδ

MATH FORMULA for x[n]

Use SHIFTED IMPULSES to write x[n]

2/18/2005 © 2003, JH McClellan & RW Schafer 23

SUM of SHIFTED IMPULSES

This formula ALWAYS works

2/18/2005 © 2003, JH McClellan & RW Schafer 24

4-pt AVERAGER

CAUSAL SYSTEM: USE PAST VALUES])3[]2[]1[][(][ 4

1 −+−+−+= nxnxnxnxny

INPUT = UNIT IMPULSE SIGNAL = δ[n]

]3[]2[]1[][][][][

41

41

41

41 −+−+−+=

=nnnnny

nnxδδδδ

δ

OUTPUT is called “IMPULSE RESPONSE”},0,0,,,,,0,0,{][ 4

141

41

41 KK=nh

2/18/2005 © 2003, JH McClellan & RW Schafer 25

},0,0,,,,,0,0,{][ 41

41

41

41 KK=nh

4-pt Avg Impulse Response

δ[n] “READS OUT” the FILTER COEFFICIENTS

n=0“h” in h[n] denotes Impulse Response

1

n

n=0n=1

n=4n=5

n=–1

NON-ZERO When window overlaps δ[n]

])3[]2[]1[][(][ 41 −+−+−+= nxnxnxnxny

Page 65: Signal Processing First Lecture Slides

2/18/2005 © 2003, JH McClellan & RW Schafer 26

FIR IMPULSE RESPONSE

Convolution = Filter DefinitionFilter Coeffs = Impulse Response

∑=

−=M

kknxkhny

0][][][

CONVOLUTION

∑=

−=M

kk knxbny

0][][

2/18/2005 © 2003, JH McClellan & RW Schafer 27

FILTERING EXAMPLE

7-point AVERAGERRemoves cosine

By making its amplitude (A) smaller

3-point AVERAGERChanges A slightly

( )∑=

−=6

071

7 ][][k

knxny

( )∑=

−=2

031

3 ][][k

knxny

2/18/2005 © 2003, JH McClellan & RW Schafer 28

3-pt AVG EXAMPLE

USE PAST VALUES

400for)4/8/2cos()02.1(][ :Input ≤≤++= nnnx n ππ

2/18/2005 © 2003, JH McClellan & RW Schafer 29

7-pt FIR EXAMPLE (AVG)

CAUSAL: Use Previous

LONGER OUTPUT

400for)4/8/2cos()02.1(][ :Input ≤≤++= nnnx n ππ

Page 66: Signal Processing First Lecture Slides

8/22/2003 © 2003, JH McClellan & RW Schafer 1

Signal Processing First

Lecture 11Linearity & Time-InvarianceConvolution

8/22/2003 © 2003, JH McClellan & RW Schafer 3

READING ASSIGNMENTS

This Lecture:Chapter 5, Sections 5-5 and 5-6

Section 5-4 will be covered, but not “in depth”

Other Reading:Recitation: Ch. 5, Sects 5-6, 5-7 & 5-8

CONVOLUTIONNext Lecture: start Chapter 6

8/22/2003 © 2003, JH McClellan & RW Schafer 4

LECTURE OBJECTIVES

BLOCK DIAGRAM REPRESENTATIONComponents for HardwareConnect Simple Filters Together to Build More Complicated Systems

LTI SYSTEMS

GENERAL PROPERTIES of FILTERSLLINEARITYTTIME-IINVARIANCE==> CONVOLUTIONCONVOLUTION

8/22/2003 © 2003, JH McClellan & RW Schafer 5

IMPULSE RESPONSE, FIR case: same as

CONVOLUTIONGENERAL:GENERAL CLASS of SYSTEMSLINEAR and TIME-INVARIANT

ALL LTI systems have h[n] & use convolution

OVERVIEW

][][][ nxnhny ∗=

][nh

}{ kb

Page 67: Signal Processing First Lecture Slides

8/22/2003 © 2003, JH McClellan & RW Schafer 6

CONCENTRATE on the FILTER (DSP)DISCRETE-TIME SIGNALS

FUNCTIONS of n, the “time index”INPUT x[n]OUTPUT y[n]

DIGITAL FILTERING

FILTER D-to-AA-to-Dx(t) y(t)y[n]x[n]

8/22/2003 © 2003, JH McClellan & RW Schafer 7

BUILDING BLOCKS

BUILD UP COMPLICATED FILTERSFROM SIMPLE MODULESEx: FILTER MODULE MIGHT BE 3-pt FIR

FILTERy[n]x[n]

FILTER

FILTER

++

INPUT

OUTPUT

8/22/2003 © 2003, JH McClellan & RW Schafer 8

GENERAL FIR FILTER

FILTER COEFFICIENTS {bk}DEFINE THE FILTER

For example,

∑=

−=M

kk knxbny

0][][

]3[]2[2]1[][3

][][3

0

−+−+−−=

−=∑=

nxnxnxnx

knxbnyk

k

}1,2,1,3{ −=kb

8/22/2003 © 2003, JH McClellan & RW Schafer 9

MATLAB for FIR FILTER

yy = conv(bb,xx)

VECTOR bb contains Filter Coefficients

DSP-First: yy = firfilt(bb,xx)

FILTER COEFFICIENTS {bk} conv2()for images

∑=

−=M

kk knxbny

0][][

Page 68: Signal Processing First Lecture Slides

8/22/2003 © 2003, JH McClellan & RW Schafer 10

SPECIAL INPUT SIGNALS

x[n] = SINUSOIDx[n] has only one NON-ZERO VALUE

1

n

UNIT-IMPULSE

FREQUENCY RESPONSE

==

00

01][

n

nnδ

8/22/2003 © 2003, JH McClellan & RW Schafer 11

FIR IMPULSE RESPONSE

Convolution = Filter DefinitionFilter Coeffs = Impulse Response

∑=

−=M

kk knxbny

0][][ ∑

=−=

M

kk knbnh

0][][ δ

8/22/2003 © 2003, JH McClellan & RW Schafer 12

]4[]3[]2[2]1[][][ −+−−−+−−= nnnnnnh δδδδδ

MATH FORMULA for h[n]

Use SHIFTED IMPULSES to write h[n]

1

n

–1

2

0 4

][nh

}1,1,2,1,1{ −−=kb8/22/2003 © 2003, JH McClellan & RW Schafer 13

∑=

−=M

kknxkhny

0][][][

LTI: Convolution Sum

Output = Convolution of x[n] & h[n]Output = Convolution of x[n] & h[n]NOTATION:Here is the FIR case:

FINITE LIMITS

FINITE LIMITSSame as bk

][][][ nxnhny ∗=

Page 69: Signal Processing First Lecture Slides

8/22/2003 © 2003, JH McClellan & RW Schafer 14

CONVOLUTION Example

n −1 0 1 2 3 4 5 6 7x[n] 0 1 1 1 1 1 1 1 ...h[n] 0 1 −1 2 −1 1 0 0 0

0 1 1 1 1 1 1 1 10 0 −1 −1 −1 −1 −1 −1 −10 0 0 2 2 2 2 2 20 0 0 0 −1 −1 −1 −1 −10 0 0 0 0 1 1 1 1

y[n] 0 1 0 2 1 2 2 2 ...

][][]4[]3[]2[2]1[][][

nunxnnnnnnh

=−+−−−+−−= δδδδδ

]4[]4[]3[]3[]2[]2[]1[]1[

][]0[

−−−−

nxhnxhnxhnxhnxh

8/22/2003 © 2003, JH McClellan & RW Schafer 15

GENERAL FIR FILTERSLIDE a Length-L WINDOW over x[n]

x[n]x[n-M]

8/22/2003 © 2003, JH McClellan & RW Schafer 16

DCONVDEMO: MATLAB GUI

8/22/2003 © 2003, JH McClellan & RW Schafer 17

]1[][][ −−= nununy

POP QUIZ

FIR Filter is “FIRST DIFFERENCE”y[n] = x[n] - x[n-1]

INPUT is “UNIT STEP”

Find y[n]

<

≥=

00

01][

n

nnu

][]1[][][ nnununy δ=−−=

Page 70: Signal Processing First Lecture Slides

8/22/2003 © 2003, JH McClellan & RW Schafer 18

HARDWARE STRUCTURES

INTERNAL STRUCTURE of “FILTER”WHAT COMPONENTS ARE NEEDED?HOW DO WE “HOOK” THEM TOGETHER?

SIGNAL FLOW GRAPH NOTATION

FILTER y[n]x[n]∑

=−=

M

kk knxbny

0][][

8/22/2003 © 2003, JH McClellan & RW Schafer 19

HARDWARE ATOMS

Add, Multiply & Store∑

=−=

M

kk knxbny

0][][

][][ nxny β=

]1[][ −= nxny

][][][ 21 nxnxny +=

8/22/2003 © 2003, JH McClellan & RW Schafer 20

FIR STRUCTURE

Direct Form

SIGNALFLOW GRAPH

∑=

−=M

kk knxbny

0][][

8/22/2003 © 2003, JH McClellan & RW Schafer 21

Moore’s Law for TI DSPs

Double every18 months ?

LOG SCALE

Page 71: Signal Processing First Lecture Slides

8/22/2003 © 2003, JH McClellan & RW Schafer 22

SYSTEM PROPERTIES

MATHEMATICAL DESCRIPTIONMATHEMATICAL DESCRIPTIONTIMETIME--INVARIANCEINVARIANCELINEARITYLINEARITYCAUSALITY

“No output prior to input”

SYSTEMy[n]x[n]

8/22/2003 © 2003, JH McClellan & RW Schafer 23

TIME-INVARIANCE

IDEA:“Time-Shifting the input will cause the sametime-shift in the output”

EQUIVALENTLY,We can prove that

The time origin (n=0) is picked arbitrary

8/22/2003 © 2003, JH McClellan & RW Schafer 24

TESTING Time-Invariance

8/22/2003 © 2003, JH McClellan & RW Schafer 25

LINEAR SYSTEM

LINEARITY = Two PropertiesSCALING

“Doubling x[n] will double y[n]”

SUPERPOSITION:“Adding two inputs gives an output that is the sum of the individual outputs”

Page 72: Signal Processing First Lecture Slides

8/22/2003 © 2003, JH McClellan & RW Schafer 26

TESTING LINEARITY

8/22/2003 © 2003, JH McClellan & RW Schafer 27

LTI SYSTEMS

LTI: Linear & Time-Invariant

COMPLETELY CHARACTERIZED by:IMPULSE RESPONSE h[n]CONVOLUTION: y[n] = x[n]*h[n]

The “rule”defining the system can ALWAYS be re-written as convolution

FIR Example: h[n] is same as bk

8/22/2003 © 2003, JH McClellan & RW Schafer 28

POP QUIZ

FIR Filter is “FIRST DIFFERENCE”y[n] = x[n] - x[n -1]

Write output as a convolutionNeed impulse response

Then, another way to compute the output:]1[][][ −−= nnnh δδ

( ) ][]1[][][ nxnnny ∗−−= δδ

8/22/2003 © 2003, JH McClellan & RW Schafer 29

CASCADE SYSTEMS

Does the order of S1 & S2 matter?NO, LTI SYSTEMS can be rearranged !!!WHAT ARE THE FILTER COEFFS? {bk}

S1 S2

Page 73: Signal Processing First Lecture Slides

8/22/2003 © 2003, JH McClellan & RW Schafer 30

CASCADE EQUIVALENTFind “overall” h[n] for a cascade ?

S1 S2

S1S2

Page 74: Signal Processing First Lecture Slides

2/25/2005 © 2003, JH McClellan & RW Schafer 1

Signal Processing First

Lecture 12Frequency Response

of FIR Filters

2/25/2005 © 2003, JH McClellan & RW Schafer 3

READING ASSIGNMENTS

This Lecture:Chapter 6, Sections 6-1, 6-2, 6-3, 6-4, & 6-5

Other Reading:Recitation: Chapter 6

FREQUENCY RESPONSE EXAMPLESNext Lecture: Chap. 6, Sects. 6-6, 6-7 & 6-8

2/25/2005 © 2003, JH McClellan & RW Schafer 4

LECTURE OBJECTIVES

SINUSOIDAL INPUT SIGNALDETERMINE the FIR FILTER OUTPUT

FREQUENCY RESPONSE of FIRPLOTTING vs. FrequencyMAGNITUDE vs. FreqPHASE vs. Freq )(ˆˆ ˆ

)()(ωωω jeHjjj eeHeH ∠=

MAG

PHASE

2/25/2005 © 2003, JH McClellan & RW Schafer 5

DOMAINS: Time & Frequency

Time-Domain: “n” = timex[n] discrete-time signalx(t) continuous-time signal

Frequency Domain (sum of sinusoids)Spectrum vs. f (Hz)

• ANALOG vs. DIGITAL

Spectrum vs. omega-hatMove back and forth QUICKLY

Page 75: Signal Processing First Lecture Slides

2/25/2005 © 2003, JH McClellan & RW Schafer 8

DIGITAL “FILTERING”

CONCENTRATE on the SPECTRUMSPECTRUMSINUSOIDAL INPUT

INPUT x[n] = SUM of SINUSOIDSThen, OUTPUT y[n] = SUM of SINUSOIDS

FILTER D-to-AA-to-Dx(t) y(t)y[n]x[n]

ω̂ω̂

2/25/2005 © 2003, JH McClellan & RW Schafer 9

FILTERING EXAMPLE

7-point AVERAGERRemoves cosine

By making its amplitude (A) smaller

3-point AVERAGERChanges A slightly

( )∑=

−=6

071

7 ][][k

knxny

( )∑=

−=2

031

3 ][][k

knxny

2/25/2005 © 2003, JH McClellan & RW Schafer 10

3-pt AVG EXAMPLE

USE PAST VALUES

400for)4/8/2cos()02.1(][ :Input ≤≤++= nnnx n ππ

2/25/2005 © 2003, JH McClellan & RW Schafer 11

7-pt FIR EXAMPLE (AVG)

CAUSAL: Use Previous

LONGER OUTPUT

400for)4/8/2cos()02.1(][ :Input ≤≤++= nnnx n ππ

Page 76: Signal Processing First Lecture Slides

2/25/2005 © 2003, JH McClellan & RW Schafer 12

SINUSOIDAL RESPONSE

INPUT: x[n] = SINUSOIDOUTPUT: y[n] will also be a SINUSOID

Different Amplitude and Phase

SAME Frequency

AMPLITUDE & PHASE CHANGECalled the FREQUENCY RESPONSEFREQUENCY RESPONSE

2/25/2005 © 2003, JH McClellan & RW Schafer 13

DCONVDEMO: MATLAB GUI

2/25/2005 © 2003, JH McClellan & RW Schafer 14

COMPLEX EXPONENTIAL

∑∑==

−=−=M

k

M

kk knxkhknxbny

00][][][][

FIR DIFFERENCE EQUATION

∞<<∞−= neAenx njj ωϕ ˆ][x[n] is the input signal—a complex exponential

2/25/2005 © 2003, JH McClellan & RW Schafer 15

COMPLEX EXP OUTPUT

Use the FIR “Difference Equation”

njj eAeH ωϕω ˆ)ˆ(=

∑∑=

=

=−=M

k

knjjk

M

kk eAebknxbny

0

)(ˆ

0][][ ωϕ

njjM

k

kjk eAeeb ωϕω ˆ

0

)(ˆ⎟⎟⎠

⎞⎜⎜⎝

⎛= ∑

=

Page 77: Signal Processing First Lecture Slides

2/25/2005 © 2003, JH McClellan & RW Schafer 16

FREQUENCY RESPONSE

Complex-valued formulaHas MAGNITUDE vs. frequencyAnd PHASE vs. frequency

Notation:

FREQUENCYRESPONSE

At each frequency, we can DEFINE

)ˆ(of place in )( ˆ ωω HeH j

kjM

kkebH ωω ˆ

0)ˆ( −

=∑= kjM

kk

j ebeH ωω ˆ

0

ˆ )( −

=∑=

2/25/2005 © 2003, JH McClellan & RW Schafer 17

EXAMPLE 6.1

EXPLOITSYMMETRY

}1,2,1{}{ =kb

)ˆcos22()2(

21)(

ˆ

ˆˆˆ

ˆ2ˆˆ

ωω

ωωω

ωωω

+=++=

++=

−−

−−

j

jjj

jjj

eeee

eeeH

ω

ωω

ω

ω

ˆ)( is Phaseand

)ˆcos22()( is Magnitude0)ˆcos22( Since

ˆ

ˆ

−=∠

+=

≥+

j

j

eH

eH

2/25/2005 © 2003, JH McClellan & RW Schafer 18

PLOT of FREQ RESPONSE

ωω ω ˆˆ )ˆcos22()( jj eeH −+= RESPONSE at π/3

}1,2,1{}{ =kb

(radians)ω̂π− π

ω̂

2/25/2005 © 2003, JH McClellan & RW Schafer 19

EXAMPLE 6.2

y[n]x[n])( ω̂jeH

ωω ω ˆˆ )ˆcos22()( jj eeH −+=

njj

j

eenxeHny

)3/(4/

ˆ

2][ andknown is )( when][ Find

ππ

ω

=

Page 78: Signal Processing First Lecture Slides

2/25/2005 © 2003, JH McClellan & RW Schafer 20

njj eenxny )3/(4/2][ when][ Find ππ=

EXAMPLE 6.2 (answer)

3/ˆat )( evaluate-Step One ˆ πωω =jeHωω ω ˆˆ )ˆcos22()( jj eeH −+=

3/ˆ@3)( 3/ˆ πωπω == − jj eeH

( ) njjj eeeny )3/(4/3/ 23][ πππ ×= − njj ee )3/(12/6 ππ−=

2/25/2005 © 2003, JH McClellan & RW Schafer 21

EXAMPLE: COSINE INPUT

)cos(2][ andknown is )( when][ Find

43

ˆ

ππ

ω

+= nnxeHny j

ωω ω ˆˆ )ˆcos22()( jj eeH −+=

y[n]x[n] )( ω̂jeHω̂ ω̂

2/25/2005 © 2003, JH McClellan & RW Schafer 22

EX: COSINE INPUT

)cos(2][ when][ Find 43ππ += nnxny

][][][)cos(2

21

)4/3/()4/3/(43

nxnxnxeen njnj

+=⇒+=+ +−+ ππππππ

][][][)(][

)(][

21

)4/3/(3/2

)4/3/(3/1

nynynyeeHny

eeHnynjj

njj

+=⇒=

=+−−

+

πππ

πππUseLinearity

2/25/2005 © 2003, JH McClellan & RW Schafer 23

EX: COSINE INPUT (ans-2)

)cos(2][ when][ Find 43ππ += nnxny

)4/3/()3/()4/3/(3/2

)4/3/()3/()4/3/(3/1

3)(][3)(][

ππππππ

ππππππ

+−+−−

+−+

==

==njjnjj

njjnjj

eeeeHnyeeeeHny

)cos(6][33][

123

)12/3/()12/3/(

ππ

ππππ

−=⇒+= −−−

nnyeeny njnj

ωω ω ˆˆ )ˆcos22()( jj eeH −+=

Page 79: Signal Processing First Lecture Slides

2/25/2005 © 2003, JH McClellan & RW Schafer 24

MATLAB:FREQUENCY RESPONSE

HH = freqz(bb,1,ww)VECTOR bb contains Filter Coefficients

SP-First: HH = freekz(bb,1,ww)FILTER COEFFICIENTS {bk}

kjM

kk

j ebeH ωω ˆ

0

ˆ )( −

=∑=

2/25/2005 © 2003, JH McClellan & RW Schafer 26

Time & Frequency Relation

Get Frequency Response from h[n]Here is the FIR case:

kjM

k

kjM

kk

j ekhebeH ωωω ˆ

0

ˆ

0

ˆ ][)( −

=

=∑∑ ==

IMPULSE RESPONSE

2/25/2005 © 2003, JH McClellan & RW Schafer 27

BLOCK DIAGRAMS

Equivalent Representations

y[n]x[n]

y[n]x[n])( ω̂jeH

][nh

ω̂ˆ ω

2/25/2005 © 2003, JH McClellan & RW Schafer 28

UNIT-DELAY SYSTEM

y[n]x[n] ]1[ −nδ

y[n]x[n] ω̂je−)( ω̂jeH

ˆ ω ˆ ω

]1[][for )( and ][ Find ˆ −= nxnyeHnh jω

}1,0{}{ =kb

Page 80: Signal Processing First Lecture Slides

2/25/2005 © 2003, JH McClellan & RW Schafer 29

FIRST DIFFERENCE SYSTEM

y[n]x[n] ω̂1 je−−

y[n]x[n] ]1[][ −− nn δδ

)( ω̂jeH

]1[][][ :Equatione Differencfor the )( and ][ Find ˆ

−−= nxnxnyeHnh jω

2/25/2005 © 2003, JH McClellan & RW Schafer 30

DLTI Demo with Sinusoids

FILTERx[n] y[n]

2/25/2005 © 2003, JH McClellan & RW Schafer 31

CASCADE SYSTEMS

Does the order of S1 & S2 matter?NO, LTI SYSTEMS can be rearranged !!!WHAT ARE THE FILTER COEFFS? {bk}WHAT is the overall FREQUENCY RESPONSE ?

S1 S2][nδ ][1 nh ][][ 21 nhnh ∗][1 nh ][2 nh

2/25/2005 © 2003, JH McClellan & RW Schafer 32

CASCADE EQUIVALENT

MULTIPLY the Frequency Responses

y[n]x[n] )( ω̂jeH

x[n] )( ˆ1

ωjeH y[n])( ˆ2

ωjeH

)()()( ˆ2

ˆ1

ˆ ωωω jjj eHeHeH =EQUIVALENTSYSTEM

Page 81: Signal Processing First Lecture Slides

10/6/2003 © 2003, JH McClellan & RW Schafer 1

Signal Processing First

Lecture 13Digital Filtering

of Analog Signals

10/6/2003 © 2003, JH McClellan & RW Schafer 3

READING ASSIGNMENTS

This Lecture:Chapter 6, Sections 6-6, 6-7 & 6-8

Other Reading:Recitation: Chapter 6

FREQUENCY RESPONSE EXAMPLESNext Lecture: Chapter 7

10/6/2003 © 2003, JH McClellan & RW Schafer 4

LECTURE OBJECTIVES

Two Domains: Time & FrequencyTrack the spectrum of x[n] thru an FIR Filter: Sinusoid-IN gives Sinusoid-OUTUNIFICATION: How does Frequency Response affect x(t) to produce y(t) ?

D-to-AA-to-Dx(t) y(t)y[n]x[n] )( ω̂jeH

FIRω̂ ω̂

10/6/2003 © 2003, JH McClellan & RW Schafer 5

TIME & FREQUENCY

FIR DIFFERENCE EQUATION is the TIME-DOMAIN

∑∑==

−=−=M

k

M

kk knxkhknxbny

00][][][][

∑=

−=M

k

kjj ekheH0

ˆˆ ][)( ωω

++++= −−− ωωωω ˆ3ˆ2ˆˆ ]3[]2[]1[]0[)( jjjj ehehehheH

Page 82: Signal Processing First Lecture Slides

10/6/2003 © 2003, JH McClellan & RW Schafer 6

Ex: DELAY by 2 SYSTEM

y[n]x[n] )( ω̂jeH

y[n]x[n] ][nh

]2[][for )( and ][ Find ˆ −= nxnyeHnh jω

]2[][ −= nnh δ

}1,0,0{=kb

ω̂ ω̂10/6/2003 © 2003, JH McClellan & RW Schafer 7

DELAY by 2 SYSTEM

k = 2 ONLY

y[n]x[n] ]2[ −nδ

]2[][for )( and ][ Find ˆ −= nxnyeHnh jω

∑=

−−=M

k

kjj ekeH0

ˆˆ ]2[)( ωω δ

)( ω̂jeHy[n]x[n] ω̂2je−

ω̂ ω̂

10/6/2003 © 2003, JH McClellan & RW Schafer 8

GENERAL DELAY PROPERTY

ONLY ONE non-ZERO TERMfor k at k = nd

dnjM

k

kjd

j eenkeH ωωω δ ˆ

0

ˆˆ ][)( −

=

− =−=∑

][][for )( and ][ Find ˆd

j nnxnyeHnh −=ω

][][ dnnnh −= δ

10/6/2003 © 2003, JH McClellan & RW Schafer 9

FREQ DOMAIN --> TIME ??

START with kj bnheH or find and ][)( ω̂

)ˆcos(7)( ˆ2ˆ ωωω jj eeH −=

y[n]x[n] ][nh ?][ =nh

y[n]x[n])( ω̂jeH

ω̂ ω̂

Page 83: Signal Processing First Lecture Slides

10/6/2003 © 2003, JH McClellan & RW Schafer 10

FREQ DOMAIN --> TIME

EULER’s Formula)ˆcos(7)( ˆ2ˆ ωωω jj eeH −=)5.05.0(7 ˆˆˆ2 ωωω jjj eee −− +=

)5.35.3( ˆ3ˆ ωω jj ee −− +=

]3[5.3]1[5.3][ −+−= nnnh δδ}5.3,0,5.3,0{=kb

10/6/2003 © 2003, JH McClellan & RW Schafer 11

PREVIOUS LECTURE REVIEW

SINUSOIDAL INPUT SIGNALOUTPUT has SAME FREQUENCYDIFFERENT Amplitude and Phase

FREQUENCY RESPONSE of FIRMAGNITUDE vs. FrequencyPHASE vs. FreqPLOTTING

)(ˆˆ ˆ

)()(ωωω jeHjjj eeHeH ∠=

MAG

PHASE

10/6/2003 © 2003, JH McClellan & RW Schafer 12

FREQ. RESPONSE PLOTS

DENSE GRID (ww) from -ππππ to +ππππww = -pi:(pi/100):pi;

HH = freqz(bb,1,ww)VECTOR bb contains Filter CoefficientsDSP-First: HH = freekz(bb,1,ww)

∑=

−=M

k

kjk

j ebeH0

ˆˆ )( ωω

10/6/2003 © 2003, JH McClellan & RW Schafer 13

PLOT of FREQ RESPONSE

ωω ω ˆˆ )ˆcos22()( jj eeH −+= RESPONSE at ππππ/3

}1,2,1{}{ =kb

(radians)ω̂π− π

ω̂

Page 84: Signal Processing First Lecture Slides

10/6/2003 © 2003, JH McClellan & RW Schafer 14

EXAMPLE 6.2

ω̂ω̂

y[n]x[n])( ω̂jeH

ωω ω ˆˆ )ˆcos22()( jj eeH −+=

njj

j

eenxeHny

)3/(4/

ˆ

2][ andknown is )( when][ Find

ππ

ω

=

10/6/2003 © 2003, JH McClellan & RW Schafer 15

njj eenxny )3/(4/2][ when][ Find ππ=

EXAMPLE 6.2 (answer)

3/ˆat )( evaluate -Step One ˆ πωω =jeHωω ω ˆˆ )ˆcos22()( jj eeH −+=

3/ˆ@3)( 3/ˆ πωπω == − jj eeH

( ) njjj eeeny )3/(4/3/ 23][ πππ ×= − njj ee )3/(12/6 ππ−=

10/6/2003 © 2003, JH McClellan & RW Schafer 16

EXAMPLE: COSINE INPUT

)cos(2][ andknown is )( when][ Find

43

ˆ

ππ

ω

+= nnxeHny j

ωω ω ˆˆ )ˆcos22()( jj eeH −+=

y[n]x[n] )( ω̂jeHω̂ ω̂

10/6/2003 © 2003, JH McClellan & RW Schafer 17

EX: COSINE INPUT (ans-1)

)cos(2][ when][ Find 43ππ += nnxny

][][][)cos(2

21

)4/3/()4/3/(43

nxnxnxeen njnj

+=⇒+=+ +−+ ππππππ

][][][)(][

)(][

21

)4/3/(3/2

)4/3/(3/1

nynynyeeHnyeeHny

njj

njj

+=⇒==

+−−

+

πππ

πππ

Page 85: Signal Processing First Lecture Slides

10/6/2003 © 2003, JH McClellan & RW Schafer 18

EX: COSINE INPUT (ans-2)

)cos(2][ when][ Find 43ππ += nnxny

)4/3/()3/()4/3/(3/2

)4/3/()3/()4/3/(3/1

3)(][3)(][

ππππππ

ππππππ

+−+−−

+−+

====

njjnjj

njjnjj

eeeeHnyeeeeHny

)cos(6][33][

123

)12/3/()12/3/(

ππ

ππππ

−=⇒+= −−−

nnyeeny njnj

ωω ω ˆˆ )ˆcos22()( jj eeH −+=

10/6/2003 © 2003, JH McClellan & RW Schafer 19

SINUSOID thru FIR

IF Multiply the Magnitudes

Add the Phases

))(ˆcos()(][

)ˆcos(][11 ˆ

1ωω φω

φωjj eHneHAny

nAnx

∠++=⇒

+=

)()( ˆˆ* ωω jj eHeH −=

10/6/2003 © 2003, JH McClellan & RW Schafer 20

LTI Demo with Sinusoids

FILTERx[n]

y[n]

10/6/2003 © 2003, JH McClellan & RW Schafer 21

DIGITAL “FILTERING”

SPECTRUM of x(t) (SUM of SINUSOIDS)SPECTRUM of x[n]

Is ALIASING a PROBLEM ?SPECTRUM y[n] (FIR Gain or Nulls)Then, OUTPUT y(t) = SUM of SINUSOIDS

D-to-AA-to-Dx(t) y(t)y[n]x[n] )( ω̂jeH

ω̂ ω̂ω ω

ω̂ω

ω

Page 86: Signal Processing First Lecture Slides

10/6/2003 © 2003, JH McClellan & RW Schafer 22

FREQUENCY SCALING

TIME SAMPLING:IF NO ALIASING:FREQUENCY SCALING

D-to-AA-to-Dx(t) y(t)y[n]x[n] )( ω̂jeH

ˆ ω ˆ ω ω ω

sfsT ωωω ==ˆsnTt =

10/6/2003 © 2003, JH McClellan & RW Schafer 23

11-pt AVERAGER Example

D-to-AA-to-Dx(t) y(t)y[n]x[n] )( ω̂jeH

ˆ ω ˆ ω ω ω

250 Hz

25 Hz ?))250(2cos())25(2cos()( 2

1 πππ −+= tttx

ωω

ωω ˆ5

21

211

ˆ

)ˆsin(11)ˆsin(

)( jj eeH −=

∑=

−=10

0111 ][][

kknxny

10/6/2003 © 2003, JH McClellan & RW Schafer 24

D-A FREQUENCY SCALING

RECONSTRUCT up to 0.5fsFREQUENCY SCALING

D-to-AA-to-Dx(t) y(t)y[n]x[n] )( ω̂jeH

ˆ ω ˆ ω ω ω

TIME SAMPLING:

sfωω ˆ=

ss ftnnTt ←⇒=

10/6/2003 © 2003, JH McClellan & RW Schafer 25

TRACK the FREQUENCIES

D-to-AA-to-Dx(t) y(t)y[n]x[n] )( ω̂jeH

ˆ ω ˆ ω ω ω

Fs = 1000 Hz

0.5ππππ

.05ππππ

0.5ππππ

.05ππππ

250 Hz

25 Hz

NO new freqs

250 Hz

25 Hz )(

)(

05.0

5.0

π

π

j

j

eH

eH

Page 87: Signal Processing First Lecture Slides

10/6/2003 © 2003, JH McClellan & RW Schafer 26

11-pt AVERAGER

NULLS or ZEROS

πω 5.0ˆ =πω 05.0ˆ =

10/6/2003 © 2003, JH McClellan & RW Schafer 27

EVALUATE Freq. Response

ωω

ωω ˆ5

21

211

ˆ

)ˆsin(11)ˆsin(

)( jj eeH −=

)5.0(5

21

211

ˆ

))5.0(sin(11))5.0(sin(

)( πω

ππ jj eeH −=

πω 5.0ˆAt =

π

ππ 5.2

)25.0sin(11)75.2sin( je−=

π5.00909.0 je−=

10/6/2003 © 2003, JH McClellan & RW Schafer 28

EVALUATE Freq. Response

fs = 1000MAG SCALE

PHASE CHANGE

)( 1000/)25(2πjeH

)( 1000/)250(2πjeH

10/6/2003 © 2003, JH McClellan & RW Schafer 29

EFFECTIVE RESPONSE

DIGITAL FILTER

LOW-PASS FILTER

)( ω̂jeH

Page 88: Signal Processing First Lecture Slides

10/6/2003 © 2003, JH McClellan & RW Schafer 30

FILTER TYPES

LOW-PASS FILTER (LPF)BLURRINGATTENUATES HIGH FREQUENCIES

HIGH-PASS FILTER (HPF)SHARPENING for IMAGESBOOSTS THE HIGHSREMOVES DC

BAND-PASS FILTER (BPF)

10/6/2003 © 2003, JH McClellan & RW Schafer 31

B & W IMAGE

10/6/2003 © 2003, JH McClellan & RW Schafer 32

B&W IMAGE with COSINEFILTERED: 11-pt AVG

10/6/2003 © 2003, JH McClellan & RW Schafer 33

FILTERED B&W IMAGE

LPF:BLUR

Page 89: Signal Processing First Lecture Slides

10/6/2003 © 2003, JH McClellan & RW Schafer 34

ROW of B&W IMAGE

BLACK = 255

WHITE = 0

10/6/2003 © 2003, JH McClellan & RW Schafer 35

FILTERED ROW of IMAGE

ADJUSTED DELAY by 5 samples

Page 90: Signal Processing First Lecture Slides

8/22/2003 © 2003, JH McClellan & RW Schafer 1

Signal Processing First

Lecture 14Z Transforms: Introduction

8/22/2003 © 2003, JH McClellan & RW Schafer 3

READING ASSIGNMENTS

This Lecture:Chapter 7, Sects 7-1 through 7-5

Other Reading:Recitation: Ch. 7

CASCADING SYSTEMSNext Lecture: Chapter 7, 7-6 to the end

8/22/2003 © 2003, JH McClellan & RW Schafer 4

LECTURE OBJECTIVES

INTRODUCE the Z-TRANSFORMGive Mathematical DefinitionShow how the H(z) POLYNOMIAL simplifies analysis

CONVOLUTION is SIMPLIFIED !

Z-Transform can be applied toFIR Filter: h[n] --> H(z)Signals: x[n] --> X(z) ∑ −=

n

nznhzH ][)()(][ zHnh →

)(][ zXnx →

8/22/2003 © 2003, JH McClellan & RW Schafer 5

TWO (no, THREE) DOMAINS

Z-TRANSFORM-DOMAINPOLYNOMIALS: H(z)

FREQ-DOMAIN

kjM

kk

j ebeH ωω ˆ

0

ˆ )( −

=∑=

TIME-DOMAIN

∑=

−=M

kk knxbny

0][][

}{ kb

Page 91: Signal Processing First Lecture Slides

8/22/2003 © 2003, JH McClellan & RW Schafer 6

TRANSFORM CONCEPT

Move to a new domain whereOPERATIONS are EASIER & FAMILIARUse POLYNOMIALS

TRANSFORM both waysx[n] ---> X(z) (into the z domain)X(z) ---> x[n] (back to the time domain)

)(][ zXnx →

][)( nxzX →

8/22/2003 © 2003, JH McClellan & RW Schafer 7

“TRANSFORM” EXAMPLE

Equivalent Representations

y[n]x[n]

y[n]x[n]

∑ −=n

njj enheH ωω ˆˆ ][)(

ωω ˆˆ 1)( jj eeH −−=

]1[][][ −−= nnnh δδ

8/22/2003 © 2003, JH McClellan & RW Schafer 8

Z-TRANSFORM IDEA

POLYNOMIAL REPRESENTATION

y[n]x[n]

y[n]x[n] )(zH

][nh∑ −=n

nznhzH ][)(

8/22/2003 © 2003, JH McClellan & RW Schafer 9

Z-Transform DEFINITION

POLYNOMIAL Representation of LTI SYSTEM:

EXAMPLE:

∑ −=n

nznhzH ][)(

APPLIES toAny SIGNAL

POLYNOMIAL in z-1

43210 20302)( −−−−− ++−+= zzzzzzH42 232 −− +−= zz

4121 )(2)(32 −− +−= zz

}2,0,3,0,2{]}[{ −=nh

Page 92: Signal Processing First Lecture Slides

8/22/2003 © 2003, JH McClellan & RW Schafer 10

Z-Transform EXAMPLE

ANY SIGNAL has a z-Transform:

∑ −=n

nznxzX ][)(

4321 24642)( −−−− ++++= zzzzzX?)( =zX8/22/2003 © 2003, JH McClellan & RW Schafer 11

531 321)( −−− −+−= zzzzX

EXPONENT GIVESTIME LOCATION

?][ =nx

8/22/2003 © 2003, JH McClellan & RW Schafer 12

Z-Transform of FIR Filter

CALLED the SYSTEM FUNCTIONSYSTEM FUNCTIONh[n] is same as {bk}

FIR DIFFERENCE EQUATION

∑∑==

−=−=M

k

M

kk knxkhknxbny

00][][][][

CONVOLUTION

SYSTEMFUNCTION ∑∑

=

=

− ==M

k

kM

k

kk zkhzbzH

00][)(

8/22/2003 © 2003, JH McClellan & RW Schafer 13

]2[]1[5][6][ −+−−= nxnxnxny

211 56)( −−− +−==∑ zzzbzH k

Z-Transform of FIR Filter

Get H(z) DIRECTLY from the {bk}Example 7.3 in the book:

}1,5,6{}{ −=kb

Page 93: Signal Processing First Lecture Slides

8/22/2003 © 2003, JH McClellan & RW Schafer 14

Ex. DELAY SYSTEM

UNIT DELAY: find h[n] and H(z)

y[n]x[n]

y[n] = x[n-1]x[n] ]1[ −nδ

∑ −−= nznzH ]1[)( δ 1−= z

1−z8/22/2003 © 2003, JH McClellan & RW Schafer 15

DELAY EXAMPLEUNIT DELAY: find y[n] via polynomials

x[n] = {3,1,4,1,5,9,0,0,0,...}

6543210 95430)( −−−−−− ++++++= zzzzzzzzY

)9543()( 543211 −−−−−− +++++= zzzzzzzY

)()( 1 zXzzY −=

8/22/2003 © 2003, JH McClellan & RW Schafer 16

DELAY PROPERTY

8/22/2003 © 2003, JH McClellan & RW Schafer 17

GENERAL I/O PROBLEMInput is x[n], find y[n] (for FIR, h[n])How to combine X(z) and H(z) ?

Page 94: Signal Processing First Lecture Slides

8/22/2003 © 2003, JH McClellan & RW Schafer 18

FIR Filter = CONVOLUTION

∑∑==

−=−=M

k

M

kk knxkhknxbny

00][][][][

CONVOLUTION 8/22/2003 © 2003, JH McClellan & RW Schafer 19

CONVOLUTION PROPERTYPROOF:

MULTIPLYZ-TRANSFORMS

8/22/2003 © 2003, JH McClellan & RW Schafer 20

CONVOLUTION EXAMPLEMULTIPLY the z-TRANSFORMS:

MULTIPLY H(z)X(z)8/22/2003 © 2003, JH McClellan & RW Schafer 21

CONVOLUTION EXAMPLEFinite-Length input x[n]FIR Filter (L=4) MULTIPLY

Z-TRANSFORMS

y[n] = ?

Page 95: Signal Processing First Lecture Slides

8/22/2003 © 2003, JH McClellan & RW Schafer 22

CASCADE SYSTEMS

Does the order of S1 & S2 matter?NO, LTI SYSTEMS can be rearranged !!!Remember: h1[n] * h2[n]How to combine H1(z) and H2(z) ?

S1 S2

8/22/2003 © 2003, JH McClellan & RW Schafer 23

CASCADE EQUIVALENT

Multiply the System Functions

x[n] )(1 zH y[n])(2 zH

)()()( 21 zHzHzH =

y[n]x[n] )(zHEQUIVALENTSYSTEM

8/22/2003 © 2003, JH McClellan & RW Schafer 24

CASCADE EXAMPLE

y[n]x[n] )(zH

x[n] )(1 zH y[n])(2 zHw[n]

12 1)( −+= zzH1

1 1)( −−= zzH

211 1)1)(1()( −−− −=+−= zzzzH]2[][][ −−= nxnxny

]1[][][ −−= nxnxnw ]1[][][ −+= nwnwny

Page 96: Signal Processing First Lecture Slides

8/22/2003 © 2003, JH McClellan & RW Schafer 1

Signal Processing First

Lecture 15Zeros of H(z) and theFrequency Domain

8/22/2003 © 2003, JH McClellan & RW Schafer 3

READING ASSIGNMENTS

This Lecture:Chapter 7, Section 7-6 to end

Other Reading:Recitation & Lab: Chapter 7

ZEROS (and POLES)Next Lecture:Chapter 8

8/22/2003 © 2003, JH McClellan & RW Schafer 4

LECTURE OBJECTIVES

ZEROS and POLESRelate H(z) to FREQUENCY RESPONSE

THREE DOMAINS:Show Relationship for FIR:

ωω

ˆ)()( ˆjez

j zHeH ==

)()(][ ω̂jeHzHnh ↔↔8/22/2003 © 2003, JH McClellan & RW Schafer 5

DESIGN PROBLEM

Example:Design a Lowpass FIR filter (Find bk)Reject completely 0.7ππππ, 0.8ππππ, and 0.9ππππ

This is NULLINGEstimate the filter length needed to accomplish this task. How many bk ?

Z POLYNOMIALS provide the TOOLS

Page 97: Signal Processing First Lecture Slides

8/22/2003 © 2003, JH McClellan & RW Schafer 6

Z-Transform DEFINITION

POLYNOMIAL Representation of LTI SYSTEM:

EXAMPLE:

∑ −=n

nznhzH ][)(

APPLIES toAny SIGNAL

POLYNOMIAL in z-1

43210 20302)( −−−−− ++−+= zzzzzzH42 232 −− +−= zz

4121 )(2)(32 −− +−= zz

}2,0,3,0,2{]}[{ −=nh

8/22/2003 © 2003, JH McClellan & RW Schafer 7

)()()(][][][ zXzHzYnxnhny =↔∗=

CONVOLUTION PROPERTYConvolution in the n-domain

SAME AS

Multiplication in the z-domain

MULTIPLYz-TRANSFORMS

FIR Filter∑

=−=

∗=M

kknxkh

nhnxny

0][][

][][][

8/22/2003 © 2003, JH McClellan & RW Schafer 8

CONVOLUTION EXAMPLEy[n]x[n] H(z)

][][][ nhnxny ∗=21 2)( −− += zzzX 11)( −−= zzH

321121 2)1)(2()( −−−−−− −+=−+= zzzzzzzY

]1[][][ −−= nnnh δδ]2[2]1[][ −+−= nnnx δδ

]3[2]2[]1[][ −−−+−= nnnny δδδ8/22/2003 © 2003, JH McClellan & RW Schafer 9

THREE DOMAINS

Z-TRANSFORM-DOMAINPOLYNOMIALS: H(z)

FREQ-DOMAIN

kjM

kk

j ebeH ωω ˆ

0

ˆ )( −

=∑=

TIME-DOMAIN

∑=

−=M

kk knxbny

0][][

}{ kb

Page 98: Signal Processing First Lecture Slides

8/22/2003 © 2003, JH McClellan & RW Schafer 10

kjM

kk

j

kjM

kk

j

ebeH

ebeH

=

=

=

=

)()(

)(

Domainˆ

ˆ

0

ˆ

ˆ

0

ˆ

ωω

ωω

ω

FREQUENCY RESPONSE ?

Same Form:

SAME COEFFICIENTS

ω̂jez =

kM

kk zbzH

z

=∑=

0)(

Domain

8/22/2003 © 2003, JH McClellan & RW Schafer 11

ANOTHER ANALYSIS TOOL

z-Transform POLYNOMIALS are EASY !ROOTS, FACTORS, etc.

ZEROS and POLES: where is H(z) = 0 ?ZEROS and POLES: where is H(z) = 0 ?

The z-domain is COMPLEXH(z) is a COMPLEX-VALUED function of a COMPLEXVARIABLE z.

8/22/2003 © 2003, JH McClellan & RW Schafer 12

ZEROS of H(z)

Find z, where H(z)=01

211)( −−= zzH

21 :at Zero =z

0?01

21

121

=−=− −

zz

8/22/2003 © 2003, JH McClellan & RW Schafer 13

ZEROS of H(z)

Find z, where H(z)=0Interesting when z is ON the unit circle.

321 221)( −−− −+−= zzzzH

)1)(1()( 211 −−− +−−= zzzzH

23

21,1 :Roots jz ±= 3/πje±

Page 99: Signal Processing First Lecture Slides

8/22/2003 © 2003, JH McClellan & RW Schafer 14

PLOT ZEROS in z-DOMAIN

3 ZEROSH(z) = 0

3 POLES

UNITCIRCLE

8/22/2003 © 2003, JH McClellan & RW Schafer 15

POLES of H(z)

Find z, where Not very interesting for the FIR case

321 221)( −−− −+−= zzzzH

∞→)(zH

3

23 122)(z

zzzzH −+−=

0 :at PolesThree =z

8/22/2003 © 2003, JH McClellan & RW Schafer 16

FREQ. RESPONSE from ZEROS

Relate H(z) to FREQUENCY RESPONSEEVALUATE H(z) on the UNIT CIRCLEUNIT CIRCLE

ANGLE is same as FREQUENCY

ωω

ˆ)()( ˆjez

j zHeH ==

1radius CIRCLE,a defines varies)ˆ (asˆ

== ωωjez

8/22/2003 © 2003, JH McClellan & RW Schafer 17

ANGLE is FREQUENCY

ωω

ˆ)()( ˆjez

j zHeH ==

Page 100: Signal Processing First Lecture Slides

8/22/2003 © 2003, JH McClellan & RW Schafer 18

FIR Frequency Response

)( and )( of Zeros ˆ zHeH jω

8/22/2003 © 2003, JH McClellan & RW Schafer 19

3 DOMAINS MOVIE: FIRZEROS MOVE

)( ω̂jeH][nh

)(zH

8/22/2003 © 2003, JH McClellan & RW Schafer 20

njj eeHny )3/()3/( )(][ ππ ⋅=

NULLING PROPERTY of H(z)

When H(z)=0 on the unit circle.Find inputs x[n] that give zero output

y[n]x[n] )(zH

321 221)( −−− −+−= zzzzHωωωω ˆ3ˆ2ˆˆ 221)( jjjj eeeeH −−− −+−=

njenx )3/(][ π=

?)( 3/ =πjeH

8/22/2003 © 2003, JH McClellan & RW Schafer 21

PLOT ZEROS in z-DOMAIN

3 ZEROSH(z) = 0

3 POLES

UNITCIRCLE

Page 101: Signal Processing First Lecture Slides

8/22/2003 © 2003, JH McClellan & RW Schafer 22

NULLING PROPERTY of H(z)

Evaluate H(z) at the input “frequency”ωωωω ˆ3ˆ2ˆˆ 221)( jjjj eeeeH −−− −+−=

njj eeHny )3/(3/ )(][ ππ ⋅=njjjj eeeeny )3/(3/33/23/ )221(][ ππππ ⋅−+−= −−−

))1()(2)(21( 23

21

23

21 −−−−+−− jj

0)131311(][ )3/( =⋅+−−+−= njejjny π

8/22/2003 © 2003, JH McClellan & RW Schafer 23

FIR Frequency Response

)( and )( of Zeros ˆ zHeH jω

8/22/2003 © 2003, JH McClellan & RW Schafer 24

DESIGN PROBLEM

Example:Design a Lowpass FIR filter (Find bk)Reject completely 0.7ππππ, 0.8ππππ, and 0.9ππππEstimate the filter length needed to accomplish this task. How many bk ?

Z POLYNOMIALS provide the TOOLS

8/22/2003 © 2003, JH McClellan & RW Schafer 25

PeZ Demo: Zero Placing

Page 102: Signal Processing First Lecture Slides

8/22/2003 © 2003, JH McClellan & RW Schafer 1

Signal Processing First

Lecture 16IIR Filters: Feedbackand H(z)

8/22/2003 © 2003, JH McClellan & RW Schafer 3

READING ASSIGNMENTS

This Lecture:Chapter 8, Sects. 8-1, 8-2 & 8-3

Other Reading:Recitation: Ch. 8, Sects 8-1 thru 8-4

POLES & ZEROSNext Lecture: Chapter 8, Sects. 8-4 8-5 & 8-6

8/22/2003 © 2003, JH McClellan & RW Schafer 4

LECTURE OBJECTIVES

Show how to compute the output y[n]FIRST-ORDER CASE (N=1)Z-transform: Impulse Response h[n] H(z)

y[n] = a y[n− ]

=1

N

∑ + bkx[n− k]k=0

M

INFINITE IMPULSE RESPONSE FILTERSDefine IIRIIR DIGITAL Filters Have FEEDBACKFEEDBACK: use PREVIOUS OUTPUTS

8/22/2003 © 2003, JH McClellan & RW Schafer 5

THREE DOMAINS

Z-TRANSFORM-DOMAINPOLYNOMIALS: H(z)

FREQ-DOMAIN

kjM

kk

j ebeH ωω ˆ

0

ˆ )( −

=∑=

TIME-DOMAIN

∑=

−=M

kk knxbny

0][][

}{ kb

Page 103: Signal Processing First Lecture Slides

8/22/2003 © 2003, JH McClellan & RW Schafer 6

Quick Review: Delay by nd

IMPULSE RESPONSE

SYSTEM FUNCTION dnzzH −=)(

][][ dnnxny −=

FREQUENCY RESPONSE

][][ dnnnh −= δ

dnjj eeH ωω ˆˆ )( −=

8/22/2003 © 2003, JH McClellan & RW Schafer 8

LOGICAL THREAD

FIND the IMPULSE RESPONSE, h[n]INFINITELY LONGIIRIIR Filters

EXPLOIT THREE DOMAINS:Show Relationship for IIR:

h[n] ↔ H (z) ↔ H(e j ˆ ω )

H(z) = h[n]z− n

n= 0

8/22/2003 © 2003, JH McClellan & RW Schafer 9

ONE FEEDBACK TERM

CAUSALITYNOT USING FUTURE OUTPUTS or INPUTS

y[n] = a1y[n −1]+ b0x[n] +b1x[n−1]FIR PART of the FILTER

FEED-FORWARDPREVIOUSFEEDBACK

ADD PREVIOUS OUTPUTS

8/22/2003 © 2003, JH McClellan & RW Schafer 10

FILTER COEFFICIENTS

ADD PREVIOUS OUTPUTS

MATLAByy = filter([3,-2],[1,-0.8],xx)

y[n] = 0.8y[n −1]+ 3x[n] −2x[n −1]

SIGN CHANGEFEEDBACK COEFFICIENT

Page 104: Signal Processing First Lecture Slides

8/22/2003 © 2003, JH McClellan & RW Schafer 11

COMPUTE OUTPUT

8/22/2003 © 2003, JH McClellan & RW Schafer 12

COMPUTE y[n]

FEEDBACK DIFFERENCE EQUATION:

y[n] = 0.8y[n −1]+ 5x[n]

y[0] = 0.8y[−1] + 5x[0]

NEED y[-1] to get started

8/22/2003 © 2003, JH McClellan & RW Schafer 13

AT REST CONDITION

y[n] = 0, for n<0BECAUSE x[n] = 0, for n<0

8/22/2003 © 2003, JH McClellan & RW Schafer 14

COMPUTE y[0]

THIS STARTS THE RECURSION:

SAME with MORE FEEDBACK TERMS

y[n] = a1y[n −1]+ a2y[n− 2] + bk x[n− k]k=0

2

Page 105: Signal Processing First Lecture Slides

8/22/2003 © 2003, JH McClellan & RW Schafer 15

COMPUTE MORE y[n]

CONTINUE THE RECURSION:

8/22/2003 © 2003, JH McClellan & RW Schafer 16

PLOT y[n]

8/22/2003 © 2003, JH McClellan & RW Schafer 17

y[n] = a1y[n −1]+ b0x[n]

IMPULSE RESPONSE

u[n] =1, for n ≥ 0

h[n] = a1h[n −1]+ b0δ[n]

][)(][ 10 nuabnh n=

8/22/2003 © 2003, JH McClellan & RW Schafer 18

IMPULSE RESPONSE

DIFFERENCE EQUATION:

Find h[n]

CONVOLUTION in TIME-DOMAIN

h[n]y[n] = h[n]∗ x[n]x[n]

IMPULSE RESPONSE

y[n] = 0.8y[n −1]+ 3x[n]

h[n] = 3(0.8)n u[n]

LTI SYSTEM

Page 106: Signal Processing First Lecture Slides

8/22/2003 © 2003, JH McClellan & RW Schafer 19

PLOT IMPULSE RESPONSE

h[n] = b0 (a1)n u[n] = 3(0.8)n u[n]

8/22/2003 © 2003, JH McClellan & RW Schafer 20

Infinite-Length Signal: h[n]POLYNOMIAL Representation

SIMPLIFY the SUMMATION

H(z) = h[n]z −n

n=−∞

∑ APPLIES toAny SIGNAL

∑∑∞

=

−−∞

−∞=

==0

1010 ][)()(n

nnn

n

n zabznuabzH

8/22/2003 © 2003, JH McClellan & RW Schafer 21

Derivation of H(z)Recall Sum of Geometric Sequence:

Yields a COMPACT FORMr n

n=0

∑ =1

1− r

111

0

0

110

010

if1

)()(

azza

b

zabzabzHn

n

n

nn

>−

=

==

=

−∞

=

− ∑∑

8/22/2003 © 2003, JH McClellan & RW Schafer 22

H(z) = z-Transform{ h[n] }

FIRST-ORDER IIR FILTER:y[n] = a1y[n −1]+ b0x[n]

H(z) =b0

1− a1z−1

][)(][ 10 nuabnh n=

Page 107: Signal Processing First Lecture Slides

8/22/2003 © 2003, JH McClellan & RW Schafer 23

H(z) = z-Transform{ h[n] }

ANOTHER FIRST-ORDER IIR FILTER:y[n] = a1y[n −1]+ b0x[n] +b1x[n−1]

H(z) =b0

1− a1z−1 +

b1z−1

1− a1z−1 =

b0 + b1z−1

1 − a1z−1

]1[)(][)(][ 11110 −+= − nuabnuabnh nn

shifta is1−z

8/22/2003 © 2003, JH McClellan & RW Schafer 24

CONVOLUTION PROPERTY

MULTIPLICATION of z-TRANSFORMS

CONVOLUTION in TIME-DOMAIN

Y (z) = H(z)X(z)X(z)

h[n]y[n] = h[n]∗ x[n]x[n]

H(z)

IMPULSE RESPONSE

8/22/2003 © 2003, JH McClellan & RW Schafer 25

STEP RESPONSE: x[n]=u[n]

u[n] =1, for n ≥ 0

8/22/2003 © 2003, JH McClellan & RW Schafer 26

DERIVE STEP RESPONSE

Page 108: Signal Processing First Lecture Slides

8/22/2003 © 2003, JH McClellan & RW Schafer 27

PLOT STEP RESPONSE

y[n] = 15 1 − 0.8n+1( )u[n]y[n] = 0.8y[n −1]+ 3u[n]

Page 109: Signal Processing First Lecture Slides

Signal Processing First

Lecture 17IIR Filters: H(z) and

Frequency Response

4/3/2006 © 2003-2006, JH McClellan & RW Schafer 3

READING ASSIGNMENTS

This Lecture:Chapter 8, Sects. 8-4 8-5 & 8-6

Other Reading:Recitation: Chapter 8, all

POLE-ZERO PLOTS

4/3/2006 © 2003-2006, JH McClellan & RW Schafer 4

LECTURE OBJECTIVES

SYSTEM FUNCTION: H(z)H(z) has POLES and ZEROSFREQUENCY RESPONSE of IIR

Get H(z) first

THREE-DOMAIN APPROACHω

ωˆ)()( ˆ

jezj zHeH

==

)()(][ ω̂jeHzHnh ↔↔4/3/2006 © 2003-2006, JH McClellan & RW Schafer 5

THREE DOMAINS

Z-TRANSFORM-DOMAINPOLYNOMIALS: H(z)

FREQ-DOMAIN

ω

ω

ω

ˆ

1

ˆ

1)(

jN

kjM

kk

j

ea

ebeH

=

=

−=

TIME-DOMAIN

∑∑==

−+−=M

kk

Nknxbnyany

01][][][

},{ kba

Use H(z) to getFreq. Response

z = e j ˆ ω

Page 110: Signal Processing First Lecture Slides

4/3/2006 © 2003-2006, JH McClellan & RW Schafer 6

H(z) = z-Transform{ h[n] }

FIRST-ORDER IIR FILTER:y[n] = a1y[n −1]+ b0x[n]

H(z) =b0

1− a1z−1

][)(][ 10 nuabnh n=

4/3/2006 © 2003-2006, JH McClellan & RW Schafer 7

Typical IMPULSE Response

h[n] = b0 (a1)n u[n] = 3(0.8)n u[n]

4/3/2006 © 2003-2006, JH McClellan & RW Schafer 8

First-Order Transform Pair

GEOMETRIC SEQUENCE:

h[n] = banu[n] ↔ H(z) =b

1− a z−1

111

0

0

110

010

if1

)()(

azza

b

zabzabzHn

n

n

nn

>−

=

==

=

−∞

=

− ∑∑

4/3/2006 © 2003-2006, JH McClellan & RW Schafer 9

DELAY PROPERTY of X(z)

DELAY in TIME<-->Multiply X(z) by z-1

x[n]↔ X(z)

x[n −1] ↔ z −1 X(z)

Proof: x[n −1]z −n

n= −∞

∑ = x[ ]z− ( +1)

=−∞

= z−1 x[ ]z −

= −∞

∑ = z−1X(z)

Page 111: Signal Processing First Lecture Slides

4/3/2006 © 2003-2006, JH McClellan & RW Schafer 10

y[n] = a1y[n −1]+ b0x[n] +b1x[n −1]

Z-Transform of IIR FilterDERIVE the SYSTEM FUNCTION H(z)

Use DELAYDELAY PROPERTY

Y (z) = a1z−1Y(z) + b0X(z) + b1z

−1X(z)EASIER with DELAY PROPERTY

4/3/2006 © 2003-2006, JH McClellan & RW Schafer 11

H(z) =Y (z)X(z)

=b0 +b1z

−1

1− a1z−1 =

B(z)A(z)

SYSTEM FUNCTION of IIR

NOTE the FILTER COEFFICIENTS

Y (z) − a1z−1Y(z) = b0 X(z) + b1z

−1X(z)

(1 − a1z−1)Y (z) = (b0 + b1z

−1 )X(z)

4/3/2006 © 2003-2006, JH McClellan & RW Schafer 12

SYSTEM FUNCTION

DIFFERENCE EQUATION:

READREAD the FILTER COEFFS:

y[n] = 0.8y[n −1]+ 3x[n] −2x[n −1]

)(8.01

23)( 1

1zX

zzzY ⎟⎟

⎞⎜⎜⎝

−−

= −

H(z)

4/3/2006 © 2003-2006, JH McClellan & RW Schafer 13

CONVOLUTION PROPERTY

MULTIPLICATIONMULTIPLICATION of z-TRANSFORMS

CONVOLUTIONCONVOLUTION in TIME-DOMAIN

Y (z) = H(z)X(z)X(z)

h[n]y[n] = h[n]∗ x[n]x[n]

H(z)

IMPULSE RESPONSE

Page 112: Signal Processing First Lecture Slides

4/3/2006 © 2003-2006, JH McClellan & RW Schafer 14

POLES & ZEROS

ROOTS of Numerator & Denominator

POLE: H(z) inf

ZERO: H(z)=0

H(z) =b0 + b1z

−1

1 − a1z−1 → H (z) =

b0z + b1

z − a1

b0z + b1 = 0 ⇒ z = −b1

b0

z − a1 = 0 ⇒ z = a1

4/3/2006 © 2003-2006, JH McClellan & RW Schafer 15

EXAMPLE: Poles & Zeros

VALUE of H(z) at POLES is INFINITEINFINITE

POLE at z=0.8

ZERO at z= -1

∞→=−+

=

=−−

−+=

−+

=

0)(8.01)(22

)(

0)1(8.01

)1(22)(

8.0122)(

29

154

154

1

1

zH

zH

zzzH

4/3/2006 © 2003-2006, JH McClellan & RW Schafer 16

POLE-ZERO PLOT

2 + 2z −1

1 −0.8z−1

ZERO at z = -1

POLE atz = 0.8

4/3/2006 © 2003-2006, JH McClellan & RW Schafer 17

FREQUENCY RESPONSE

SYSTEM FUNCTION: H(z)H(z) has DENOMINATORFREQUENCY RESPONSE of IIR

We have H(z)

THREE-DOMAIN APPROACHH(e j ˆ ω ) = H(z ) z = e j ˆ ω

h[n] ↔ H (z) ↔ H(e j ˆ ω )

Page 113: Signal Processing First Lecture Slides

4/3/2006 © 2003-2006, JH McClellan & RW Schafer 18

FREQUENCY RESPONSE

EVALUATE on the UNIT CIRCLE

H(e j ˆ ω ) = H(z ) z = e j ˆ ω

4/3/2006 © 2003-2006, JH McClellan & RW Schafer 19

FREQ. RESPONSE FORMULA

ω

ωω

ˆ

ˆˆ

1

1

8.0122)(

8.0122)( j

jj

eeeH

zzzH −

−+

=→−+

=

=2ˆ )( ωjeH ω

ω

ω

ω

ω

ω

ˆ

ˆ

ˆ

ˆ2

ˆ

ˆ

8.0122

8.0122

8.0122

j

j

j

j

j

j

ee

ee

ee

−+

⋅−+

=−+

=−−+

+++−

ωω

ωω

ˆˆ

ˆˆ

8.08.064.014444

jj

jj

eeee

ωω

ˆcos6.164.1ˆcos88

−+

?ˆ@,40004.0

88)(,0ˆ@2ˆ πωω ω ==

+== jeH

4/3/2006 © 2003-2006, JH McClellan & RW Schafer 20

Frequency Response Plot

ω

ωω

ˆ

ˆˆ

8.0122)( j

jj

eeeH −

−+

=

4/3/2006 © 2003-2006, JH McClellan & RW Schafer 21

UNIT CIRCLE

MAPPING BETWEEN

z = e j ˆ ω

z = 1 ↔ ˆ ω = 0z = −1 ↔ ˆ ω = ±πz = ± j ↔ ˆ ω = ± 1

2 π

z and ˆ ω

Page 114: Signal Processing First Lecture Slides

4/3/2006 © 2003-2006, JH McClellan & RW Schafer 22

3-D VIEW3-D VIEWPOINT:EVALUATE H(z) EVERYWHERE

UNIT CIRCLE

WHERE isthe POLE ?

4/3/2006 © 2003-2006, JH McClellan & RW Schafer 23

MOVIE for H(z) in 3-D

POLES to H(z) to Frequency ReponseTWO POLES SHOWN

4/3/2006 © 2003-2006, JH McClellan & RW Schafer 24

Frequency Response from H(z)

Walking around the Unit Circle

4/3/2006 © 2003-2006, JH McClellan & RW Schafer 25

3 DOMAINS MOVIE: IIR

POLE MOVES

h[n]

H(z)

)( ω̂jeH

Page 115: Signal Processing First Lecture Slides

4/3/2006 © 2003-2006, JH McClellan & RW Schafer 26

PeZ Demo: Pole-Zero Placing

4/3/2006 © 2003-2006, JH McClellan & RW Schafer 27

SINUSOIDAL RESPONSE

x[n] = SINUSOID => y[n] is SINUSOIDGet MAGNITUDE & PHASE from H(z)

ωω

ωω

ω

ˆ)()( where)(][ then

][ if

ˆ

ˆˆ

ˆ

jezj

njj

nj

zHeHeeHny

enx

==

=

=

4/3/2006 © 2003-2006, JH McClellan & RW Schafer 28

POP QUIZ

Given:

Find the Impulse Response, h[n]

Find the output, y[n]When x[n] = cos(0.25πn)

H(z) =2 + 2z−1

1− 0.8z −1

4/3/2006 © 2003-2006, JH McClellan & RW Schafer 29

Evaluate FREQ. RESPONSE

2 + 2z−1

1 − 0.8z −1 at ˆ ω = 0.25π

zero at ω=πˆ ω = 0.25π

0ˆ is 1 == ωz

Page 116: Signal Processing First Lecture Slides

4/3/2006 © 2003-2006, JH McClellan & RW Schafer 30

POP QUIZ: Eval Freq. Resp.

Given:

Find output, y[n], when

Evaluate at

x[n] = cos(0.25πn)

H(z) =2 + 2z−1

1− 0.8z −1

z = e j0.25π

y[n] = 5.182cos(0.25πn − 0.417π )

309.125.0

22

22

182.58.01

)(22)( jj e

ejzH −

− =−

−+= π

4/3/2006 © 2003-2006, JH McClellan & RW Schafer 31

CASCADE EQUIVALENT

Multiply the System Functions

y[n]x[n] H(z)

x[n] H1(z) y[n]H2 (z)

H(z) = H1(z)H2 (z)EQUIVALENTSYSTEM

Page 117: Signal Processing First Lecture Slides

4/18/2004 © 2003, JH McClellan & RW Schafer 1

Signal Processing First

Lecture 183-Domains for IIR

4/18/2004 © 2003, JH McClellan & RW Schafer 3

READING ASSIGNMENTS

This Lecture:Chapter 8, all

Other Reading:Recitation: Ch. 8, all

POLES & ZEROSNext Lecture: Chapter 9

4/18/2004 © 2003, JH McClellan & RW Schafer 4

LECTURE OBJECTIVES

SECOND-ORDER IIR FILTERSTWO FEEDBACK TERMS

H(z) can have COMPLEX POLES & ZEROSTHREE-DOMAIN APPROACH

BPFs have POLES NEAR THE UNIT CIRCLE

y[n] = a1y[n −1]+ a2 y[n − 2] + bk x[n − k]k=0

2

4/18/2004 © 2003, JH McClellan & RW Schafer 5

THREE DOMAINS

a ,bk{ }

Z-TRANSFORM-DOMAIN: poles & zerosPOLYNOMIALS: H(z)

Use H(z) to getFreq. Response

z = e j ˆ ω H(z) =

bkz− k∑

1− a z−∑

FREQ-DOMAIN

ω

ω

ω

ˆ

1

ˆ

1)(

jN

kjM

kk

j

ea

ebeH

=

=

−=

TIME-DOMAIN

∑∑==

−+−=M

kk

Nknxbnyany

01][][][

Page 118: Signal Processing First Lecture Slides

4/18/2004 © 2003, JH McClellan & RW Schafer 6

Z-TRANSFORM TABLES

4/18/2004 © 2003, JH McClellan & RW Schafer 7

SECOND-ORDER FILTERS

Two FEEDBACK TERMS

y[n] = a1y[n −1] + a2y[n − 2]+ b0x[n] + b1x[n −1] + b2x[n − 2]

H(z) = b0 + b1z−1 + b2z−2

1− a1z−1 − a2z−2

4/18/2004 © 2003, JH McClellan & RW Schafer 8

MORE POLES

Denominator is QUADRATIC2 Poles: REALor COMPLEX CONJUGATES

H(z) =b0 + b1z

−1 + b2z−2

1 − a1z−1 − a2z

−2 =b0z

2 + b1z + b2

z2 − a1z − a2

4/18/2004 © 2003, JH McClellan & RW Schafer 9

TWO COMPLEX POLES

Find Impulse Response ?Can OSCILLATE vs. n“RESONANCE”

Find FREQUENCY RESPONSEFREQUENCY RESPONSEDepends on Pole LocationClose to the Unit Circle?

Make BANDPASS FILTERBANDPASS FILTER

pk( )n= rejθ( )n

= rne jnθ

pole = re jθ

r →1?

Page 119: Signal Processing First Lecture Slides

4/18/2004 © 2003, JH McClellan & RW Schafer 10

2nd ORDER EXAMPLE

H(z) =1− 0.45z −1

1− 0.9z −1 + 0.81z−2

H(z) =0.5

1− 0.9e jπ /3z −1 +0.5

1− 0.9e− jπ / 3z −1

H(z) =1− 0.9cos( π

3 )z−1

(1− 0.9e jπ /3z −1)(1− 0.9e− jπ /3z −1)

][)()9.0(][)cos()9.0(][ 3/3/21

3 nueenunnh njnjnn πππ −+==

4/18/2004 © 2003, JH McClellan & RW Schafer 11

h[n]: Decays & Oscillates

1 −0.45z−1

1 −0.9z−1 +0.81z −2

h[n] = (0.9)n cos(π3 n)u[n]

“PERIOD”=6

4/18/2004 © 2003, JH McClellan & RW Schafer 12

2nd ORDER Z-transform PAIR

h[n] = rn cos(θn)u[n]

H(z) =1 −r cosθ z −1

1− 2r cosθ z−1 + r 2z −2

h[n] = Arn cos(θn +ϕ )u[n]

H(z) = Acosϕ − rcos(θ −ϕ)z−1

1 −2rcosθz −1 + r2 z−2

GENERAL ENTRY forz-Transform TABLE

4/18/2004 © 2003, JH McClellan & RW Schafer 13

2nd ORDER EX: n-Domain

1 −0.45z−1

1 −0.9z−1 +0.81z −2

aa = [ 1, -0.9, 0.81 ];bb = [ 1, -0.45 ];nn = -2:19;hh = filter( bb, aa, (nn==0) );HH = freqz( bb, aa, [-pi,pi/100:pi] );

y[n] = 0.9y[n −1]− 0.81y[n − 2]+ x[n]− 0.45x[n −1]

Page 120: Signal Processing First Lecture Slides

4/18/2004 © 2003, JH McClellan & RW Schafer 14

Complex POLE-ZERO PLOT

1− z −2

1 +0.7225z−2

4/18/2004 © 2003, JH McClellan & RW Schafer 15

UNIT CIRCLE

MAPPING BETWEEN

z = e j ˆ ω

z = 1 ↔ ˆ ω = 0z = −1 ↔ ˆ ω = ±πz = ± j ↔ ˆ ω = ± 1

2 π

z and ˆ ω

4/18/2004 © 2003, JH McClellan & RW Schafer 16

FREQUENCY RESPONSEfrom POLE-ZERO PLOT

H(e j ˆ ω ) =1− e− j 2 ˆ ω

1+ 0.7225e− j 2 ˆ ω

4/18/2004 © 2003, JH McClellan & RW Schafer 17

h[n]: Decays & Oscillates

1 −0.45z−1

1 −0.9z−1 +0.81z −2

h[n] = (0.9)n cos(π3 n)u[n]

“PERIOD”=6

Page 121: Signal Processing First Lecture Slides

4/18/2004 © 2003, JH McClellan & RW Schafer 18

Complex POLE-ZERO PLOT

1 −0.45z−1

1 −0.9z−1 +0.81z −2

4/18/2004 © 2003, JH McClellan & RW Schafer 19

h[n]: Decays & Oscillates

1− 0.8227z−1

1 −1.6454z−1 + 0.9025z−2

h[n] = (0.95)n cos(π6 n)u[n]

“PERIOD”=12

4/18/2004 © 2003, JH McClellan & RW Schafer 20

Complex POLE-ZERO PLOT

1− 0.8227z−1

1 −1.6454z−1 + 0.9025z−2

4/18/2004 © 2003, JH McClellan & RW Schafer 21

3 DOMAINS MOVIE: IIRPOLE MOVES

h[n]

H(ωωωω)

H(z)

Page 122: Signal Processing First Lecture Slides

4/18/2004 © 2003, JH McClellan & RW Schafer 22

THREE INPUTS

Given:

Find the output, y[n]When

H(z) =5

1+ 0.8z −1

x[n] = cos(0.2πn)x[n] = u[n]x[n] = cos(0.2πn)u[n]

4/18/2004 © 2003, JH McClellan & RW Schafer 23

ππ

π 089.02.0

2.0 919.28.015)( j

jj e

eeH =

+= −

SINUSOID ANSWER

Given:

The input:

Then y[n]

x[n] = cos(0.2πn)

y[n] = M cos(0.2πn +ψ )

H(z) =5

1+ 0.8z −1

4/18/2004 © 2003, JH McClellan & RW Schafer 27

Step Response

Y(z) = H(z)X(z) = 51+ .8z−1

11− z−1

Y(z) = A1 + .8z−1 + B

1− z−1 = (A + B) + (.8B − A)z−1

1 + .8z−1( )1 − z−1( )⇒ (A + B) = 5 and (.8B − A) = 0

Y(z) = A1 + .8z−1 + B

1− z−1

Partial Fraction Expansion

4/18/2004 © 2003, JH McClellan & RW Schafer 28

Step Response

Y(z) =

209

1 + .8z−1 +

259

1− z−1

y[n] = 209

(−.8)nu[n] + 259

u[n]

y[n] → 259

as n → ∞

Page 123: Signal Processing First Lecture Slides

4/18/2004 © 2003, JH McClellan & RW Schafer 29

Stability

Nec. & suff. condition: h[n]n=−∞

∞∑ < ∞

h[n] = b(a)nu[n] ⇔ H(z) = b1− az−1

b a n

n=0

∞∑ < ∞ if a < 1⇒ Pole must be

Inside unit circle

4/18/2004 © 2003, JH McClellan & RW Schafer 30

SINUSOID starting at n=0

We’ll look at an example in MATLABcos(0.2ππππn)Pole at –0.8, so an is (–0.8) n

There are two components:TRANSIENT

Start-up region just after n=0; (–0.8) n

STEADY-STATEEventually, y[n] looks sinusoidal.Magnitude & Phase from Frequency Response

4/18/2004 © 2003, JH McClellan & RW Schafer 31

ˆ ω 0 =2π10

Cosine input

(−0.8)n

cos(0.2πn)u[n]

4/18/2004 © 2003, JH McClellan & RW Schafer 32

STABILITY

When Does the TRANSIENT DIE OUT ?

need a1 <1

Page 124: Signal Processing First Lecture Slides

4/18/2004 © 2003, JH McClellan & RW Schafer 33

STABILITY CONDITION

ALL POLES INSIDE the UNIT CIRCLEUNSTABLE EXAMPLE: POLE @ z=1.1

x[n] = cos(0.2πn)u[n]

4/18/2004 © 2003, JH McClellan & RW Schafer 34

BONUS QUESTION

Given:

The input is

Then find y[n]

H(z) =5

1+ 0.8z −1

)5.0cos(4][ ππ −= nnx

?][ =ny

Page 125: Signal Processing First Lecture Slides

Signal Processing First

Lecture 19Continuous-Time Signals and Systems

4/3/2006 © 2003-2006, JH McClellan & RW Schafer 3

READING ASSIGNMENTS

This Lecture:Chapter 9, Sects 9-1 to 9-5

Other Reading:Recitation: Ch. 9, allNext Lecture: Chapter 9, Sects 9-6 to 9-8

4/3/2006 © 2003-2006, JH McClellan & RW Schafer 4

LECTURE OBJECTIVES

Bye bye to D-T Systems for a whileThe UNIT IMPULSE signal

DefinitionProperties

Continuous-time signals and systemsExample systemsReview: LLinearity and TTime-IInvarianceConvolution integral: impulse response

4/3/2006 © 2003-2006, JH McClellan & RW Schafer 5

D-T Filtering of C-T Signals

C-to-D D-to-CLTI SystemH(z)

x(t) y(t)

LTI ANALOGSystem

x(t) y(t)

ˆ ω =ω Ts or ω = ˆ ω fs

Page 126: Signal Processing First Lecture Slides

4/3/2006 © 2003-2006, JH McClellan & RW Schafer 6

ANALOG SIGNALS x(t)INFINITE LENGTH

SINUSOIDS: (t = time in secs)PERIODIC SIGNALS

ONE-SIDED, e.g., for t>0UNIT STEP: u(t)

FINITE LENGTHSQUARE PULSE

IMPULSE SIGNAL: δ(t)

DISCRETE-TIME: x[n] is list of numbers4/3/2006 © 2003-2006, JH McClellan & RW Schafer 7

CT Signals: PERIODICx(t) = 10cos(200πt)

Sinusoidal signal

Square Wave INFINITE DURATION

4/3/2006 © 2003-2006, JH McClellan & RW Schafer 8

CT Signals: ONE-SIDED

v(t) = e−tu(t)

Unit step signalu(t) =1 t > 00 t < 0

⎧ ⎨ ⎩

One-SidedSinusoid

“Suddenly applied”Exponential

4/3/2006 © 2003-2006, JH McClellan & RW Schafer 9

CT Signals: FINITE LENGTH

Square Pulse signal

p(t) = u(t − 2) −u(t − 4)

Sinusoid multipliedby a square pulse

Page 127: Signal Processing First Lecture Slides

4/3/2006 © 2003-2006, JH McClellan & RW Schafer 10

What is an Impulse?

A signal that is “concentrated” at one point.

limΔ→0

δΔ (t) = δ (t)δΔ (t)dt = 1

−∞

4/3/2006 © 2003-2006, JH McClellan & RW Schafer 11

Assume the properties apply to the limit:

One “INTUITIVE” definition is:

Defining the Impulse

Unit areaδ(τ )dτ−∞

∫ =1

Concentrated at t=0δ(t) = 0, t ≠ 0

limΔ→0

δΔ (t) = δ (t)

4/3/2006 © 2003-2006, JH McClellan & RW Schafer 12

Sampling Property

f (t)δ (t) = f (0)δ (t)

f (t)δ Δ(t) ≈ f (0)δΔ (t)

4/3/2006 © 2003-2006, JH McClellan & RW Schafer 13

General Sampling Property

f (t)δ (t − t0 ) = f (t0 )δ (t − t0 )

Page 128: Signal Processing First Lecture Slides

4/3/2006 © 2003-2006, JH McClellan & RW Schafer 14

Properties of the ImpulseConcentrated at one time

Sampling Property

Unit area

Extract one value of f(t)

Derivative of unit step

f (t)δ( t − t0 ) = f (t0 )δ(t − t0)

δ( t − t0 )dt−∞

∫ = 1

δ(t − t0 ) = 0, t ≠ t0

f (t)δ(t − t0 )dt−∞

∫ = f (t0 )

du( t)dt

= δ(t)4/3/2006 © 2003-2006, JH McClellan & RW Schafer 15

Continuous-Time Systems

Examples:Delay

Modulator

Integrator

x(t) y(t)

y(t) = x(t − td )

y(t) = [A + x(t)]cosωct

y(t) = x(τ−∞

t∫ )dτ

Input

Output

4/3/2006 © 2003-2006, JH McClellan & RW Schafer 16

CT BUILDING BLOCKS

INTEGRATOR (CIRCUITS)

DIFFERENTIATOR

DELAY by to

MODULATOR (e.g., AM Radio)

MULTIPLIER & ADDER

4/3/2006 © 2003-2006, JH McClellan & RW Schafer 17

Ideal Delay:

Mathematical Definition:

To find the IMPULSE RESPONSE, h(t),let x(t) be an impulse, so

h(t) = δ (t − td )

y(t) = x(t − td )

Page 129: Signal Processing First Lecture Slides

4/3/2006 © 2003-2006, JH McClellan & RW Schafer 18

Output of Ideal Delay of 1 secx(t) = e−tu(t)

y(t) = x(t −1) = e−(t−1)u(t − 1)

4/3/2006 © 2003-2006, JH McClellan & RW Schafer 19

Integrator:

Mathematical Definition:

To find the IMPULSE RESPONSE, h(t),let x(t) be an impulse, so

y(t) = x(τ−∞

t∫ )dτ

h(t) = δ(τ−∞

t

∫ )dτ = u(t)

Running Integral

4/3/2006 © 2003-2006, JH McClellan & RW Schafer 20

Integrator:

Integrate the impulse

IF t<0, we get zeroIF t>0, we get one

Thus we have h(t) = u(t) for the integrator

y(t) = x(τ−∞

t∫ )dτ

δ(τ−∞

t

∫ )dτ = u(t)

4/3/2006 © 2003-2006, JH McClellan & RW Schafer 21

Graphical Representation

δ(t) =du(t)

dt

u(t) = δ (τ )dτ =1 t > 00 t < 0

⎧ ⎨ ⎩ −∞

t∫

Page 130: Signal Processing First Lecture Slides

4/3/2006 © 2003-2006, JH McClellan & RW Schafer 22

Output of Integrator

)()(

)()(

tutx

dxtyt

∗=

= ∫∞−

ττ

)()1(25.1

0)(

00

)()(

8.0

0

8.0

8.0

tue

tdue

t

duety

t

t

t

∞−

−=

⎪⎩

⎪⎨⎧

<=

=

ττ

ττ

τ

τ

)()( 8.0 tuetx t−=

4/3/2006 © 2003-2006, JH McClellan & RW Schafer 23

Differentiator:

Mathematical Definition:

To find h(t), let x(t) be an impulse, so

y(t) =dx(t)

dt

h(t) =dδ (t)

dt= δ (1)(t) Doublet

4/3/2006 © 2003-2006, JH McClellan & RW Schafer 24

Differentiator Output: y(t) =dx(t)

dt)1()( )1(2 −= −− tuetx t

( )

)1(1)1(2)1()1(2

)1()(

)1(2

)1(2)1(2

)1(2

−+−−=−+−−=

−=

−−

−−−−

−−

ttuetetue

tuedtdty

t

tt

t

δδ

4/3/2006 © 2003-2006, JH McClellan & RW Schafer 25

Linear and Time-Invariant (LTI) Systems

If a continuous-time system is both linear and time-invariant, then the output y(t) is related to the input x(t) by a convolution integralconvolution integral

where h(t) is the impulse responseimpulse response of the system.

y(t) = x(τ )h(t − τ )dτ = x(t) ∗ h(t)−∞

Page 131: Signal Processing First Lecture Slides

4/3/2006 © 2003-2006, JH McClellan & RW Schafer 26

Testing for Linearity

x1(t)

x2 (t)

y1(t)

y2 (t)w(t)

y(t)x(t)x2 (t)

x1(t)w(t) y(t)

4/3/2006 © 2003-2006, JH McClellan & RW Schafer 27

Testing Time-Invariance

x(t) x(t − t0 )

y(t)

w(t)

y(t − t0 )

t0

w(t) y(t − t0 )

t0

4/3/2006 © 2003-2006, JH McClellan & RW Schafer 29

Integrator:

Linear

And Time-Invariant

y(t) = x(τ−∞

t∫ )dτ

[ax1(τ−∞

t∫ ) + bx2 (τ )]dτ = ay1(t) + by2 (t)

w(t) = x(τ − t0−∞

t

∫ )dτ let σ = τ − t0

⇒ w(t) = x(σ )dσ−∞

t−t 0

∫ = y(t - t0 )4/3/2006 © 2003-2006, JH McClellan & RW Schafer 30

Modulator:

NotNot linear--obvious because

NotNot time-invariant

y(t) = [A + x(t)]cosωct

w(t) = [A + x(t − t0 )]cosωct ≠ y(t − t0 )

[A + ax1(t) + bx2 (t)] ≠

[A + ax1(t)]+ [A + bx2 (t)]

Page 132: Signal Processing First Lecture Slides

11/3/2003 © 2003, JH McClellan & RW Schafer 1

Signal Processing First

Lecture 20Convolution

(Continuous-Time)

11/3/2003 © 2003, JH McClellan & RW Schafer 3

READING ASSIGNMENTS

This Lecture:Chapter 9, Sects. 9-6, 9-7, and 9-8

Other Reading:Recitation: Ch. 9, allNext Lecture: Start reading Chapter 10

11/3/2003 © 2003, JH McClellan & RW Schafer 4

LECTURE OBJECTIVES

Review of C-T LTI systems Evaluating convolutions

ExamplesImpulses

LTI SystemsStability and causalityCascade and parallel connections

11/3/2003 © 2003, JH McClellan & RW Schafer 5

Linear and Time-Invariant (LTI) Systems

If a continuous-time system is both linear and time-invariant, then the output y(t) is related to the input x(t) by a convolution integralconvolution integral

where h(t) is the impulse responseimpulse response of the system.

∫∞

∞−

∗=−= )()()()()( thtxdthxty τττ

Page 133: Signal Processing First Lecture Slides

11/3/2003 © 2003, JH McClellan & RW Schafer 6

Testing for Linearity

x1(t)

x2 (t)

y1(t)

y2 (t)w(t)

y(t)x(t)x2 (t)

x1(t)w(t) y(t)

11/3/2003 © 2003, JH McClellan & RW Schafer 7

Testing Time-Invariance

x(t) x(t − t0 )

y(t)

w(t)

y(t − t0 )

t0

w(t) y(t − t0 )

t0

11/3/2003 © 2003, JH McClellan & RW Schafer 8

Ideal Delay:

Linear

and Time-Invariant

)()( dttxty −=

))(()( 0tttxtw d −−=

))(()( 00 dtttxtty −−=−

)()()()( 2121 tbytayttbxttax dd +=−+−

11/3/2003 © 2003, JH McClellan & RW Schafer 9

00 Let )()( tdtxtwt

−=−= ∫∞−

τσττ

Integrator:Linear

And Time-Invariant

ττ dxtyt

)()( ∫∞−

=

)()(

)()()]()([

21

2121

tbytay

dbxdaxdbxaxttt

+=

+=+ ∫∫∫∞−∞−∞−

τττττττ

)()()( 0

0

ttydxtwtt

−==⇒ ∫−

∞−

σσ

Page 134: Signal Processing First Lecture Slides

11/3/2003 © 2003, JH McClellan & RW Schafer 10

Modulator:

NotNot linear--obvious because

NotNot time-invariant

ttxAty cωcos)]([)( +=

)(cos)]([)( 00 ttytttxAtw c −≠−+= ω

)]([)]([)]()([

21

21tbxAtaxA

tbxtaxA+++

≠++

11/3/2003 © 2003, JH McClellan & RW Schafer 11

Linear and Time-Invariant (LTI) Systems

If a continuous-time system is both linear and time-invariant, then the output y(t) is related to the input x(t) by a convolution integralconvolution integral

where h(t) is the impulse responseimpulse response of the system.

∫∞

∞−

∗=−= )()()()()( thtxdthxty τττ

11/3/2003 © 2003, JH McClellan & RW Schafer 12

Convolution of Impulses, etc.

Convolution of two impulses

Convolution of step and shifted impulse

=−∗− )()( 21 tttt δδ )( 21 ttt −−δ

=−∗ )()( 0tttu δ )( 0ttu −

11/3/2003 © 2003, JH McClellan & RW Schafer 13

Evaluating a Convolution

∫∞

∞−

∗=−= )()()()()( txthdtxhty τττ

)()( tueth t−=)1()( −= tutx

Page 135: Signal Processing First Lecture Slides

11/3/2003 © 2003, JH McClellan & RW Schafer 14

“Flipping and Shifting”)(τx

g(τ ) = x(−τ ) = u(−τ −1)

g(τ − t) = x(−(τ − t)) = x(t − τ )

“flipping”

“flipping and shifting”

t1−t 11/3/2003 © 2003, JH McClellan & RW Schafer 15

Evaluating the Integral

>−

<−= ∫

−− 01

010)( 1

0

tde

tty t

ττ

11/3/2003 © 2003, JH McClellan & RW Schafer 16

Solution

1 0)( t<ty =

1 1

)(

)1(

1

0

1

0

≥−=

−==

−−

− −−−∫te

edety

t

t tττ τ

11/3/2003 © 2003, JH McClellan & RW Schafer 17

Convolution GUI

Page 136: Signal Processing First Lecture Slides

11/3/2003 © 2003, JH McClellan & RW Schafer 18

General Convolution Example

)(00

0

00

0)()(

)()()()()(

0)(

tuabee

t

tba

ee

t

tdeeedtueue

thtxdthxty

btatbtat

tbabt

tba

−−=

<

>+−

−=

<

>=−=

∗=−=

−−−−

−−∞

∞−

−−−

∞−

∫∫

ττττ

τττ

ττττ

)()( tuetx at−= abtueth bt ≠= − ),()(

11/3/2003 © 2003, JH McClellan & RW Schafer 19

Special Case: u(t)

)()1(1

)()()()()(

tuea

thtxdthxty

at−

∞−

−=

∗=−= ∫ τττ

0),()( ≠= − atuetx at )()( tuth =

)()1(21)(

2 if2 tuety

at−−=

=

11/3/2003 © 2003, JH McClellan & RW Schafer 20

Convolve Unit Steps

)(00

000

01)()(

)()()()()(

0

tutt

ttt

tddtuu

thtxdthxty

t

=

<

>=

<

>=−=

∗=−=

∫∫

∞−

∞−

ττττ

τττ

)()( tutx = )()( tuth =

Unit Ramp 11/3/2003 © 2003, JH McClellan & RW Schafer 21

Convolution is Commutative

∞−

∞−

∞−

∗=−=

−−=∗

−=−=

−=∗

)()()()(

)()()()(

and let

)()()()(

thtxdxth

dxthtxth

ddt

dtxhtxth

σσσ

σσσ

τστσ

τττ

Page 137: Signal Processing First Lecture Slides

11/3/2003 © 2003, JH McClellan & RW Schafer 22

Cascade of LTI Systems

δ(t) h1(t) h1(t)∗ h2(t)

δ(t) h2 (t) h2 (t)∗h1(t)

h(t) = h1(t)∗ h2 (t) = h2(t) ∗h1(t)

11/3/2003 © 2003, JH McClellan & RW Schafer 23

Stability

A system is stable if every bounded input produces a bounded output.A continuous-time LTI system is stable if and only if

h(t)dt < ∞−∞

∞∫

11/3/2003 © 2003, JH McClellan & RW Schafer 24

Causal Systems

A system is causal if and only if y(t0)depends only on x(τ) for τ< t0 .

An LTI system is causal if and only if

0for 0)( <= tth

11/3/2003 © 2003, JH McClellan & RW Schafer 25

Substitute x(t)=ax1(t)+bx2(t)

Therefore, convolution is linear.

)()(

)()()()(

)()]()([)(

21

21

21

tbytay

dthxbdthxa

dthbxaxty

+=

−+−=

−+=

∫ ∫

∫∞

∞−

∞−

∞−

ττττττ

ττττ

Convolution is Linear

Page 138: Signal Processing First Lecture Slides

11/3/2003 © 2003, JH McClellan & RW Schafer 26

Convolution is Time-Invariant

Substitute x(t-t0)

w(t) = h(τ )x((t − τ) − to)dτ−∞

= h(τ )x((t − to ) −τ )dτ−∞

∫= y(t − to )

Page 139: Signal Processing First Lecture Slides

Signal Processing First

Lecture 21Frequency Response of

Continuous-Time Systems

4/3/2006 © 2003-2006, JH McClellan & RW Schafer 3

READING ASSIGNMENTS

This Lecture:Chapter 10, all

Other Reading:Recitation: Ch. 10 all, start Ch 11Next Lecture: Chapter 11

4/3/2006 © 2003-2006, JH McClellan & RW Schafer 4

LECTURE OBJECTIVES

Review of convolutionTHETHE operation for LTILTI Systems

Complex exponential input signalsFrequency ResponseCosine signals

Real part of complex exponential

Fourier Series thru H(jω)These are Analog Filters

4/3/2006 © 2003-2006, JH McClellan & RW Schafer 5

LTI Systems

Convolution defines an LTI system

Response to a complex exponential gives frequency response H(jω)

y(t) = h( t)∗ x(t) = h(τ )−∞

∫ x(t −τ )dτ

Page 140: Signal Processing First Lecture Slides

4/3/2006 © 2003-2006, JH McClellan & RW Schafer 6

Thought Process #1

SUPERPOSITION (Linearity)Make x(t) a weighted sum of signalsThen y(t) is also a sum—same weights

• But DIFFERENT OUTPUT SIGNALS usually

Use SINUSOIDS• “SINUSOID IN GIVES SINUSOID OUT”

Make x(t) a weighted sum of sinusoidsThen y(t) is also a sum of sinusoids

Different Magnitudes and Phase

LTI SYSTEMS: Sinusoidal Response

4/3/2006 © 2003-2006, JH McClellan & RW Schafer 7

Thought Process #2

SUPERPOSITION (Linearity)Make x(t) a weighted sum of signals

Use Use SINUSOIDSSINUSOIDSAnyAny x(t) = weighted sum of sinusoidsx(t) = weighted sum of sinusoidsHOW?HOW? Use FOURIER ANALYSIS INTEGRALUse FOURIER ANALYSIS INTEGRAL

To find the weights from x(t)To find the weights from x(t)

LTI SYSTEMS:Frequency Response changes each sinusoidal component

4/3/2006 © 2003-2006, JH McClellan & RW Schafer 8

Complex Exponential Inputtjjtjj eAejHtyeAetx ωϕωϕ ω )()()( ==

∫∞

∞−

−= ττ τωϕ deAehty tjj )()()(

FrequencyResponse∫

∞−

−= ττω ωτ dehjH j)()(

tjjj eAedehty ωϕωτ ττ ⎟⎟⎠

⎞⎜⎜⎝

⎛= ∫

∞−

−)()(

4/3/2006 © 2003-2006, JH McClellan & RW Schafer 9

When does H(jω) Exist?

When is ?

Thus the frequency response exists if the LTI system is a stable system.

H( jω) = h(τ )−∞

∫ e− jωτ dτ ≤ h(τ )−∞

∫ e− jωτ dτ

H( jω ) ≤ h(τ )−∞

∞∫ dτ < ∞

H( jω) < ∞

Page 141: Signal Processing First Lecture Slides

4/3/2006 © 2003-2006, JH McClellan & RW Schafer 10

Suppose that h(t) is:h(t) = e− tu(t)

H( jω ) = e− aτu(−∞

∫ τ )e− jωτdτ = e−(a+ jω)τdτ0

H( jω ) =e−(a+ jω)τ

−(a + jω ) 0

=e− aτ e− jωτ

−(a + jω ) 0

=1

a + jω

h(t) = e− atu(t) ⇔ H( jω ) =1

a + jω

a = 1

a > 0

4/3/2006 © 2003-2006, JH McClellan & RW Schafer 11

Magnitude and Phase Plots

11+ jω

=1

1+ ω 2

∠H( jω ) = −atan(ω)

H( jω ) =1

1 + jω

H(− jω ) = H∗( jω)

4/3/2006 © 2003-2006, JH McClellan & RW Schafer 12

Freq Response of Integrator?

Impulse Responseh(t) = u(t)

NOT a Stable SystemFrequency response H(jω) does NOT exist

h(t) = e− atu(t) ⇔ H( jω ) =1

a + jω→

1jω

?

Need another term

a → 0“Leaky” Integrator (a is small)

Cannot build a perfect Integral

4/3/2006 © 2003-2006, JH McClellan & RW Schafer 13( ) tjtjttj

tj

eeety

etxdd ωωω

ω

−− ==

=)()(

)(

Ideal Delay: y(t) = x(t − td )

H( jω ) = e− jωtd

H( jω ) = δ(τ − td )−∞

∫ e− jωτdτ = e− jωtd

H( jω )

Page 142: Signal Processing First Lecture Slides

4/3/2006 © 2003-2006, JH McClellan & RW Schafer 14

Ideal Lowpass Filter w/ Delay

HLP( jω ) =e− jωtd ω < ωco

0 ω > ωco

⎧ ⎨ ⎩

fco "cutoff freq."Magnitude

Linear Phase

ω

ω

4/3/2006 © 2003-2006, JH McClellan & RW Schafer 15

Sinusoid in Gives Sinusoid out

4/3/2006 © 2003-2006, JH McClellan & RW Schafer 16

Example: Ideal Low Pass

HLP( jω ) =e− j 3ω ω < 2

0 ω > 2⎧ ⎨ ⎩

== )(10)( 5.13/ tyeetx tjjπ tjj eejH 5.13/10)5.1( π

( ) )3(5.13/5.13/5.4 1010)( −− == tjjtjjj eeeeety ππ

4/3/2006 © 2003-2006, JH McClellan & RW Schafer 17

Cosine Input

x(t) = Acos(ω0t +φ) =A2

e jφe jω0 t +A2

e− jφ e− jω0 t

y(t) = H( jω0 )A2

ejφ ejω 0 t + H(− jω 0)A2

e− jφe− jω0 t

Since H(− jω0 ) = H∗ (jω0 )

y(t) = A H( jω0 ) cos(ω0t + φ + ∠H( jω0 ))

Page 143: Signal Processing First Lecture Slides

4/3/2006 © 2003-2006, JH McClellan & RW Schafer 18

Review Fourier SeriesANALYSIS

Get representation from the signalWorks for PERIODIC Signals

Fourier SeriesINTEGRAL over one period

ak =1T0

x(t)e− jω 0ktdt0

T0

∫4/3/2006 © 2003-2006, JH McClellan & RW Schafer 19

General Periodic Signalsx(t) = x(t + T0 )

T0−2T0 −T0 2T00 t

x(t) = akejω 0k t

k =−∞

ak =1T0

x(t)e− jω 0ktdt0

T0

Fundamental Freq.ω0 = 2π / T0 = 2πf0

Fourier Synthesis

Fourier Analysis

4/3/2006 © 2003-2006, JH McClellan & RW Schafer 20

Square Wave Signal x(t) = x(t + T0 )

T0−2T0 −T0 2T00 t

ak =e− jω0kt

− jω0kT0 0

T0 / 2

−e− jω 0kt

− jω0kT0 T0 /2

T0

=1− e− jπk

jπk

ak =1T0

(1)e− jω0 ktdt +1T0

(−1)e− jω 0ktdtT0 / 2

T0

∫0

T0 / 2

4/3/2006 © 2003-2006, JH McClellan & RW Schafer 21

Spectrum from Fourier Series

ak =

1− e− jπk

jπk=

2jπk

k = ±1,±3,…

0 k = 0,±2,±4,…

⎧ ⎨ ⎪

⎩ ⎪

ω0 = 2π(25)

Page 144: Signal Processing First Lecture Slides

4/3/2006 © 2003-2006, JH McClellan & RW Schafer 22

LTI Systems with Periodic Inputs

By superposition,ake

jω0kt H( jω0k )akejω 0kt

y(t) = ak H( jω 0k )e jω 0k t = bkejω0k t

k = −∞

∑k= −∞

bk = akH( jω 0k)

Output has same frequencies

4/3/2006 © 2003-2006, JH McClellan & RW Schafer 23

Ideal Lowpass Filter (100 Hz)

y(t) =4π

sin 50πt( ) +4

3πsin 150πt( )

H( jω ) =1 ω < ωco0 ω > ωco

⎧ ⎨ ⎩

fco "cutoff freq."

4/3/2006 © 2003-2006, JH McClellan & RW Schafer 24

Ideal Lowpass Filter (200 Hz)

H( jω ) =1 ω < ωco0 ω > ωco

⎧ ⎨ ⎩

fco "cutoff"

y(t) =4π

sin 50πt( ) +4

3πsin 150πt( ) +

45π

sin 250πt( ) +4

7πsin 350πt( )

4/3/2006 © 2003-2006, JH McClellan & RW Schafer 25

Ideal Bandpass Filter

y(t) = 2j 7π ej 2π (175) t − 2

j 7π e− j 2π (175)t =4

7πcos 2π(175)t − 1

2 π( )

H( jω ) =1 ω ± ωc < 1

2 ωB

0 elsewhere⎧ ⎨ ⎩

What is the ouput signal ?

Passband Passband

Page 145: Signal Processing First Lecture Slides

4/3/2006 © 2003-2006, JH McClellan & RW Schafer 26

Example

y(t) = ake− jω 0k td e jω0k t = ake

jω0k ( t −td )

k =−∞

∑k= −∞

bk = akH( jω 0k) = ake− jω0k t d

H( jω ) = e− jω td

x(t) = ake

jω 0k t

k =−∞

∑ y(t) = bkejω0k t

k = −∞

∴ y(t) = x(t − td )

Page 146: Signal Processing First Lecture Slides

3/27/2004 © 2003, JH McClellan & RW Schafer 1

Signal Processing First

Lecture 22Introduction to the Fourier Transform

3/27/2004 © 2003, JH McClellan & RW Schafer 3

READING ASSIGNMENTS

This Lecture:Chapter 11, Sects. 11-1 to 11-4

Other Reading:Recitation: Ch. 10

And Chapter 11, Sects. 11-1 to 11-4Next Lecture: Chapter 11, Sects. 11-5, 11-6

3/27/2004 © 2003, JH McClellan & RW Schafer 4

LECTURE OBJECTIVESReview

Frequency ResponseFourier Series

Definition of Fourier transform

Relation to Fourier SeriesExamples of Fourier transform pairs

∫∞

∞−

−= dtetxjX tjωω )()(

3/27/2004 © 2003, JH McClellan & RW Schafer 5

Everything = Sum of Sinusoids

One Square Pulse = Sum of Sinusoids???????????

Finite LengthNot Periodic

Limit of Square Wave as Period infinityIntuitive Argument

Page 147: Signal Processing First Lecture Slides

3/27/2004 © 2003, JH McClellan & RW Schafer 6

Fourier Series: Periodic x(t)x(t) = x(t + T0 )

T0−2T0 −T0 2T00 t

x(t) = akejω 0k t

k =−∞

ak =1T0

x(t)e− jω0ktdt−T0/ 2

T0 / 2

Fundamental Freq.ω0 = 2π / T0 = 2πf0

Fourier Synthesis

Fourier Analysis3/27/2004 © 2003, JH McClellan & RW Schafer 7

Square Wave Signal

ak =e− jω0kt

− jω0kT0 −T0 /4

T0 / 4

=e− jπk / 2 − ejπk / 2

− j2πk=

sin(πk / 2)πk

x(t) = x(t + T0 )

T0−2T0 −T0 2T00 t

∫−

−=4/

4/0

0

0

0)1(1 T

T

tkjk dteT

a ω

3/27/2004 © 2003, JH McClellan & RW Schafer 8

Spectrum from Fourier Series

±±=

±±=≠==

,4,20

,3,1,00)2/sin(k

k

kkak π

π

3/27/2004 © 2003, JH McClellan & RW Schafer 9

What if x(t) is not periodic?

Sum of Sinusoids?Non-harmonically related sinusoids Would not be periodic, but would probably be non-zero for all t.

Fourier transformgives a “sum” (actually an integralintegral) that involves ALLALL frequenciescan represent signals that are identically zero for negative t. !!!!!!!!!

Page 148: Signal Processing First Lecture Slides

3/27/2004 © 2003, JH McClellan & RW Schafer 10

Limiting Behavior of FS

T0=2T

T0=4T

T0=8T

3/27/2004 © 2003, JH McClellan & RW Schafer 11

Limiting Behavior of Spectrum

T0=2T

T0=4T

T0=8T

)(Plot

0 kaT

3/27/2004 © 2003, JH McClellan & RW Schafer 12

FS in the LIMIT (long period)

Fourier Synthesis

Fourier Analysis

( ) ( ) ∫∑∞

∞−

−∞=== ωω ω

ππω

π dejXtxeaTtx tjT

tkj

kkT )()()( 2

1202

10

0

0

∫∫∞

∞−

− == dtetxjXdtetxaT tjT

T

tkjTk

ωω ω )()()(2/

2/0

0

0

0

0

ωπ dTT

=∞→ 0

2lim0

ωπ =∞→

kTT 0

2lim0

)(lim 00

ωjXaT kT=

∞→

3/27/2004 © 2003, JH McClellan & RW Schafer 13

Fourier Transform Defined

For non-periodic signalsFourier Synthesis

Fourier Analysis

∫∞

∞−

−= dtetxjX tjωω )()(

∫∞

∞−

= ωω ωπ dejXtx tj)()( 21

Page 149: Signal Processing First Lecture Slides

3/27/2004 © 2003, JH McClellan & RW Schafer 14

Example 1: x(t) = e−atu(t)

X( jω) = 1a + jω

X( jω ) = e−at

0

∫ e− jω tdt =0

∫ e− (a+ jω )tdt

X( jω ) = −e−ate− jω t

a + jω 0

=1

a + jω

a > 0

3/27/2004 © 2003, JH McClellan & RW Schafer 15

Frequency Response

Fourier Transform of h(t) is the Frequency Response

ωω

jjHtueth t

+=⇔= −

11)()()(

)()( tueth t−=

3/27/2004 © 2003, JH McClellan & RW Schafer 16

Magnitude and Phase Plots

ωω

jajH

+= 1)(

−=∠ −

ajH ωω 1tan)(

22

11

ωω +=

+ aja

)()( ωω jHjH ∗=− 3/27/2004 © 2003, JH McClellan & RW Schafer 17

X( jω) = sin(ωT / 2)ω / 2( )

Example 2: x(t) =1 t < T / 20 t > T / 2

X( jω) = e− jω t

− jω −T / 2

T /2

= e− jωT / 2 − e jωT /2

− jω

X( jω) = (1)e− jωtdt−T / 2

T /2∫ = e− jωtdt

−T / 2

T /2∫

Page 150: Signal Processing First Lecture Slides

3/27/2004 © 2003, JH McClellan & RW Schafer 18

x(t) =1 t < T / 20 t > T / 2

⇔ X( jω ) = sin(ωT / 2)ω / 2( )

3/27/2004 © 2003, JH McClellan & RW Schafer 19

Example 3:

>

<=

b

bjX

ωω

ωωω

0

1)(

tttx b

πω )sin()( =

∫∫−

∞−

==b

b

dedejXtx tjtjω

ω

ωω ωπ

ωωπ

121)(

21)(

jtee

jtetx

tjtjtj bbb

b

ωωω

ω

ω

ππ

−==21

21)(

3/27/2004 © 2003, JH McClellan & RW Schafer 20

>

<=⇔=

b

bb jXtttx

ωω

ωωω

πω

0

1)()sin()(

3/27/2004 © 2003, JH McClellan & RW Schafer 21

Example 4:

X( jω) = δ (t)e− jωtdt−∞

∞∫ = 1

Shifting Property of the Impulse

)()( 0tttx −= δ

0)()( 0tjtj edtettjX ωωδω −

∞−

− =−= ∫

Page 151: Signal Processing First Lecture Slides

3/27/2004 © 2003, JH McClellan & RW Schafer 22

x(t) = δ (t) ⇔ X( jω ) = 1

3/27/2004 © 2003, JH McClellan & RW Schafer 23

Example 5: X( jω) = 2πδ (ω − ω0 )

x(t) = 12π 2πδ (ω − ω0 )e jωtdω

−∞

∞∫ = e jω0t

x(t) = 1 ⇔ X( jω) = 2πδ (ω)

x(t) = e jω0 t ⇔ X( jω) = 2πδ (ω − ω0 )

x(t) = cos(ω0t) ⇔X( jω) = πδ (ω − ω0) + πδ (ω + ω0)

3/27/2004 © 2003, JH McClellan & RW Schafer 24

x(t) = cos(ω0t) ⇔X( jω) = πδ (ω − ω0) + πδ (ω + ω0)

3/27/2004 © 2003, JH McClellan & RW Schafer 25

Table of Fourier Transforms

x(t) = e−atu(t) ⇔ X( jω ) = 1a + jω

x(t) =1 t < T / 20 t > T / 2

⇔ X( jω ) = sin(ωT / 2)ω / 2( )

x(t) = sin(ω0t)π t( ) ⇔ X( jω ) =

1 ω < ω00 ω > ω0

x(t) = δ (t − t0) ⇔ X( jω ) = e− jωt0

x(t) = e jω0 t ⇔ X( jω) = 2πδ (ω − ω0 )

Page 152: Signal Processing First Lecture Slides

3/27/2004 © 2003, JH McClellan & RW Schafer 1

Signal Processing First

Lecture 23Fourier TransformProperties

3/27/2004 © 2003, JH McClellan & RW Schafer 3

READING ASSIGNMENTS

This Lecture:Chapter 11, Sects. 11-5 to 11-9Tables in Section 11-9

Other Reading:Recitation: Chapter 11, Sects. 11-1 to 11-9Next Lectures: Chapter 12 (Applications)

3/27/2004 © 2003, JH McClellan & RW Schafer 4

LECTURE OBJECTIVESThe Fourier transform

More examples of Fourier transform pairsBasic properties of Fourier transforms

Convolution propertyMultiplication property

∫∞

∞−

−= dtetxjX tjωω )()(

3/27/2004 © 2003, JH McClellan & RW Schafer 5

Fourier Transform

Fourier Analysis(Forward Transform)∫

∞−

−= dtetxjX tjωω )()(

Fourier Synthesis(Inverse Transform)∫

∞−

= ωωπ

ω dejXtx tj)(21)(

)()(Domain-FrequencyDomain-Time

ωjXtx ⇔⇔

Page 153: Signal Processing First Lecture Slides

3/27/2004 © 2003, JH McClellan & RW Schafer 6

WHY use the Fourier transform?

Manipulate the “Frequency Spectrum”Analog Communication Systems

AM: Amplitude Modulation; FMWhat are the “Building Blocks” ?

Abstract Layer, not implementation

Ideal Filters: mostly BPFsFrequency Shifters

aka Modulators, Mixers or Multipliers: x(t)p(t)

3/27/2004 © 2003, JH McClellan & RW Schafer 7

Frequency Response

Fourier Transform of h(t) is the Frequency Response

ωω

jjHtueth t

+=⇔= −

11)()()(

)()( tueth t−=

3/27/2004 © 2003, JH McClellan & RW Schafer 8

2/)2/sin()(

2/0

2/1)(

ωωω TjX

Tt

Tttx =⇔

>

<=

3/27/2004 © 2003, JH McClellan & RW Schafer 9

>

<=⇔=

b

bb jXtttx

ωω

ωωω

πω

0

1)()sin()(

Page 154: Signal Processing First Lecture Slides

3/27/2004 © 2003, JH McClellan & RW Schafer 10

0)()()( 0tjejXtttx ωωδ −=⇔−=

00 =t

3/27/2004 © 2003, JH McClellan & RW Schafer 11

Table of Fourier Transforms

)(2)()( ctj jXetx c ωωπδωω −=⇔=

0)()()( 0tjejXtttx ωωδ −=⇔−=

>

<=⇔=

b

bb jXtttx

ωω

ωωω

πω

0

1)()sin()(

2/)2/sin()(

2/0

2/1)(

ωωω TjX

Tt

Tttx =⇔

>

<=

ωω

jjXtuetx t

+=⇔= −

11)()()(

3/27/2004 © 2003, JH McClellan & RW Schafer 12

)()()()cos()( ccc jXttx ωωπδωωπδωω ++−=⇔=

3/27/2004 © 2003, JH McClellan & RW Schafer 13

Fourier Transform of a General Periodic Signal

If x(t) is periodic with period T0 ,

∫∑ −∞

−∞===

0

00

00)(1)(

Ttjk

kk

tjkk dtetx

Taeatx ωω

)(2 since Therefore, 00 ωωπδω ke tjk −⇔

∑∞

−∞=−=

kk kajX )(2)( 0ωωδπω

Page 155: Signal Processing First Lecture Slides

3/27/2004 © 2003, JH McClellan & RW Schafer 14

Square Wave Signal x(t) = x(t + T0 )

T0−2T0 −T0 2T00 t

ak =e− jω0kt

− jω0kT0 0

T0 / 2

−e− jω 0kt

− jω0kT0 T0 /2

T0

=1− e− jπk

jπk

ak =1T0

(1)e− jω0 ktdt +1T0

(−1)e− jω 0ktdtT0 / 2

T0

∫0

T0 / 2

3/27/2004 © 2003, JH McClellan & RW Schafer 15

Square Wave Fourier Transform

X( jω ) = 2π akδ(ω − kω0 )k=−∞

x(t) = x(t + T0 )

T0−2T0 −T0 2T00 t

3/27/2004 © 2003, JH McClellan & RW Schafer 16

Table of Easy FT Properties

ax1(t) + bx2(t) ⇔ aX1( jω) + bX2( jω )

x(t − td ) ⇔ e− jωtd X( jω )

x(t)e jω0t ⇔ X( j(ω − ω0))

Delay Property

Frequency Shifting

Linearity Property

x(at) ⇔ 1|a | X( j(ω

a ))Scaling

3/27/2004 © 2003, JH McClellan & RW Schafer 17

Scaling Property

expands)(shrinks;)2( 221 ωjXtx

)(

)()(

1

)/(

aa

adajtj

jX

exdteatx

ω

λλωω λ

=

= ∫∫∞

∞−

−∞

∞−

)()( 1aa jXatx ω⇔

Page 156: Signal Processing First Lecture Slides

3/27/2004 © 2003, JH McClellan & RW Schafer 18

Scaling Property

)()( 1aa jXatx ω⇔

)2()( 12 txtx =

3/27/2004 © 2003, JH McClellan & RW Schafer 19

Uncertainty Principle

Try to make x(t) shorterThen X(jωωωω) will get widerNarrow pulses have wide bandwidth

Try to make X(jωωωω) narrowerThen x(t) will have longer duration

Cannot simultaneously reduce time Cannot simultaneously reduce time duration and bandwidthduration and bandwidth

3/27/2004 © 2003, JH McClellan & RW Schafer 20

Significant FT Properties

x(t) ∗h(t) ⇔ H( jω )X( jω )

x(t)e jω0t ⇔ X( j(ω − ω0 ))

x(t)p(t) ⇔ 12π X( jω )∗P( jω )

dx(t)dt

⇔ ( jω)X( jω)

Differentiation Property

3/27/2004 © 2003, JH McClellan & RW Schafer 21

Convolution Property

Convolution in the time-domain

corresponds to MULTIPLICATIONMULTIPLICATION in the frequency-domain

y(t) = h(t) ∗ x(t) = h(τ )−∞

∞∫ x(t − τ )dτ

Y( jω ) = H( jω )X( jω )

y(t) = h(t) ∗ x(t)x(t)

Y( jω ) = H( jω )X( jω )X( jω)

Page 157: Signal Processing First Lecture Slides

3/27/2004 © 2003, JH McClellan & RW Schafer 22

Convolution Example

Bandlimited Input Signal“sinc” function

Ideal LPF (Lowpass Filter)h(t) is a “sinc”

Output is BandlimitedConvolve “sincs”

3/27/2004 © 2003, JH McClellan & RW Schafer 23

Ideally Bandlimited Signal

>

<=⇔=

πω

πωω

ππ

1000

1001)()100sin()( jX

tttx

πω 100=b

3/27/2004 © 2003, JH McClellan & RW Schafer 24

Convolution Example

sin(100π t)πt

∗ sin(200πt)π t

=

x(t) ∗h(t) ⇔ H( jω )X( jω )

sin(100π t)πt

3/27/2004 © 2003, JH McClellan & RW Schafer 25

Cosine Input to LTI SystemY (jω) = H( jω )X( jω)

= H( jω )[πδ(ω − ω0 ) +πδ(ω +ω 0)]

= H( jω0 )πδ (ω −ω0 ) + H(− jω0 )πδ (ω +ω0 )

y(t) = H ( jω0 ) 12 e

jω0t +H(− jω0 ) 12 e

− jω 0t

= H( jω0 ) 12 e

jω0t +H *( jω 0)12 e

− jω0t

= H( jω0 ) cos(ω 0t +∠H( jω0 ))

Page 158: Signal Processing First Lecture Slides

3/27/2004 © 2003, JH McClellan & RW Schafer 26

Ideal Lowpass Filter

Hlp( jω)

ωco−ωco

y(t) = x(t) if ω0 < ωco

y(t) = 0 if ω0 > ωco3/27/2004 © 2003, JH McClellan & RW Schafer 27

Ideal Lowpass Filter

y(t) = 4π

sin 50πt( ) + 43π

sin 150πt( )

fco "cutoff freq."

H( jω ) =1 ω < ωco0 ω > ωco

3/27/2004 © 2003, JH McClellan & RW Schafer 28

Signal Multiplier (Modulator)

Multiplication in the time-domain corresponds to convolution in the frequency-domain.

Y( jω ) = 12π X( jω) ∗P( jω )

y(t) = p(t)x(t)

X( jω )x(t)

p(t)

Y( jω ) = 12π

X( jθ )−∞

∞∫ P( j(ω −θ ))dθ

3/27/2004 © 2003, JH McClellan & RW Schafer 29

Frequency Shifting Property

x(t)e jω0t ⇔ X( j(ω − ω0))

y(t) =sin 7t

πtejω 0 t ⇔ Y ( jω ) =

1 ω 0−7 < ω <ω0 +70 elsewhere

))((

)()(

0

)( 00

ωω

ωωωω

−=

= ∫∫∞

∞−

−−∞

∞−

jX

dtetxdtetxe tjtjtj

Page 159: Signal Processing First Lecture Slides

3/27/2004 © 2003, JH McClellan & RW Schafer 30

y(t) = x(t)cos(ω0t) ⇔

Y( jω ) = 12X( j(ω − ω0 )) + 1

2X( j(ω + ω0))

x(t)

3/27/2004 © 2003, JH McClellan & RW Schafer 31

Differentiation Property

dx (t )dt

=ddt

12π

X ( jω )e jω t dω−∞

∞∫

=1

2π ( jω )X( jω )e jω tdω−∞

∞∫

ddte−atu(t)( )= −ae−atu(t) + e−atδ (t)

= δ (t) − ae−atu(t)⇔ jωa + jω

Multiply by jωωωω

Page 160: Signal Processing First Lecture Slides

4/19/2005 © 2003, JH McClellan & RW Schafer 1

Signal Processing First

Lecture 24Amplitude Modulation (AM)

4/19/2005 © 2003, JH McClellan & RW Schafer 3

LECTURE OBJECTIVES

Review of FT propertiesConvolution <--> multiplicationFrequency shifting

Sinewave Amplitude ModulationAM radio

Frequency-division multiplexingFDM

Reading: Chapter 12, Section 12-2

4/19/2005 © 2003, JH McClellan & RW Schafer 4

Table of Easy FT Properties

ax1(t) + bx2(t) ⇔ aX1( jω) + bX2( jω )

x(t − td ) ⇔ e− jωtd X( jω )

x(t)e jω0t ⇔ X( j(ω − ω0))

Delay Property

Frequency Shifting

Linearity Property

x(at) ⇔ 1|a | X( j(ω

a ))Scaling

4/19/2005 © 2003, JH McClellan & RW Schafer 5

Table of FT Properties

x(t) ∗h(t) ⇔ H( jω )X( jω )

x(t)e jω0t ⇔ X( j(ω − ω0))

x(t)p(t) ⇔ 12π

X( jω )∗ P( jω )

dx(t)dt

⇔ ( jω )X( jω )

Differentiation Property

Page 161: Signal Processing First Lecture Slides

4/19/2005 © 2003, JH McClellan & RW Schafer 6

Frequency Shifting Property

e− jω0 t x(t )e− jω tdt−∞

∫ = x(t)e− j (ω −ω 0 )t dt−∞

∫= X( j(ω −ω 0))

x(t)e jω0t ⇔ X( j(ω − ω0))

y(t) =sin 7t

πtejω 0 t ⇔ Y ( jω ) =

1 ω 0−7 < ω <ω0 +70 elsewhere

⎧ ⎨ ⎩

4/19/2005 © 2003, JH McClellan & RW Schafer 7

Convolution Property

Convolution in the time-domain

corresponds to MULTIPLICATIONMULTIPLICATION in the frequency-domain

y(t) = h(t) ∗ x(t) = h(τ )−∞

∞∫ x(t − τ )dτ

Y( jω ) = H( jω )X( jω )

y(t) = h(t) ∗ x(t)x(t)

Y( jω ) = H( jω )X( jω )X( jω)

4/19/2005 © 2003, JH McClellan & RW Schafer 8

Cosine Input to LTI SystemY (jω) = H( jω )X(jω)

= H( jω )[πδ(ω − ω0 ) +πδ(ω +ω 0)]

= H( jω0 )πδ (ω −ω0 ) + H(− jω0 )πδ (ω +ω0 )

y(t) = H ( jω0 ) 12 e jω0t + H(− jω0 ) 1

2 e− jω 0t

= H( jω0 ) 12 e jω0t + H *( jω 0)

12 e− jω0t

= H( jω0 ) cos(ω 0t +∠H( jω0 )) 4/19/2005 © 2003, JH McClellan & RW Schafer 9

Ideal Lowpass Filter

Hlp( jω )

ωco−ωco

y(t) = x(t) if ω0 < ωco

y(t) = 0 if ω0 > ωco

Page 162: Signal Processing First Lecture Slides

4/19/2005 © 2003, JH McClellan & RW Schafer 10

Ideal LPF: Fourier Series

y(t) =4π

sin 50πt( ) +4

3πsin 150πt( )

fco "cutoff freq."

H( jω ) =1 ω < ωco0 ω > ωco

⎧ ⎨ ⎩

4/19/2005 © 2003, JH McClellan & RW Schafer 11

The way communication systems work

How do we sharebandwidth ?

4/19/2005 © 2003, JH McClellan & RW Schafer 12

Table of FT Properties

x(t) ∗h(t) ⇔ H( jω )X( jω )

x(t)e jω0t ⇔ X( j(ω − ω0))

x(t)p(t) ⇔ 12π

X( jω )∗ P( jω )

dx(t)dt

⇔ ( jω )X( jω )

Differentiation Property

4/19/2005 © 2003, JH McClellan & RW Schafer 13

Signal Multiplier (Modulator)

Multiplication in the time-domain corresponds to convolution in the frequency-domain.

Y( jω ) = 12π

X( jω ) ∗ P( jω )

y(t) = p(t)x(t)

X( jω)x(t)

p(t)

Y( jω ) =1

2πX( jθ )

−∞

∞∫ P( j(ω −θ ))dθ

Page 163: Signal Processing First Lecture Slides

4/19/2005 © 2003, JH McClellan & RW Schafer 14

)()()()()()( 21 ωωω π jPjXjYtptxty ∗=⇔=

[ ])()()()()cos()()(

21

cc

c

jXjYttxty

ωωπδωωπδωωω

π ++−∗=⇔=

)()()()cos()(

cc

c

jPttp

ωωπδωωπδωω

++−=⇔=

))(())(()( 21

21

cc jXjXjY ωωωωω ++−=

4/19/2005 © 2003, JH McClellan & RW Schafer 15

Amplitude Modulator

x(t) modulates the amplitude of the cosine wave. The result in the frequency-domain is two shifted copies of X(jω).

y(t) = x(t)cos(ωct)

X( jω)x(t)

cos(ωct)Y( jω ) = 1

2X( j(ω − ωc ))

+ 12

X( j(ω + ωc ))

4/19/2005 © 2003, JH McClellan & RW Schafer 16

))(())(()()cos()()(

21

21

cc

c

jXjXjYttxty

ωωωωωω

++−=⇔=

)())sin((

)())sin(()(

)cos()()(

c

c

c

c

c

TTjY

ttxty

ωωωω

ωωωωω

ω

++

+−−

=

⇔=

)()sin(2)(

0

1)(

ωωω TjX

Tt

Tttx =⇔

⎪⎩

⎪⎨⎧

>

<=

4/19/2005 © 2003, JH McClellan & RW Schafer 17

x(t)

ωc−ωc

))((21

cjX ωω + ))((21

cjX ωω −

))(())(()()cos()()(

21

21

cc

c

jXjXjYttxty

ωωωωωω

++−=⇔=

Page 164: Signal Processing First Lecture Slides

4/19/2005 © 2003, JH McClellan & RW Schafer 18

DSBAM Modulator

If X(jω)=0 for |ω|>ωb and ωc >ωb,the result in the frequency-domain is two shifted and scaled exact copies of X(jω).

y(t) = x(t)cos(ωct)

X( jω)x(t)

cos(ωct)Y( jω ) = 1

2X( j(ω − ωc ))

+ 12

X( j(ω + ωc ))

4/19/2005 © 2003, JH McClellan & RW Schafer 19

DSBAM Waveform

In the time-domain, the “envelope” of sine-wave peaks follows |x(t)|

4/19/2005 © 2003, JH McClellan & RW Schafer 20

Double Sideband AM (DSBAM)“Typical” bandlimitedinput signal

Frequency-shiftedcopies Upper sidebandLower sideband

4/19/2005 © 2003, JH McClellan & RW Schafer 21

DSBAM DEmodulator

w(t) = x(t)[cos(ωct)]2 = 1

2x(t) + 1

2x(t)cos(2ωct)

W( jω ) = 12

X( jω ) + 14

X( j(ω − 2ωc )) + 14

X( j(ω + 2ωc ))

V ( jω ) = H( jω )W( jω )

w(t) v(t)x(t)

cos(ωct) cos(ωct)

y(t) = x(t)cos(ωct)

Page 165: Signal Processing First Lecture Slides

4/19/2005 © 2003, JH McClellan & RW Schafer 22

DSBAM Demodulation

V ( jω ) = H( jω )W( jω ) = X( jω ) if ωb < ωco < 2ωc − ωb

H( jω ) =2 | ω |< ωco0 |ω |> ωco

⎧ ⎨ ⎩

4/19/2005 © 2003, JH McClellan & RW Schafer 23

Frequency-Division Multiplexing (FDM)

Shifting spectrum of signal to higher frequency:

Permits transmission of low-frequency signals with high-frequency EM wavesBy allocating a frequency band to each signal multiple bandlimited signals can share the same channelAM radio: 530-1620 kHz (10 kHz bands)FM radio: 88.1-107.9 MHz (200 kHz bands)

4/19/2005 © 2003, JH McClellan & RW Schafer 24

FDM Block Diagram (Xmitter)

cos(ωc1t)

cos(ωc 2t)

ωc1 ωc2

Spectrum of inputsmust be bandlimitedNeed ωc2 − ωc1 > 2ωb

4/19/2005 © 2003, JH McClellan & RW Schafer 25

Frequency-Division De-Mux

cos(ωc1t)

cos(ωc 2t)

ωc1 ωc2

Page 166: Signal Processing First Lecture Slides

4/19/2005 © 2003, JH McClellan & RW Schafer 26

Bandpass Filters for De-Mux

4/19/2005 © 2003, JH McClellan & RW Schafer 27

Pop Quiz: FT thru LPF

∑∞

−∞=

−=↔k

kjXtx )30(4)()(Input πωδπω

cofor a value find then,2)( isoutput theIf ω=ty

1

coωcoω−

)(LP ωjH

ω

Page 167: Signal Processing First Lecture Slides

8/22/2003 © 2003, JH McClellan & RW Schafer 1

Signal Processing First

Lecture 25Sampling and Reconstruction(Fourier View)

8/22/2003 © 2003, JH McClellan & RW Schafer 3

LECTURE OBJECTIVES

Sampling Theorem RevisitedGENERAL: in the FREQUENCY DOMAINFourier transform of sampled signalReconstruction from samples

Reading: Chap 12, Section 12-3

Review of FT propertiesConvolution multiplicationFrequency shiftingReview of AM

8/22/2003 © 2003, JH McClellan & RW Schafer 4

Table of FT Properties

x(t − td ) ⇔ e− jωtd X( jω )

x(t)e jω0t ⇔ X( j(ω − ω0))

Delay Property

Frequency Shifting

x(at) ⇔ 1|a | X( j(ω

a ))Scaling

x(t) ∗h(t) ⇔ H( jω )X( jω )

8/22/2003 © 2003, JH McClellan & RW Schafer 5

Amplitude Modulator

x(t) modulates the amplitude of the cosine wave. The result in the frequency-domain is two SHIFTED copies of X(jω).

y(t) = x(t)cos(ωct +ϕ )

X( jω )x(t)

cos(ωct + ϕ)Y ( jω) = 1

2 e jϕX( j(ω −ωc))

+ 12 e− jϕX( j(ω + ωc))

Phase

Page 168: Signal Processing First Lecture Slides

8/22/2003 © 2003, JH McClellan & RW Schafer 6

DSBAM: Frequency-Domain“Typical” bandlimitedinput signal

Frequency-shiftedcopies

))((21

cj jXe ωωϕ +− ))((2

1c

j jXe ωωϕ −

Upper sidebandLower sideband

)( ωjX

8/22/2003 © 2003, JH McClellan & RW Schafer 7

DSBAM Demod Phase Synch

w(t) v(t)x(t)

cos(ωct) )cos( ϕω +tc

)cos()()( ttxty cω=

))2(())2(()()()(

41

41

41

41

cj

cj

jj

jXejXejXejXejW

ωωωωωωω

ϕϕ

ϕϕ

++−++=

? ifwhat )()cos()( 21

21 πϕωϕω == jXjV

8/22/2003 © 2003, JH McClellan & RW Schafer 8

Quadrature Modulator

TWO signals on ONE channel: “out of phase” Can you “separate” them in the demodulator ?

))(())(())(())(()(

22121

22121

cj

c

cj

c

jXjXjXjXjY

ωωωωωωωωω++++

−−−=

8/22/2003 © 2003, JH McClellan & RW Schafer 9

Demod: Quadrature System

)cos( ϕω +tc

)()()()()(

22/

41

141

22/

41

141

ωωωωω

ϕπϕ

ϕπϕ

jXeejXejXeejXejV

jjj

jjj

+++= −−−

0 if )()( 1 == ϕtxtv

2/ if )()( 2 πϕ −== txtv

))(())((

))(())(()(

22121

22121

cj

c

cj

c

jXjXjXjXjY

ωωωωωωωωω

++++

−−−=

Page 169: Signal Processing First Lecture Slides

8/22/2003 © 2003, JH McClellan & RW Schafer 10

Quadrature Modulation: 4 sigs

8700 Hz

3600 Hz

8/22/2003 © 2003, JH McClellan & RW Schafer 11

Ideal C-to-D Converter

• Mathematical Model for A-to-D

x[n] = x(nTs )

FOURIERTRANSFORMof xs(t) ???

8/22/2003 © 2003, JH McClellan & RW Schafer 12

Periodic Impulse Train

ωs = 2πTs

∑∑∞

−∞=

−∞==−=k

tjkk

ns

seanTttp ωδ )()(

s

T

T

tjk

sk T

dtetT

as

s

s1)(1 2/

2/

== ∫−

− ωδFourier Series

8/22/2003 © 2003, JH McClellan & RW Schafer 13

FT of Impulse Train

∑∑∞

−∞=

−∞=−=↔−=

ks

sns k

TjPnTttp )(2)()()( ωωδπωδ

ss T

πω 2=

Page 170: Signal Processing First Lecture Slides

8/22/2003 © 2003, JH McClellan & RW Schafer 14

Impulse Train Sampling

xs (t) = x(t) δ (t − nTs )n=−∞

∞∑ = x(t)δ (t − nTs )

n=−∞

∞∑

xs(t) = x(nTs)δ(t−nTs)n=−∞

∞∑

8/22/2003 © 2003, JH McClellan & RW Schafer 15

Illustration of Samplingx(t)

x[n] = x(nTs )

∑∞

−∞=−=

nsss nTtnTxtx )()()( δ

n

t

8/22/2003 © 2003, JH McClellan & RW Schafer 16

Sampling: Freq. Domain

EXPECTFREQUENCYSHIFTING !!!

∑∑∞

−∞=

−∞==−=k

tjkk

ns

seanTttp ωδ )()(

∑∞

−∞==k

tjkk

sea ω

8/22/2003 © 2003, JH McClellan & RW Schafer 17

Frequency-Domain Analysis

xs (t) = x(t) δ (t − nTs )n=−∞

∞∑ = x(nTs )δ (t − nTs )

n=−∞

∞∑

xs (t) = x(t) 1Tsk=−∞

∞∑ e jkωst = 1

Tsx(t)

k=−∞

∞∑ e jkωst

Xs ( jω) = 1Ts

X( j(ωk=−∞

∞∑ − kωs ))

ωs = 2πTs

Page 171: Signal Processing First Lecture Slides

8/22/2003 © 2003, JH McClellan & RW Schafer 18

Frequency-Domain Representation of Sampling

Xs ( jω) = 1Ts

X( j(ωk=−∞

∞∑ − kωs ))

“Typical”bandlimited signal

8/22/2003 © 2003, JH McClellan & RW Schafer 19

Aliasing Distortion

If ωs < 2ωb , the copies of X(jω) overlap, and we have aliasing distortion.

“Typical”bandlimited signal

8/22/2003 © 2003, JH McClellan & RW Schafer 20

Reconstruction of x(t)

xs (t) = x(nTs )δ (t − nTs )n=−∞

∞∑

Xs ( jω) = 1Ts

X( j(ωk=−∞

∞∑ − kωs ))

Xr ( jω) = Hr ( jω)Xs ( jω )8/22/2003 © 2003, JH McClellan & RW Schafer 21

Reconstruction: Frequency-Domain

)()()(so overlap,not do )(of copies the,2 If

ωωωω

ωω

jXjHjXjX

srr

bs

=

>Hr ( jω )

Page 172: Signal Processing First Lecture Slides

8/22/2003 © 2003, JH McClellan & RW Schafer 22

Ideal Reconstruction Filter

hr (t) =sin π

Tst

πTst

Hr ( jω) =Ts ω < π

Ts0 ω > π

Ts

hr (0) = 1

hr (nTs ) = 0, n = ±1,±2,…

8/22/2003 © 2003, JH McClellan & RW Schafer 23

Signal Reconstruction

xr (t) = hr (t) ∗ xs (t) = hr (t)∗ x(nTs )δ (t − nTs )n=−∞

∞∑

xr (t) = x(nTs )sin π

Ts(t − nTs )

πTs

(t − nTs )n=−∞

∞∑

Ideal bandlimited interpolation formula

xr (t) = x(nTs )hr (t − nTs )n=−∞

∞∑

8/22/2003 © 2003, JH McClellan & RW Schafer 24

Shannon Sampling Theorem

“SINC” Interpolation is the idealPERFECT RECONSTRUCTIONof BANDLIMITED SIGNALS

8/22/2003 © 2003, JH McClellan & RW Schafer 25

Reconstruction in Time-Domain

Page 173: Signal Processing First Lecture Slides

8/22/2003 © 2003, JH McClellan & RW Schafer 26

Ideal C-to-D and D-to-C

x[n] = x(nTs )xr (t) = x[n]

sin πTs

(t − nTs )πTs

(t − nTs )n=−∞

∞∑

Ideal Sampler Ideal bandlimited interpolator

Xr ( jω) = Hr ( jω)Xs ( jω )Xs ( jω) = 1Ts

X( j(ωk=−∞

∞∑ − kωs ))

Page 174: Signal Processing First Lecture Slides

8/22/2003 © 2003, JH McClellan & RW Schafer 1

Signal Processing First

Lecture 26Review: Digital Filtering

of Analog Signals

8/22/2003 © 2003, JH McClellan & RW Schafer 3

LECTURE OBJECTIVES

Sampling Theorem RevisitedGENERAL: in the FREQUENCY DOMAINFourier transform of sampled signalReconstruction from samples

Effective Frequency Response

Important FT propertiesConvolution multiplicationFrequency shifting

8/22/2003 © 2003, JH McClellan & RW Schafer 4

Sampling: Freq. Domain

EXPECTFREQUENCYSHIFTING !!!

∑∑∞

−∞=

−∞==−=k

tjkk

ns

seanTttp ωδ )()(

∑∞

−∞==k

tjkk

seatp ω)(

8/22/2003 © 2003, JH McClellan & RW Schafer 5

Frequency-Domain Representation of Sampling

Xs ( jω) = 1Ts

X( j(ωk=−∞

∞∑ − kωs ))

“Typical”bandlimited signal

Page 175: Signal Processing First Lecture Slides

8/22/2003 © 2003, JH McClellan & RW Schafer 6

Aliasing Distortion

If ωs < 2ωb , the copies of X(jω) overlap, and we have aliasing distortion.

“Typical”bandlimited signal

8/22/2003 © 2003, JH McClellan & RW Schafer 7

Reconstruction of x(t)

xs (t) = x(nTs )δ (t − nTs )n=−∞

∞∑

Xs ( jω) = 1Ts

X( j(ωk=−∞

∞∑ − kωs ))

Xr ( jω) = Hr ( jω)Xs ( jω )

8/22/2003 © 2003, JH McClellan & RW Schafer 8

Reconstruction: Frequency-Domain

)()()(so overlap,not do )(of copies the,2 If

ωωωω

ωω

jXjHjXjX

srr

bs

=

>Hr ( jω )

8/22/2003 © 2003, JH McClellan & RW Schafer 9

Ideal Reconstruction Filter

hr (t) =sin π

Tst

πTst

Hr ( jω) =Ts ω < π

Ts0 ω > π

Ts

hr (0) = 1

hr (nTs ) = 0, n = ±1,±2,…

Page 176: Signal Processing First Lecture Slides

8/22/2003 © 2003, JH McClellan & RW Schafer 10

Signal Reconstruction

xr (t) = hr (t) ∗ xs (t) = hr (t)∗ x(nTs )δ (t − nTs )n=−∞

∞∑

xr (t) = x(nTs )sin π

Ts(t − nTs )

πTs

(t − nTs )n=−∞

∞∑

Ideal bandlimited interpolation formula

xr (t) = x(nTs )hr (t − nTs )n=−∞

∞∑

8/22/2003 © 2003, JH McClellan & RW Schafer 11

Shannon Sampling Theorem

“SINC” Interpolation is the idealPERFECT RECONSTRUCTIONof BANDLIMITED SIGNALS

8/22/2003 © 2003, JH McClellan & RW Schafer 12

Reconstruction in Time-Domain

8/22/2003 © 2003, JH McClellan & RW Schafer 13

Ideal C-to-D and D-to-C

x[n] = x(nTs )xr (t) = x[n]

sin πTs

(t − nTs )πTs

(t − nTs )n=−∞

∞∑

Ideal Sampler Ideal bandlimited interpolator

Xr ( jω) = Hr ( jω)Xs ( jω )Xs ( jω) = 1Ts

X( j(ωk=−∞

∞∑ − kωs ))

Page 177: Signal Processing First Lecture Slides

8/22/2003 © 2003, JH McClellan & RW Schafer 14

DT Filtering of CT Signals

D-to-CC-to-Dx(t) y(t)y[n]x[n] H(e j ˆ ω )X( jω ) Y( jω )

X(e j ˆ ω ) Y(e j ˆ ω )

If no aliasing occurs in sampling x(t), then it follows that

Y( jω ) = Heff ( jω)X( jω)

Heff ( jω ) =H(ejωTs ) ω < 1

2 ω s

0 ω > 12 ω s

UNDEFINEDNOT LTI

8/22/2003 © 2003, JH McClellan & RW Schafer 15

DT Filtering of a CT Signal

Spectrum of Discrete-Time Signal

Digital Filter

Reconstruction Filter (Analog)

ω

ω̂

ω̂

ω

Analog Input

Analog Output

8/22/2003 © 2003, JH McClellan & RW Schafer 16

EFFECTIVE Freq. Response

Assume NO Aliasing, thenANALOG FREQ <--> DIGITAL FREQ

So, we can plot:Scaled Freq. Axis

ˆ ω =ωTs = ωfs

H(e jωTs ) vs. ωANALOG FREQUENCY

DIGITAL FILTER

8/22/2003 © 2003, JH McClellan & RW Schafer 17

EFFECTIVE RESPONSE

DIGITAL FILTER

H(e j ˆ ω )

Heff ( jω )

fs = 1000 Hz

sin(11 ˆ ω / 2)sin( ˆ ω / 2)

Page 178: Signal Processing First Lecture Slides

8/22/2003 © 2003, JH McClellan & RW Schafer 18

Frequency Response for Discrete-time

Analog Frequency Response

Heff for 11-pt Averager

1000ˆ ωωωω ===sfsT

)2/ˆsin()2/ˆ11sin()( ˆ

ωωω =jeH

)2000/sin()2000/11sin()(

ωωω =jH

8/22/2003 © 2003, JH McClellan & RW Schafer 19

POP QUIZ

Given:

Find the output, y(t)When x(t) = cos(2000π t)

2 + 2z −1

1 −0.8z−1 D-to-AA-to-Dx(t) y(t)y[n]x[n]

fs = 5000Hz

8/22/2003 © 2003, JH McClellan & RW Schafer 20

POP QUIZ BECOMES

Given:

Find the output, y[n]When

Because

x[n] = cos(0.4πn)

H(z) =2 + 2z−1

1− 0.8z −1

ωTs = 2000π / 5000 = 0.4πNO Aliasing

8/22/2003 © 2003, JH McClellan & RW Schafer 21

ωω

ωω

ω

ˆ)()( where)(][ then][ if

ˆ

ˆˆ

ˆ

jezj

njj

nj

zHeHeeHny

enx

==

==

SINUSOIDAL RESPONSE

x[n] = SINUSOID => y[n] is SINUSOIDGet MAGNITUDE & PHASE from H(z)

Page 179: Signal Processing First Lecture Slides

8/22/2003 © 2003, JH McClellan & RW Schafer 22

POP QUIZ INSIDE ANSWER

Given:

The input:

Then y[n]

x[n] = cos(0.4πn)

H(z) =2 + 2z−1

1− 0.8z −1

y[n] = M cos(0.4πn +ψ )

H(e j 0.4π ) =2 + 2e− j0.4π

1− 0.8e− j 0.4π = 3.02e− j 0.452π

8/22/2003 © 2003, JH McClellan & RW Schafer 23

POP QUIZ ANSWER

Given:

When

The output isx(t) = cos(2000π t)

2 + 2z −1

1 −0.8z−1 D-to-AA-to-Dx(t) y(t)y[n]x[n]

fs = 5000Hz

y(t) = 3.02 cos(2000π t − 0.452π )

8/22/2003 © 2003, JH McClellan & RW Schafer 24

ANOTHER INPUT FREQ

Given:

Find the output, y(t)When

2 + 2z −1

1 −0.8z−1 D-to-AA-to-Dx(t) y(t)y[n]x[n]

fs = 5000Hz ˆ ω = ?

ˆ ω = ?

))7500(2cos()( ttx π=

8/22/2003 © 2003, JH McClellan & RW Schafer 25

2nd POP QUIZ ANSWER

Given:

When

2 + 2z −1

1 −0.8z−1 D-to-AA-to-Dx(t) y(t)y[n]x[n]

fs = 5000Hz y(t) = ?

ω = ?

))7500(2cos()( ttx π=

)5.1(25000/)7500(2cos(ˆ ππω ==

πω 3ˆ =

Page 180: Signal Processing First Lecture Slides

8/22/2003 © 2003, JH McClellan & RW Schafer 26

IMPORTANT CONCEPTS

ALL Signals have Frequency ContentSum of SinusoidsComplex ExponentialsImpulses, Square Pulses

FILTERS alter the Frequency ContentImage Processing Example: BlurLinear Time-Invariant Processing

3 Domains for Analysis

8/22/2003 © 2003, JH McClellan & RW Schafer 27

Superficial Knowledge

It depends how carefully you think about it. If you don’t think very carefully it’s obvious; but if you think about it in depth, you’ll get confused and it won’t be obvious.

…anon

8/22/2003 © 2003, JH McClellan & RW Schafer 28

THREE DOMAINS

H(z) =

bkz− k∑

1− a z−∑z = e j ˆ ω

8/22/2003 © 2003, JH McClellan & RW Schafer 29

THE FUTURE

Circuits & Laplace Transforms

H(s)

H( jω )h(t)FrequencyResponse

Implementation isRLC-op-amp circuit

Polynomials: Poles & Zeros

Page 181: Signal Processing First Lecture Slides

8/22/2003 © 2003, JH McClellan & RW Schafer 30

Mathematical Elegance

x(t ) =1

2πX( jω )e jω t dω

−∞

∞∫ Fourier Synthesis

(Inverse Transform)

Time - domain ⇔ Frequency - domain x(t) ⇔ X( jω )

X( jω) = x(t)−∞

∞∫ e− jωtdt Fourier Analysis

(Forward Transform)