14
1 TT. Liu, BE280A, UCSD Fall 2015 Bioengineering 280A Principles of Biomedical Imaging Fall Quarter 2015 MRI Lecture 3 TT. Liu, BE280A, UCSD Fall 2015 TT. Liu, BE280A, UCSD Fall 2015 Signal Equation Demodulate the signal to obtain s(t ) = e jω 0 t s r (t ) = m( x, y)exp jγ G (τ ) r dτ o t ( ) y x dxdy = m( x, y)exp jγ G x (τ ) x + G y (τ ) y [ ] dτ o t ( ) y x dxdy = m( x, y)exp j 2π k x (t ) x + k y (t ) y ( ) ( ) y x dxdy k x (t ) = γ 2π G x (τ )dτ 0 t k y (t ) = γ 2π G y (τ )dτ 0 t Where TT. Liu, BE280A, UCSD Fall 2015 K-space s(t ) = Mk x (t ), k y (t ) ( ) = Fm( x, y) [ ] k x ( t ),k y ( t ) k x (t ) = γ 2π G x (τ )dτ 0 t k y (t ) = γ 2π G y (τ )dτ 0 t At each point in time, the received signal is the Fourier transform of the object evaluated at the spatial frequencies: Thus, the gradients control our position in k-space. The design of an MRI pulse sequence requires us to efficiently cover enough of k-space to form our image.

Signal Equation K-space

  • Upload
    others

  • View
    6

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Signal Equation K-space

1

TT. Liu, BE280A, UCSD Fall 2015

Bioengineering 280A �Principles of Biomedical Imaging�

�Fall Quarter 2015�

MRI Lecture 3�

TT. Liu, BE280A, UCSD Fall 2015

TT. Liu, BE280A, UCSD Fall 2015

Signal EquationDemodulate the signal to obtain

s(t) = e jω 0t sr(t)

= m(x,y)exp − jγ G (τ ) ⋅

r dτ

o

t∫( )y∫x∫ dxdy

= m(x,y)exp − jγ Gx (τ)x + Gy (τ)y[ ]dτo

t∫( )y∫x∫ dxdy

= m(x,y)exp − j2π kx (t)x + ky (t)y( )( )y∫x∫ dxdy

kx (t) =γ2π

Gx (τ )dτ0

t∫

ky (t) =γ2π

Gy (τ )dτ0

t∫

Where

TT. Liu, BE280A, UCSD Fall 2015

K-space

s(t) = M kx (t),ky (t)( ) = F m(x,y)[ ] kx ( t ),ky ( t )

kx (t) =γ2π

Gx (τ )dτ0

t∫

ky (t) =γ2π

Gy (τ )dτ0

t∫

At each point in time, the received signal is the Fourier transform of the object

evaluated at the spatial frequencies:

Thus, the gradients control our position in k-space. The design of an MRI pulse sequence requires us to efficiently cover enough of k-space to form our image.

Page 2: Signal Equation K-space

2

TT. Liu, BE280A, UCSD Fall 2015

K-space trajectoryGx(t)

t

kx (t) =γ2π

Gx (τ )dτ0

t∫

t1 t2

kx

ky

kx (t1)

kx (t2)

TT. Liu, BE280A, UCSD Fall 2015

UnitsSpatial frequencies (kx, ky) have units of 1/distance. Most commonly, 1/cmGradient strengths have units of (magnetic field)/distance. Most commonly G/cm or mT/mγ/(2π) has units of Hz/G or Hz/Tesla.

kx (t) =γ2π

Gx (τ )dτ0

t

= [Hz /Gauss][Gauss /cm][sec]= [1/cm]

TT. Liu, BE280A, UCSD Fall 2015

ExampleGx(t) = 1 Gauss/cm

t

kx (t2) =γ

2πGx (τ )dτ

0

t

∫= 4257Hz /G ⋅1G /cm ⋅0.235×10−3 s=1 cm−1

kx

ky

kx (t1)

kx (t2)

t2 = 0.235ms

1 cm

TT. Liu, BE280A, UCSD Fall 2015

K-space trajectoryGx(t)

tt1 t2

ky

kx (t1)

kx (t2)

Gy(t)

t3 t4kx

ky (t4 )

ky (t3)

Page 3: Signal Equation K-space

3

TT. Liu, BE280A, UCSD Fall 2015

k-space

kx

ky

TT. Liu, BE280A, UCSD Fall 2015

TT. Liu, BE280A, UCSD Fall 2015

K-space trajectoryGx(t)

tt1 t2

ky

Gy(t)

kx

TT. Liu, BE280A, UCSD Fall 2015

Spin-WarpGx(t)

t1

ky

Gy(t)

kx

Page 4: Signal Equation K-space

4

TT. Liu, BE280A, UCSD Fall 2015

Spin-Warp Pulse Sequence

Gx(t)

Gy(t)

RF

kyGy(t)

TT. Liu, BE280A, UCSD Fall 2015

TT. Liu, BE280A, UCSD Fall 2015

K-space trajectories

kx

ky ky

kx

EPI Spiral

Credit: Larry FrankTT. Liu, BE280A, UCSD Fall 2015

kx

ky ky

kx

Page 5: Signal Equation K-space

5

TT. Liu, BE280A, UCSD Fall 2015

Thomas Liu, BE280A, UCSD, Fall 2008

Sampling in k-space

TT. Liu, BE280A, UCSD Fall 2015

Aliasing

TT. Liu, BE280A, UCSD Fall 2015

Aliasing

∆Bz(x)=Gxx FasterSlowerTT. Liu, BE280A, UCSD Fall 2015

Intuitive view of Aliasing

kx =1/FOV

FOV

kx = 2 /FOV

Page 6: Signal Equation K-space

6

TT. Liu, BE280A, UCSD Fall 2015

Fourier Sampling

Instead of sampling the signal, we sample its Fourier Transform

???

Sample

F-1

F

TT. Liu, BE280A, UCSD Fall 2015

Fourier Sampling

GS (kx ) =G(kx )1Δkx

comb kxΔkx

#

$ %

&

' (

=G(kx ) δ(n=−∞

∑ kx − nΔkx )

= G(nΔkx )δ(n=−∞

∑ kx − nΔkx )

kx

(1 /Δkx) comb(kx /Δkx)

Δkx

TT. Liu, BE280A, UCSD Fall 2015

Fourier Sampling -- Inverse Transform

Χ =

*

1/Δkx

Δkx

=

TT. Liu, BE280A, UCSD Fall 2015

Nyquist Condition

FOV (Field of View)

1/Δkx

To avoid overlap, 1/Δkx> FOV, or equivalently, Δkx<1/FOV

Page 7: Signal Equation K-space

7

TT. Liu, BE280A, UCSD Fall 2015

Aliasing

FOV (Field of View)

1/Δkx

Aliasing occurs when 1/Δkx< FOV

TT. Liu, BE280A, UCSD Fall 2015

Aliasing Example

Δkx=1

1/Δkx=1

TT. Liu, BE280A, UCSD Fall 2015

2D Comb Function

comb(x,y) = δ(x −m,y − n)n=−∞

∑m=−∞

= δ(x −m)δ(y − n)n=−∞

∑m=−∞

∑= comb(x)comb(y)

TT. Liu, BE280A, UCSD Fall 2015

Scaled 2D Comb Function

comb(x /Δx,y /Δy) = comb(x /Δx)comb(y /Δy)

= ΔxΔy δ(x −mΔx)δ(y − nΔy)n=−∞

∑m=−∞

Δx

Δy

Page 8: Signal Equation K-space

8

TT. Liu, BE280A, UCSD Fall 2015

2D k-space sampling

GS (kx,ky ) =G(kx,ky )1

ΔkxΔkycomb kx

Δkx,kyΔky

#

$ % %

&

' ( (

=G(kx,ky ) δ(n=−∞

∑ kx −mΔkx,ky − nΔky )m=−∞

= G(mΔkx,nΔky )δ(n=−∞

∑ kx −mΔkx,ky − nΔky )m=−∞

TT. Liu, BE280A, UCSD Fall 2015

X =

* =

1/∆k

TT. Liu, BE280A, UCSD Fall 2015

Nyquist Conditions

FOVX

FOVY

1/∆kX

1/∆kY

1/∆kY> FOVY

1/∆kX> FOVX

TT. Liu, BE280A, UCSD Fall 2015

Windowing

GW kx,ky( ) =G kx,ky( )W kx,ky( )

gW x,y( ) = g x,y( )∗w(x,y)

Windowing the data in Fourier space

Results in convolution of the object with the inverse transform of the window

Page 9: Signal Equation K-space

9

TT. Liu, BE280A, UCSD Fall 2015

Resolution

TT. Liu, BE280A, UCSD Fall 2015

Windowing Example

W kx,ky( ) = rect kxWkx

"

# $ $

%

& ' ' rect

kyWky

"

# $ $

%

& ' '

w x,y( ) = F −1 rect kxWkx

#

$ % %

&

' ( ( rect

kyWky

#

$ % %

&

' ( (

)

* + +

,

- . .

=WkxWky

sinc Wkxx( )sinc Wky

y( )

gW x,y( ) = g(x,y)∗∗WkxWky

sinc Wkxx( )sinc Wky

y( )

TT. Liu, BE280A, UCSD Fall 2015

Effective Width

wE =1

w(0)w(x)dx

−∞

wE

wE =11

sinc(Wkxx)dx

−∞

= F sinc(Wkxx)[ ]

kx = 0

=1Wkx

rect kxWkx

%

& ' '

(

) * * kx = 0

=1Wkx

Example

1Wkx

−1Wkx

TT. Liu, BE280A, UCSD Fall 2015

Resolution and spatial frequency

2Wkx

With a window of width Wkx the highest spatial frequency is Wkx

/2.This corresponds to a spatial period of 2/Wkx

.

1Wkx

= Effective Width

Page 10: Signal Equation K-space

10

TT. Liu, BE280A, UCSD Fall 2015

Windowing Example

g(x,y) = δ(x) + δ(x −1)[ ]δ(y)

gW x,y( ) = δ(x) + δ(x −1)[ ]δ(y)∗∗WkxWky

sinc Wkxx( )sinc Wky

y( )=Wkx

Wkyδ(x) + δ(x −1)[ ]∗ sinc Wkx

x( )( )sinc Wkyy( )

=WkxWky

sinc Wkxx( ) + sinc Wkx

(x −1)( )( )sinc Wkyy( )

Wkx=1

Wkx= 2

Wkx=1.5

TT. Liu, BE280A, UCSD Fall 2015

Sampling and Windowing

X =

* =

X

* =

TT. Liu, BE280A, UCSD Fall 2015

Sampling and Windowing

GSW kx,ky( ) =G kx,ky( ) 1ΔkxΔky

comb kxΔkx

,kyΔky

#

$ % %

&

' ( ( rect

kxWkx

,kyWky

#

$ % %

&

' ( (

gSW x,y( ) =WkxWkyg x,y( )∗∗comb(Δkxx,Δkyy)∗∗sinc(Wkx

x)sinc(Wkyy)

Sampling and windowing the data in Fourier space

Results in replication and convolution in object space.

TT. Liu, BE280A, UCSD Fall 2015

Sampling and Windowing∆kY< 1/(FOVY)

∆kX< 1/(FOVX)

Δkx

Δky kx

ky

Wky>1/δy

Wkx

Wkx>1/δx

Wky

Page 11: Signal Equation K-space

11

TT. Liu, BE280A, UCSD Fall 2015 GE Medical Systems 2003 TT. Liu, BE280A, UCSD Fall 2015

Sampling in ky

kx

ky

Gx(t)

Gy(t)

RF

Δky

τy

Gyi

Δky =γ2π

Gyiτ y

FOVy =1Δky

TT. Liu, BE280A, UCSD Fall 2015

Sampling in kx

x Low pass Filter ADC

x Low pass Filter ADC€

cosω0t

sinω0t

RF Signal

One I,Q sample every Δt

M= I+jQ

I

Q

Note: In practice, there are number of ways of implementing this processing.

TT. Liu, BE280A, UCSD Fall 2015

Sampling in kx

kx

ky

Δkx =γ2π

GxrΔt

FOVx =1Δkx

Gx(t)

t1

ADC

Gxr

Δt

Page 12: Signal Equation K-space

12

TT. Liu, BE280A, UCSD Fall 2015

Resolution

δx =1Wkx

= 12kx,max

= 1γ

2πGxrτ x

Wkx€

Wky

Gx(t)Gxr

τ x

δy =1Wky

= 12ky,max

= 1γ

2π2Gypτ y

Gy(t)

τy€

Gyp

TT. Liu, BE280A, UCSD Fall 2015

Example

Goal :FOVx = FOVy = 25.6 cmδx = δy = 0.1 cm

Readout Gradient :

FOVx =1

γ2π

GxrΔt

Pick Δt = 32 µsec

Gxr =1

FOVxγ

2πΔt

=1

25.6cm( ) 42.57 ×106T−1s−1( ) 32 ×10−6 s( )

= 2.8675 ×10−5 T/cm = .28675 G/cm

1 Gauss = 1×10−4 Tesla

t1

ADC

Gxr

Δt

TT. Liu, BE280A, UCSD Fall 2015

Example

Readout Gradient :

δx =1

γ2π

Gxrτ x

τ x =1

δxγ

2πGxr

=1

0.1cm( ) 4257 G−1s−1( ) 0.28675 G/cm( )

= 8.192 ms = NreadΔtwhere

Nread =FOVxδx

= 256

Gx(t)

Gxr

τ x

TT. Liu, BE280A, UCSD Fall 2015

Example

Phase - Encode Gradient :

FOVy =1

γ2π

Gyiτ y

Pick τ y = 4.096 msec

Gyi =1

FOVyγ

2πτ y

=1

25.6cm( ) 42.57 ×106T−1s−1( ) 4.096 ×10−3 s( )

= 2.2402 ×10-7 T/cm = .00224 G/cm

τy

Gyi

Page 13: Signal Equation K-space

13

TT. Liu, BE280A, UCSD Fall 2015

Example

Phase - Encode Gradient :δy =

2π2Gypτ y

Gyp =1

δy 2 γ2π

τ y

=1

0.1cm( ) 4257 G−1s−1( ) 4.096 ×10-3 s( ) = 0.2868 G/cm

=Np

2Gyi

where

Np =FOVyδy

= 256

Gy(t)

τy€

Gyp

TT. Liu, BE280A, UCSD Fall 2015

Sampling

Wkx€

Wky

In practice, an even number (typically power of 2) sample is usually taken in each direction to take advantage of the Fast Fourier Transform (FFT) for reconstruction.

ky

y

FOV/4

1/FOV

4/FOV

FOV

TT. Liu, BE280A, UCSD Fall 2015

ExampleConsider the k-space trajectory shown below. ADC samples are acquired at the points shownwith

Δt = 10 µsec. The desired FOV (both x and y) is 10 cm and the desired resolution (both xand y) is 2.5 cm. Draw the gradient waveforms required to achieve the k-space trajectory. Labelthe waveform with the gradient amplitudes required to achieve the desired FOV and resolution.Also, make sure to label the time axis correctly.

PollEv.com/be280a

Assume γ 2π( ) = 4000Hz /G

TT. Liu, BE280A, UCSD Fall 2015

Gibbs Artifact

256x256 image 256x128 image

Images from http://www.mritutor.org/mritutor/gibbs.htm

* =

Page 14: Signal Equation K-space

14

TT. Liu, BE280A, UCSD Fall 2015

Apodization

Images from http://www.mritutor.org/mritutor/gibbs.htm

* =

rect(kx)

h(kx )=1/2(1+cos(2πkx)Hanning Window

sinc(x)

0.5sinc(x)+0.25sinc(x-1)+0.25sinc(x+1)

TT. Liu, BE280A, UCSD Fall 2015

Aliasing and Bandwidth

x

LPF ADC

ADC€

cosω0t

sinω0t

RF Signal

I

QLPF

x

*

xf

t

x

t

FOV 2FOV/3

Temporal filtering in the readout direction limits the readout FOV. So there should never be aliasing in the readout direction.

TT. Liu, BE280A, UCSD Fall 2015

Aliasing and Bandwidth

Slower

Fasterx

f

Lowpass filterin the readout direction toprevent aliasing.

readout

FOVx

B=γGxrFOVx

TT. Liu, BE280A, UCSD Fall 2015 GE Medical Systems 2003