61
1 Sheet metal forming simulation for automotive applications Prof. Dr.-Ing. K. Roll Summer School Dortmund, 7. September 2012 Sheet metal forming simulation for automotive applications Prof. Dr.-Ing. K. Roll Sommerschool Dortmund 2012; Slide 2 Outline Introduction History of sheet metal simulation Examples (Springback, Compensation etc.) Stochastic Simulation Necessary Developments in Forming Simulation Refinement of Materials Models Influence of Anisotropy Effect of Yield Loci and the Hardening Model Failure Models Influence of Temperature Elastic Tools Influence of the Press Metamodels Simulation of the process chain sheet metal forming Hemming Simulation Rollhemming Simulation Metamodels Mechanical Joining Simulation Welding Simulation Simulation of the part properties (Static, Crash, Fatigue..) Forming to Crash Forming to Fatigue Outlook

Sheet metal forming simulation for automotive applications · Hydro-forming of the close-ended part Prof. Dr.-Ing. K. Roll Sheet metal forming simulation for automotive applications

  • Upload
    others

  • View
    11

  • Download
    0

Embed Size (px)

Citation preview

  • 1

    Sheet metal forming simulation for

    automotive applications Prof. Dr.-Ing. K. Roll

    Summer School Dortmund, 7. September 2012

    Sheet metal forming simulation for automotive applications Prof. Dr.-Ing. K. Roll Sommerschool Dortmund 2012; Slide 2

    Outline

    • Introduction

    • History of sheet metal simulation Examples (Springback, Compensation etc.)

    Stochastic Simulation

    • Necessary Developments in Forming Simulation – Refinement of Materials Models

    – Influence of Anisotropy

    – Effect of Yield Loci and the Hardening Model

    – Failure Models

    – Influence of Temperature

    – Elastic Tools

    – Influence of the Press

    – Metamodels

    • Simulation of the process chain sheet metal forming – Hemming Simulation

    – Rollhemming Simulation

    – Metamodels

    – Mechanical Joining Simulation

    – Welding Simulation

    • Simulation of the part properties (Static, Crash, Fatigue..) – Forming to Crash

    – Forming to Fatigue

    • Outlook

  • 2

    Sheet metal forming simulation for automotive applications Prof. Dr.-Ing. K. Roll Sommerschool Dortmund 2012; Slide 3

    Sheet Metal Forming Knights Armor (15. Century a. d.)

    Source: Prof. Voelkner; TU Dresden

    History of sheet metal forming

    Sheet metal forming simulation for automotive applications Prof. Dr.-Ing. K. Roll Sommerschool Dortmund 2012; Slide 4

    Sheet rolling mill (mid of 19. Century a. d.)

    Source: Prof. Voelkner; TU Dresden

    History of sheet metal forming

  • 3

    Sheet metal forming simulation for automotive applications Prof. Dr.-Ing. K. Roll Sommerschool Dortmund 2012; Slide 5

    Sheet Metal Forming - History

    Production of a front fender

    Source: Prof. Voelkner; TU Dresden

    Sheet metal forming simulation for automotive applications Prof. Dr.-Ing. K. Roll Sommerschool Dortmund 2012; Slide 6

    Sheet Metal Forming - today

    Production of an engine hood outer

    Coil Store Blanking Line Stacking Line

    Pressline Destacking Line

  • 4

    Sheet metal forming simulation for automotive applications Prof. Dr.-Ing. K. Roll Sommerschool Dortmund 2012; Slide 7

    Chronological development of plasticity theory

    computational procedures History of sheet metal forming simulation

    Sheet metal forming simulation for automotive applications Prof. Dr.-Ing. K. Roll Sommerschool Dortmund 2012; Slide 8

    Possible simulation techniques in metal forming

    - Smooth Particle Hydrodynamics - Element Free Galerkin Method - Moving Least Square Method Approx. - Reproducing Kernel Particle Method

    Upper / Lower Bound Methods

    Finite Difference Methods

    Finite Element Methods

    Boundary Element Methods

    Finite Volume Methods

    Meshless Methods

    - Static Implicit - Static Explicit - Dynamic Explicit

    History of sheet metal forming simulation

  • 5

    Sheet metal forming simulation for automotive applications Prof. Dr.-Ing. K. Roll Sommerschool Dortmund 2012; Slide 9

    Chronological development of plasticity theory

    computational FE-procedures History of sheet metal forming simulation

    Sheet metal forming simulation for automotive applications Prof. Dr.-Ing. K. Roll Sommerschool Dortmund 2012; Slide 10

    Progress simulation sheet metal forming

    B-Column without

    Remeshing (1987)

    ca. 1400 Elements

    (Source: Hora et.al., 1st NUMIFORM)

    Deformierte Platine am Ende des Ziehvorganges

    Front Fender (2001)

    ca. 3500 Elements

    Source: M. Gröber, 1st NumiSheet, Zürich)

    History of sheet metal forming simulation

  • 6

    Sheet metal forming simulation for automotive applications Prof. Dr.-Ing. K. Roll Sommerschool Dortmund 2012; Slide 11

    Progress simulation sheet metal forming

    Sidewall with Remeshing

    (6 000 000 Elements; 2005)

    History of sheet metal forming simulation

    Sheet metal forming simulation for automotive applications Prof. Dr.-Ing. K. Roll Sommerschool Dortmund 2012; Slide 12

    History of sheet metal forming simulation at Daimler

    Year Parts Set-uptime Trial runs

    1992 5 3 – 4 weeks 6 - 8

    1993 8 2 weeks 5

    1995 20 1 week 3

    1998 >100 < 2 days 1 - 2

    2012 >350 < 1.5 days 1 - 2

    Model Size: Die: up to 400.000 Elements

    Blank: up to 6.000.000 Elements

    Computing Time: from days (1992) to hours on Workstations

    or Linux-Clusters

    Simulation engineers: 2 in 1992 to 52 in 2011

    History of sheet metal forming simulation

  • 7

    Sheet metal forming simulation for automotive applications Prof. Dr.-Ing. K. Roll Sommerschool Dortmund 2012; Slide 13

    Simulation chain of the complete forming process

    Examples of forming simulation

    Sheet metal forming simulation for automotive applications Prof. Dr.-Ing. K. Roll Sommerschool Dortmund 2012; Slide 14

    Virtual “Die - Making”: Engine Hood Examples of forming simulation

  • 8

    Sheet metal forming simulation for automotive applications Prof. Dr.-Ing. K. Roll Sommerschool Dortmund 2012; Slide 15

    Finite element model

    Punch

    Blank

    Die

    Binder

    PunchPunch

    BlankBlank

    DieDie

    BinderBinder

    Examples of forming simulation

    Sheet metal forming simulation for automotive applications Prof. Dr.-Ing. K. Roll Sommerschool Dortmund 2012; Slide 16

    Simulation deep drawing process of an Engine Hood

    Initial Position Gravity Holding

    25 mm to

    home

    Final

    position

    Initial PositionInitial Position GravityGravity HoldingHolding

    25 mm to

    home

    25 mm to

    home

    Final

    position

    Final

    position

    Examples of forming simulation

  • 9

    Sheet metal forming simulation for automotive applications Prof. Dr.-Ing. K. Roll Sommerschool Dortmund 2012; Slide 17

    Simulation of sheet forming processes - examples Examples of forming simulation

    Sheet metal forming simulation for automotive applications Prof. Dr.-Ing. K. Roll Sommerschool Dortmund 2012; Slide 18

    Hydroforming of sheet metal pairs - Failure modes Examples of forming simulation

  • 10

    Sheet metal forming simulation for automotive applications Prof. Dr.-Ing. K. Roll Sommerschool Dortmund 2012; Slide 19

    Surface defects - door handle

    Distribution of Thickness [mm]

    ( 3 %)

    two different forming geometries

    Examples of forming simulation

    Sheet metal forming simulation for automotive applications Prof. Dr.-Ing. K. Roll Sommerschool Dortmund 2012; Slide 20

    Surface defects - door handle - Detail

    Minor stress [GPa]Minor stress [GPa]

    Danger:

    compression stress - 0.05 GPa

    Better:

    only tensile stress + 0.15 GPa

    Minor stress [GPa]Minor stress [GPa]Minor stress [GPa]Minor stress [GPa]

    Danger:

    compression stress - 0.05 GPa

    Danger:

    compression stress - 0.05 GPa

    Better:

    only tensile stress + 0.15 GPa

    Minor stress [GPa]Minor stress [GPa]

    Examples of forming simulation

  • 11

    Sheet metal forming simulation for automotive applications Prof. Dr.-Ing. K. Roll Sommerschool Dortmund 2012; Slide 21

    Variables influencing springback

    Numerical

    Time Discretisation

    Space Discretisation

    type and size of element

    Material Model

    Convergence Tolerance

    Damping, ...

    Material

    Young´s Modulus

    Yield Strength

    Hardening

    Pre-Treatment

    Plastic Strain

    Anisotropy

    Geometry

    Sheet Thickness

    Sheet Dimensions

    Radius

    Forming Depth

    Process Conditions

    Forming Process

    Tool

    Force

    Tribology

    Forming Velocity

    TemperatureVariables

    influencing

    SpringbackNumerical

    Time Discretisation

    Space Discretisation

    type and size of element

    Material Model

    Convergence Tolerance

    Damping, ...

    Numerical

    Time Discretisation

    Space Discretisation

    type and size of element

    Material Model

    Convergence Tolerance

    Damping, ...

    Material

    Young´s Modulus

    Yield Strength

    Hardening

    Pre-Treatment

    Plastic Strain

    Anisotropy

    Material

    Young´s Modulus

    Yield Strength

    Hardening

    Pre-Treatment

    Plastic Strain

    Anisotropy

    Geometry

    Sheet Thickness

    Sheet Dimensions

    Radius

    Forming Depth

    Geometry

    Sheet Thickness

    Sheet Dimensions

    Radius

    Forming Depth

    Process Conditions

    Forming Process

    Tool

    Force

    Tribology

    Forming Velocity

    Temperature

    Process Conditions

    Forming Process

    Tool

    Force

    Tribology

    Forming Velocity

    TemperatureVariables

    influencing

    Springback

    Variables

    influencing

    Springback

    springback simulation

    Sheet metal forming simulation for automotive applications Prof. Dr.-Ing. K. Roll Sommerschool Dortmund 2012; Slide 22

    Springback - It’s not a new Phenomena

    Springback of materials

    with constant conditions

    TRIP 700 ZE

    DP 500 ZE

    THM 280 Z

    ZE 340 ZE

    ZStE180 BK ZE

    Source:

    voestalpine Desired

    Shape

    Springback is ALWAYS existing

    arises from stored elastic

    forming energy

    can be reduced

    is depending on • material

    • process parameters

    • evenly distributed

    hardening

    springback simulation

  • 12

    Sheet metal forming simulation for automotive applications Prof. Dr.-Ing. K. Roll Sommerschool Dortmund 2012; Slide 23

    After

    springback

    + -

    After

    forming

    + -

    elastic

    plastic

    plastic

    Elastic bending stresses

    through sheet thickness

    Different membrane

    stresses in flanges

    Original blank

    shape

    Formed blank

    Relaxed blank

    After

    forming

    After

    springback

    Two Principle Mechanisms of Springback springback simulation

    Sheet metal forming simulation for automotive applications Prof. Dr.-Ing. K. Roll Sommerschool Dortmund 2012; Slide 24

    Complex Testing Part for the Investigation of

    Springback Deviations

    AA5182

    AA6016

    DC06

    H320 LA

    DP600

    springback simulation

  • 13

    Sheet metal forming simulation for automotive applications Prof. Dr.-Ing. K. Roll Sommerschool Dortmund 2012; Slide 25

    Possible Forming Processes Using the Testing Tool

    Deep drawing

    of the open-ended part

    Deep drawing

    of the close-ended part

    Hydro-forming

    of the close-ended part

    Sheet metal forming simulation for automotive applications Prof. Dr.-Ing. K. Roll Sommerschool Dortmund 2012; Slide 26

    Computed Springback Results - Material Influence

    DC06 H320 LA

    AA5182 AA6016

    Displacement

    in mm

    max. 7,42 mm max. 9,73 mm

    max. 15,67 mm max. 19,02 mm

    springback simulation

  • 14

    Sheet metal forming simulation for automotive applications Prof. Dr.-Ing. K. Roll Sommerschool Dortmund 2012; Slide 27

    Computed Springback Results – Effect of Forming Technologies

    max. 6,3 mm max. 4,3 mm max. 0,8 mm

    Deep Drawing

    Open-Ended

    Deep Drawing

    Close-Ended

    Hydro-Forming

    > >>

    Material: DC06

    springback simulation

    Sheet metal forming simulation for automotive applications Prof. Dr.-Ing. K. Roll Sommerschool Dortmund 2012; Slide 28

    Simulation Sidewall Examples of forming simulation

  • 15

    Sheet metal forming simulation for automotive applications Prof. Dr.-Ing. K. Roll Sommerschool Dortmund 2012; Slide 29

    Sidewall – Steps of Simulation: Deep Drawing Examples of forming simulation

    Sheet metal forming simulation for automotive applications Prof. Dr.-Ing. K. Roll Sommerschool Dortmund 2012; Slide 30

    Sidewall – Steps of Simulation: Springback Examples of forming simulation

  • 16

    Sheet metal forming simulation for automotive applications Prof. Dr.-Ing. K. Roll Sommerschool Dortmund 2012; Slide 31

    Compensation Program

    Die with compensated Geometry

    CAD-Geometry

    Real-Geometry

    Die

    Compensation: Changing the

    Die - Geometry

    Part after Compensation Part after springback

    Software based compensation

    Source: INPRO

    Examples of forming simulation

    Sheet metal forming simulation for automotive applications Prof. Dr.-Ing. K. Roll Sommerschool Dortmund 2012; Slide 32

    Engine Hood Inner - Simulated Springback

    Front of part deviates

    upwards along bending line

    Springback nearly

    symmetrical to Y

    Deviation

    mm

    5.0

    3.0

    1.0

    3.0 mm

    3.4 mm

    Maximum: 4.8 mm

    Material: AA 6181 A, Thickness: 1.15 mm

    Springback

    Deviations from

    desired shape

    Examples of forming simulation

  • 17

    Sheet metal forming simulation for automotive applications Prof. Dr.-Ing. K. Roll Sommerschool Dortmund 2012; Slide 33

    Compensation of springback - Hood Inner

    Examples of forming simulation

    Sheet metal forming simulation for automotive applications Prof. Dr.-Ing. K. Roll Sommerschool Dortmund 2012; Slide 34

    One recut of tool set

    for compensation

    of shape deviations

    OP40 to

    OP60

    5 weeks*

    5 weeks*

    OP20 and

    OP30

    Savings by simulation-supported Compensation Overall Cycle Time

    Each avoided tool recut can

    save between 5 and 10 weeks

    in overall cycle time

    Time period of die process

    engineering is constant, due

    to parallel run of simulation

    and die process engineering

    Tool building

    SWF

    Engineering

    Today

    10 weeks*

    Future

    * example: Engine Hood Inner

    Examples of forming simulation

  • 18

    Sheet metal forming simulation for automotive applications Prof. Dr.-Ing. K. Roll Sommerschool Dortmund 2012; Slide 35

    SWF

    Today

    Tool building

    Engineering

    One recut of tool set

    for compensation

    of shape deviations

    OP40 to

    OP60

    70 T€*

    80 T€*

    OP20 and

    OP30

    125 T€*

    Future

    25 T€

    Savings by simulation-supported Compensation

    Costs

    Each avoided tool recut can

    saved up to 125 T€

    Additional costs of

    25 T€ per tool set during die

    process engineering due to

    additional human and

    computational resources

    * example: Engine Hood Inner

    Examples of forming simulation

    Sheet metal forming simulation for automotive applications Prof. Dr.-Ing. K. Roll Sommerschool Dortmund 2012; Slide 36

    2. Compensation

    Deviation from CAD-Model

    mm 1.0 0.5 0.0

    Without Compensation

    Modifications locally applied on mesh of tools

    Several iterations reduce shape deviations from

    CAD-Model (desired shape)

    KDS

    1. Compensation

    Material: TRIP 700

    Thickness: 1.4 mm

    Semi-Automatic Iterative Compensation Examples of forming simulation

  • 19

    Sheet metal forming simulation for automotive applications Prof. Dr.-Ing. K. Roll Sommerschool Dortmund 2012; Slide 37

    Stochastic Simulation

    Source: Autoform

    Sheet metal forming simulation for automotive applications Prof. Dr.-Ing. K. Roll Sommerschool Dortmund 2012; Slide 38

    Stochastic Simulation

  • 20

    Sheet metal forming simulation for automotive applications Prof. Dr.-Ing. K. Roll Sommerschool Dortmund 2012; Slide 39

    Stochastic Simulation – Variation of Parameters

    Basic simulation:

    AutoForm Final Validation – Setup

    Blank: original

    Lube: 0.15

    BHkraft: 145t (half)

    New Simulation:

    AutoForm Final Validation – Setup

    Blank: smaller

    Lube: 0.11; BHkraft: 145t (half)

    Failure Failure

    Sheet metal forming simulation for automotive applications Prof. Dr.-Ing. K. Roll Sommerschool Dortmund 2012; Slide 40

    Predictable Variables Using Sheet Metal Forming

    Simulation State of the art in sheet forming simulation

  • 21

    Sheet metal forming simulation for automotive applications Prof. Dr.-Ing. K. Roll Sommerschool Dortmund 2012; Slide 41

    Simulation vs. Reality

    Factor Reality Simulation

    Production stroke rate Not constant Not in the model

    Machine Elastic Not in the model

    Tool Elastic Rigid

    Characteristics of the direction of draw Not constant Not in the model

    Coefficient of Friction Not constant Constant

    Temperature Not constant (Not) in the model

    Topology of blankholder surface Not constant Not in the model

    Material Complex Simple models

    Material characteristics Not constant (Not) constant

    Necessary Developments in Simulation Engineering

    Sheet metal forming simulation for automotive applications Prof. Dr.-Ing. K. Roll Sommerschool Dortmund 2012; Slide 42

    Components of material modeling for sheet metal

    forming

    zzyzxz

    zyyyxy

    zxyxxx

    zzyzxz

    zyyyxy

    zxyxxx

    Plastic

    hardening

    Yield locus

    Flow rule

    Definition of in-plane transition for elastic

    to plastic material response

    Definition of material work

    hardening based on plastic flow

    Defines the correlation of

    stress and strain state

    x

    y

    Refinement of Materials Models

  • 22

    Sheet metal forming simulation for automotive applications Prof. Dr.-Ing. K. Roll Sommerschool Dortmund 2012; Slide 43

    Yield Curves - Method of Extrapolation

    DP600

    0

    0,2

    0,4

    0,6

    0,8

    1

    1,2

    0 0,2 0,4 0,6 0,8 1 j

    GPa

    DP600_Voce

    DP600_Swift

    DP600_Gosh

    DP600_Hocket_Sherby

    DP600_Ludwik

    DP600_Tensile test

    DP600_Layered compression test

    Refinement of Materials Models

    Sheet metal forming simulation for automotive applications Prof. Dr.-Ing. K. Roll Sommerschool Dortmund 2012; Slide 44

    Effect of flow-curve approximation on the

    simulation result

    Section length [mm]

    thic

    kn

    ess

    red

    ucti

    on

    [%

    ]

    Section length [mm]

    thic

    kn

    ess

    red

    ucti

    on

    [%

    ]

    Refinement of Materials Models

  • 23

    Sheet metal forming simulation for automotive applications Prof. Dr.-Ing. K. Roll Sommerschool Dortmund 2012; Slide 45

    Yield loci models for sheet in-plane anisotropy

    Barlat2000

    Hill48

    Barlat89

    xx

    yy

    Hill48(Barlat89_M2)

    Barlat89_M8

    MATFEM_A8

    A chosen yield locus

    defines the correlation

    of yield stress

    depending on the

    actual stress state and

    rolling direction in the

    sheet plane. Recent developments

    concentrated on more

    and more complex

    functions to describe a

    constant anisotropy.

    Influence of Anisotropy

    Sheet metal forming simulation for automotive applications Prof. Dr.-Ing. K. Roll Sommerschool Dortmund 2012; Slide 46

    Todays choice for material model and failure

    prediction

    Source: Dr. Kessler; TKS

    Numisheet 2008

    Influence of Anisotropy

  • 24

    Sheet metal forming simulation for automotive applications Prof. Dr.-Ing. K. Roll Sommerschool Dortmund 2012; Slide 47

    Yield locus models for sheet metal forming

    Source: Dr. Kessler; TKS

    Numisheet 2008

    Influence of Anisotropy

    Sheet metal forming simulation for automotive applications Prof. Dr.-Ing. K. Roll Sommerschool Dortmund 2012; Slide 48

    Yield locus calibration – parameters to be determined

    Influence of Anisotropy

  • 25

    Sheet metal forming simulation for automotive applications Prof. Dr.-Ing. K. Roll Sommerschool Dortmund 2012; Slide 49

    Yield Surface DP600

    Hill 1948 Barlat-Lian 1989 Barlat-Lian 1996

    Biaxial Stress Factor

    Hill 1979

    Hill 1990

    = Combination Hill 48 + Hill 79

    Simulation

    Experiment

    Hill 1948 Barlat-Lian 1989 Barlat-Lian 1996

    Biaxial Stress Factor

    Hill 1979

    Hill 1990

    = Combination Hill 48 + Hill 79

    Simulation

    Experiment

    Influence of Anisotropy

    Sheet metal forming simulation for automotive applications Prof. Dr.-Ing. K. Roll Sommerschool Dortmund 2012; Slide 50

    Influence of Yield-Loci Model to Failure Description

    Source: Heinl, BMW; Dr. Kessler, TKSE; SFU 2010

    Influence of Anisotropy

  • 26

    Sheet metal forming simulation for automotive applications Prof. Dr.-Ing. K. Roll Sommerschool Dortmund 2012; Slide 51

    The assumption of isotropic material hardening

    x

    y

    Monotonic expansion of the

    yield locus

    Isotropic material hardening:

    All directions gain the same

    hardening

    The hardening rule specifies the expansion

    of the yield locus in case of plastic

    deformation.

    Effect of Yield Loci and the Hardening Model

    Sheet metal forming simulation for automotive applications Prof. Dr.-Ing. K. Roll Sommerschool Dortmund 2012; Slide 52

    Industrial aspects of material modeling for steel

    grades - Simplification procedure in daily practice

    So

    urc

    e:

    Dr.

    Kessle

    r, T

    hyssen

    Kru

    pp

    Ste

    el

    N

    um

    ish

    eet

    2008

    -1.5

    -1.0

    -0.5

    0.0

    0.5

    1.0

    1.5

    -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

    IYL

    No

    rmaliz

    ed

    str

    ess

    2

    2

    SYL

    Material hardening

    Normalized stress 11

    Assuming isotropic hardening

    -1.5

    -1.0

    -0.5

    0.0

    0.5

    1.0

    1.5

    -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

    Barlat m=8 SYL

    Normalized stress 11

    No

    rmaliz

    ed

    str

    ess

    2

    2

    ► Industrial simulation is mostly based on isotropic hardening!

    Effect of Yield Loci and the Hardening Model

  • 27

    Sheet metal forming simulation for automotive applications Prof. Dr.-Ing. K. Roll Sommerschool Dortmund 2012; Slide 53

    Drawback of the actual modeling method

    Modern high strength steel grades may show a stress state dependent

    hardening – this is hardly to fit with conventional model assumptions

    • Reasons can be found in phase

    transformations or micro-structure

    The up to now used approach with

    constant yield locus and one single

    hardening curve can definitely not cover

    these effects!

    Do we have alternative modeling options

    for industrial simulation tasks? 0.0

    0.5

    1.0

    1.5

    2.0

    0.0 0.1 0.2 0.3 0.4

    Equivalent strain / -

    Eq

    uiv

    ale

    nt

    str

    ess /

    GP

    a

    U-Tension

    Stack compression

    Hydraulic Bulge

    Shear

    Effect of Yield Loci and the Hardening Model

    Sheet metal forming simulation for automotive applications Prof. Dr.-Ing. K. Roll Sommerschool Dortmund 2012; Slide 54

    Alternative ways for hardening with the

    Gen_Yld* model

    xx

    yy

    Effect of Yield Loci and the Hardening Model

  • 28

    Sheet metal forming simulation for automotive applications Prof. Dr.-Ing. K. Roll Sommerschool Dortmund 2012; Slide 55

    Yield curve comparison for different load paths

    3.0 Isotropic hardening

    Barlat 2000

    0.0

    0.5

    1.0

    1.5

    2.0

    2.5

    0 0.25 0.5 0.75 1

    Equivalent strain / -

    Eq

    uiv

    ale

    nt

    str

    ess /

    GP

    a

    uniaxial tension compression biaxial tension shear

    3.0

    Equivalent strain / -

    Anisotropic hardening

    Hill ´48

    0.0

    0.5

    1.0

    1.5

    2.0

    2.5

    0 0.25 0.5 0.75 1

    Eq

    uiv

    ale

    nt

    str

    ess

    / G

    Pa

    Effect of Yield Loci and the Hardening Model

    Sheet metal forming simulation for automotive applications Prof. Dr.-Ing. K. Roll Sommerschool Dortmund 2012; Slide 56

    0

    100

    200

    300

    0 10 20 30 40 50 60 70

    drawing depth / mm

    pu

    nch

    fo

    rce / k

    N

    experimental Hill48 anisotropic

    Yld89 isotropic Yld2000 isotropic

    Results in comparison – punch force prediction

    • anisotropic hardening approach leads to a better punch force prediction

    Effect of Yield Loci and the Hardening Model

  • 29

    Sheet metal forming simulation for automotive applications Prof. Dr.-Ing. K. Roll Sommerschool Dortmund 2012; Slide 57

    Results in comparison - distribution of major strain

    0.0

    0.1

    0.2

    0.3

    0 50 100 150

    section length / mm

    ma

    jor

    str

    ain

    / -

    Experimental

    Hill48 anisotropic

    Yld89 isotropic

    Yld2000 isotropic

    better prediction

    with anisotropic

    model

    Effect of Yield Loci and the Hardening Model

    Sheet metal forming simulation for automotive applications Prof. Dr.-Ing. K. Roll Sommerschool Dortmund 2012; Slide 58

    Material failure due to cracking Experiment – Simulation comparison

    Failure Models

  • 30

    Sheet metal forming simulation for automotive applications Prof. Dr.-Ing. K. Roll Sommerschool Dortmund 2012; Slide 59

    Prediction of Failure – Cross Die (TRIP 700)

    Experiment Simulation

    Failure predicted by FLC

    Thinning [%] Failure predicted by „numerical thinning“

    Failure Models

    Sheet metal forming simulation for automotive applications Prof. Dr.-Ing. K. Roll Sommerschool Dortmund 2012; Slide 60

    A new Model for Failure Prediction and Damage

    Dynamic Models with Damage

    Models: von Mises, Gurson, Gurson-JC

    Anisotropic Yield Locus

    Models: Barlat89, Barlat2000, Hill48, Mat_TRIP

    Plastic Strain

    Thickness

    Damage

    Transfer of Variables

    Crash Simulation

    Forming Simulation

    •Energy absorption

    •Prediction of structural folding patterns

    •Correct description of yield locus

    •Anisotropy

    Failure Models

  • 31

    Sheet metal forming simulation for automotive applications Prof. Dr.-Ing. K. Roll Sommerschool Dortmund 2012; Slide 61

    Concept:

    Coupling of a damage model to an unaltered material model for forming simulations

    Damage

    model

    Forming material model

    Crash material model with

    damage

    p ,

    tp ,,

    Damage

    Mapping

    Forming simulation Crash simulation

    A new Model for Failure Prediction and Damage

    Failure Models

    Sheet metal forming simulation for automotive applications Prof. Dr.-Ing. K. Roll Sommerschool Dortmund 2012; Slide 62

    Gurson

    BarlatGurson

    p ,

    thicknessp ,,

    Damage f

    Mapping

    Forming simulation Crash simulation

    extended

    Johnson-

    Cook

    (GISSMO)

    Barlat Mat_024

    p ,

    thicknessp ,,

    Damage D

    p ,

    extended

    Johnson-

    Cook

    (GISSMO)

    Mapping

    Mapping

    Forming simulation Crash simulation

    1.) Using the Gurson

    model

    2.) Using an extended

    Johnson-Cook model

    (GISSMO)

    Gurson

    BarlatGurson

    p ,

    thicknessp ,,

    Damage f

    Mapping

    Forming simulation Crash simulation

    Gurson

    BarlatGurson

    p ,

    thicknessp ,,

    Damage f

    MappingMapping

    Forming simulation Crash simulation

    extended

    Johnson-

    Cook

    (GISSMO)

    Barlat Mat_024

    p ,

    thicknessp ,,

    Damage D

    p ,

    extended

    Johnson-

    Cook

    (GISSMO)

    Mapping

    Mapping

    Forming simulation Crash simulation

    extended

    Johnson-

    Cook

    (GISSMO)

    Barlat Mat_024

    p ,

    thicknessp ,,

    Damage D

    p ,

    extended

    Johnson-

    Cook

    (GISSMO)

    MappingMapping

    MappingMapping

    Forming simulation Crash simulation

    1.) Using the Gurson

    model

    2.) Using an extended

    Johnson-Cook model

    (GISSMO)

    A new Model for Failure Prediction and Damage Failure Models

  • 32

    Sheet metal forming simulation for automotive applications Prof. Dr.-Ing. K. Roll Sommerschool Dortmund 2012; Slide 63

    A new Model for Failure Prediction and Damage

    Failure strain vs. Triaxiality (plane stress)

    Modification for GISSMO:

    Failure strain can be defined arbitrarily

    Tabulated input of failure Strain vs. Triaxiality

    0

    0,2

    0,4

    0,6

    0,8

    1

    1,2

    1,4

    1,6

    1,8

    2

    2,2

    -0,2 0 0,2 0,4 0,6 0,8

    η

    εf

    Failure strain

    curve can be

    determined using

    coupon tests of

    several distinct

    triaxialities

    Failure Models

    Sheet metal forming simulation for automotive applications Prof. Dr.-Ing. K. Roll Sommerschool Dortmund 2012; Slide 64

    A new Model for Failure Prediction and Damage

    Simulation of Cross - die formability test using GISSMO coupled to Barlat :

    • Failure spot predicted correctly at the

    same position

    • Less damage predicted in areas that are

    not close to failure

    Real failed part

    Simulation of Cross - die formability test using GISSMO coupled to Barlat :

    Linear accumulation GISSMO n=2 Linear accumulation Linear accumulation GISSMO n=2 GISSMO n=2

    • Failure spot predicted correctly at the

    same position

    • Less damage predicted in areas that are

    not close to failure

    Real failed part

    • Failure spot predicted correctly at the

    same position

    • Less damage predicted in areas that are

    not close to failure

    Real failed part Real failed part

    Failure Models

  • 33

    Sheet metal forming simulation for automotive applications Prof. Dr.-Ing. K. Roll Sommerschool Dortmund 2012; Slide 65

    Press Hardening - Process Modeling Subdivision into Partial Stages

    more computational efficiency

    use of different time scales

    use of different tool models

    use of different solvers

    Handling Gravity & Waiting

    Forming Quenching

    temperature temperature

    geometry

    (stress, strain)

    temperature

    geometry

    (stress, strain)

    Influence of Temperature

    Sheet metal forming simulation for automotive applications Prof. Dr.-Ing. K. Roll Sommerschool Dortmund 2012; Slide 66

    Press Hardening of a roof frame Prediction of Die Temperature

    Time after tool closing

    1 s 4 s 8s

    Influence of Temperature

  • 34

    Sheet metal forming simulation for automotive applications Prof. Dr.-Ing. K. Roll Sommerschool Dortmund 2012; Slide 67

    Press Hardening of a roof frame Prediction of Punch Temperature

    Time after tool closing

    1 s 4 s 8s

    Influence of Temperature

    Sheet metal forming simulation for automotive applications Prof. Dr.-Ing. K. Roll Sommerschool Dortmund 2012; Slide 68

    Press Hardening of a Roof Frame Temperature Change during Forming

    Influence of Temperature

  • 35

    Sheet metal forming simulation for automotive applications Prof. Dr.-Ing. K. Roll Sommerschool Dortmund 2012; Slide 69

    Thermo-mechanical coupling of sheet forming

    processes

    Die

    Punch

    0,0

    0,5

    1,0

    1,5

    2,0

    2,5

    0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8

    X-IP

    TRIP

    H320LA

    90 ... 80 ..ηΔTcρdVεσηw pV

    eqeq

    Forming of XIP-Steel in a cross-die

    extrem strain hardening of X-IP-Steel

    Influence of Temperature

    Sheet metal forming simulation for automotive applications Prof. Dr.-Ing. K. Roll Sommerschool Dortmund 2012; Slide 70

    Thermo-mechanical coupling of sheet forming

    processes

    Temperature after Forming - TRIP 700

    Influence of Temperature

  • 36

    Sheet metal forming simulation for automotive applications Prof. Dr.-Ing. K. Roll Sommerschool Dortmund 2012; Slide 71

    Damaging of TRIP-steel within deep drawing Influence of Temperature

    Sheet metal forming simulation for automotive applications Prof. Dr.-Ing. K. Roll Sommerschool Dortmund 2012; Slide 72

    Cracks after the forming process

    Influence of Temperature

  • 37

    Sheet metal forming simulation for automotive applications Prof. Dr.-Ing. K. Roll Sommerschool Dortmund 2012; Slide 73

    Forming of Magnesium sheets using a heated tool

    Magnesium sheet at 200°C Final part: roof inner

    Tool with heating system Heated blankholder

    Influence of Temperature

    Sheet metal forming simulation for automotive applications Prof. Dr.-Ing. K. Roll Sommerschool Dortmund 2012; Slide 74

    Sheet metal forming Application of different heat treatment methods Influence of Temperature

    Without heat treatment With heat treatment

  • 38

    Sheet metal forming simulation for automotive applications Prof. Dr.-Ing. K. Roll Sommerschool Dortmund 2012; Slide 75

    Sheet metal forming Application of different heat treatment methods

    0

    Ext. Subroutine

    Forming simulation

    External Subroutine to

    introduce heat treatment

    Calibration

    Influence of Temperature

    Sheet metal forming simulation for automotive applications Prof. Dr.-Ing. K. Roll Sommerschool Dortmund 2012; Slide 76

    We need for high-strength steel a thermo-mechanical coupled

    simulation in order to respect the temperature distribution in the

    sheet during the forming process

    We have to respect the Influence of the Temperature in the Material

    model

    Temperature calculation give information about the thermal load of

    the tool

    Temperature dependence of the friction must be considered

    Heating up of sheet and tool by frictional heat can be considered

    Thermo-mechanical coupling of sheet forming

    processes Conclusion

  • 39

    Sheet metal forming simulation for automotive applications Prof. Dr.-Ing. K. Roll Sommerschool Dortmund 2012; Slide 77

    Elastic tools in the simulation of sheet metal forming

    Rigid model

    Elastic model

    • local deformations caused by sheet thickening

    • Consideration of local load application

    More accurate simulation of the draw in

    Variations:

    1. Models with elastic volume elements

    2. Condensation of the tool stiffness on effective areas

    Substructuring

    3. Modal Analysis

    Elastic Tools

    Sheet metal forming simulation for automotive applications Prof. Dr.-Ing. K. Roll Sommerschool Dortmund 2012; Slide 78

    Elastic tool: Example

    binder

    die

    die

    punch

    elastic plate spacer

    pressure pad

    binder

    die

    die

    punch

    elastic plate spacer

    pressure pad

    Elastic Tools

  • 40

    Sheet metal forming simulation for automotive applications Prof. Dr.-Ing. K. Roll Sommerschool Dortmund 2012; Slide 79

    Comparison between rigid and elastic

    simulation models

    ca. 6,6 mm ca. 6,6 mm

    -0,1

    Distance along the section [mm]

    Section +0.30

    +0.20

    +0.10

    0

    -0.10

    [mm]

    Elastic Tools

    Sheet metal forming simulation for automotive applications Prof. Dr.-Ing. K. Roll Sommerschool Dortmund 2012; Slide 80

    Comparison between rigid and elastic

    simulation models Elastic Tools

  • 41

    Sheet metal forming simulation for automotive applications Prof. Dr.-Ing. K. Roll Sommerschool Dortmund 2012; Slide 81

    Blankholder Surface

    Dimensions

    2700 x 1660 x 550

    Blankholder

    pressure: 2,0 N/mm²

    Real Die: Blankholder ca. 7 Mio. Elements Elastic Tools

    Sheet metal forming simulation for automotive applications Prof. Dr.-Ing. K. Roll Sommerschool Dortmund 2012; Slide 82

    Structural optimization of tools

    Original structure Optimized structure (weight reduced)

    Elastic Tools

  • 42

    Sheet metal forming simulation for automotive applications Prof. Dr.-Ing. K. Roll Sommerschool Dortmund 2012; Slide 83

    Next Step: Forming simulation with elastic Tools and elastic Press (ca. 134.000 Volumelements)

    Influence of the Machine

    Sheet metal forming simulation for automotive applications Prof. Dr.-Ing. K. Roll Sommerschool Dortmund 2012; Slide 84

    Simulation of a Forming Machine with different Loads

    (0,5 and 0,92 x nominal Force) Influence of the Machine

  • 43

    Sheet metal forming simulation for automotive applications Prof. Dr.-Ing. K. Roll Sommerschool Dortmund 2012; Slide 85

    From process simulation to press line simulation

    Process simulation

    Rigid die model

    Elastic die model

    Elastic machine model (static)

    Dynamic machine model

    Press line simulation

    Sheet metal forming simulation for automotive applications Prof. Dr.-Ing. K. Roll Sommerschool Dortmund 2012; Slide 86

    Forming simulation with elastic Tools and elastic Press

    Conclusions:

    Forming Simulation with elastic Tools increase the accuracy of the

    simulation.

    •Local deformations caused by sheet thickening

    •Friction Forces are more accurate

    •Consideration of local load application

    •More accurate simulation of the draw in

    •Better calculation of the stresses and deformations of the Tool

    Problems:

    How we can handle the elastic properties of Tool and Machine in an economic way?

  • 44

    Sheet metal forming simulation for automotive applications Prof. Dr.-Ing. K. Roll Sommerschool Dortmund 2012; Slide 87

    Simulation chain of the complete forming process

    Model

    Setup

    CAD Discretization Tool generation

    Forming

    Gravity Holding Stamping

    Progressive

    Processes

    Trimming Flanging Hemming Springback

    Sheet metal forming simulation for automotive applications Prof. Dr.-Ing. K. Roll Sommerschool Dortmund 2012; Slide 88

    Workflow Sheet Metal Part Production Simulation of the process chain sheet metal forming

  • 45

    Sheet metal forming simulation for automotive applications Prof. Dr.-Ing. K. Roll Sommerschool Dortmund 2012; Slide 89

    Problems:

    • Each operating step (drawing, cutting, hemming etc.) need

    a “own “ FE - Mesh

    • Data must be mapped between the FE - Meshes statically and

    kinematically compatibly

    • Simulating the assembly process parts the different FE – Meshes

    of the parts must be brought by best fit into the correct position.

    How we can handle the springback of the assembled part?

    • In which operation step we have to compensate the springback

    of the assembled part?

    • How can we simulate the influence of the adhesive bonding in the

    hemming operation?

    Simulation of the forming process chain

    Solved Progress ?

    Simulation of the process chain sheet metal forming

    Sheet metal forming simulation for automotive applications Prof. Dr.-Ing. K. Roll Sommerschool Dortmund 2012; Slide 90

    Trimming operation (OP30) Trimming Simulation

  • 46

    Sheet metal forming simulation for automotive applications Prof. Dr.-Ing. K. Roll Sommerschool Dortmund 2012; Slide 91

    Scrap Flow Simulation Trimming Simulation

    Sheet metal forming simulation for automotive applications Prof. Dr.-Ing. K. Roll Sommerschool Dortmund 2012; Slide 92

    Simulation Hemming

    hemming of

    curved edges

    Hemming Simulation

  • 47

    Sheet metal forming simulation for automotive applications Prof. Dr.-Ing. K. Roll Sommerschool Dortmund 2012; Slide 93

    Front Fender – (Roll in) Experiment vs. Simulation

    Hemming Simulation

    Sheet metal forming simulation for automotive applications Prof. Dr.-Ing. K. Roll Sommerschool Dortmund 2012; Slide 94

    Frontfender – Flange radius Experiment vs. Simulation

    Hemming Simulation

  • 48

    Sheet metal forming simulation for automotive applications Prof. Dr.-Ing. K. Roll Sommerschool Dortmund 2012; Slide 95

    Rollhemming

    General procedure

    Inner part

    > 90°

    ~45°

    Roller

    After flanging

    Pre-hemming

    Final-hemming

    Step 1

    Step 2

    • Incremental forming with a roller

    •Application robotically manipulated

    hemming roller

    •Example:

    Tangential compression

    Tangential tension stress

    Hemming roller

    Flange

    Hemming bed

    Stress in Y [MPa]

    Flange

    Roller Hemming

    Rollhemming Simulation

    Sheet metal forming simulation for automotive applications Prof. Dr.-Ing. K. Roll Sommerschool Dortmund 2012; Slide 96

    Rollhemming Simulation Rollhemming Simulation

  • 49

    Sheet metal forming simulation for automotive applications Prof. Dr.-Ing. K. Roll Sommerschool Dortmund 2012; Slide 97

    •Identification of relevant factors by Design of Experiments

    DEAEAC

    AEFBEBDCDEF

    ABCACE

    BAFCFABA

    ACDABD

    FBC

    ADFE

    ADEACF

    DFADBFCEDC

    300025002000150010005000

    Te

    rm

    Standardisierter Effekt

    13

    A Krümmung XY

    B Krümmung Z

    C Blechdicke

    D Abkantradius

    E Falzkanal

    F Vordehnung

    Faktor Name

    Pareto-Diagramm der standardisierten Effekte

    (Antwort ist REL, Alpha = ,05)

    Radiuseinsatzlinie (REL)

    konvexkonkav

    2,34

    2,28

    2,22

    2,16

    2,10

    HochpunktTiefpunkt 1,150,95

    1,51,0

    2,34

    2,28

    2,22

    2,16

    2,10

    30 100

    Krümmung XY

    Mit

    telw

    ert

    Krümmung Z Blechdicke

    Abkantradius Falzkanal Vordehnung

    Haupteffektediagramm für RELDatenmittelwerte

    prestrain rolling direction flange length

    Development of a metamodel Metamodel

    Sheet metal forming simulation for automotive applications Prof. Dr.-Ing. K. Roll Sommerschool Dortmund 2012; Slide 98

    Generation of response Surfaces

    • for example, by a sum of weighted

    Gauss bells, with the parameter you are

    looking for using the method of least

    squares

    • Minimization through local search

    Source: FCE Frankfurt Consulting Engineers GmbH

    Metamodel

  • 50

    Sheet metal forming simulation for automotive applications Prof. Dr.-Ing. K. Roll Sommerschool Dortmund 2012; Slide 99

    Meta model as a basis of a forecast tool for the

    planning process of Rollhemming

    •Result forecast based on FEM calculations of rollhemming

    Metamodel

    Sheet metal forming simulation for automotive applications Prof. Dr.-Ing. K. Roll Sommerschool Dortmund 2012; Slide 100

    Joining: Simulation of Clinch - Process Mechanical Joining Simulation

  • 51

    Sheet metal forming simulation for automotive applications Prof. Dr.-Ing. K. Roll Sommerschool Dortmund 2012; Slide 101

    Joining: Simulation of Riveting Mechanical Joining Simulation

    Sheet metal forming simulation for automotive applications Prof. Dr.-Ing. K. Roll Sommerschool Dortmund 2012; Slide 102

    Joining: Simulation Tack-setting Mechanical Joining Simulation

  • 52

    Sheet metal forming simulation for automotive applications Prof. Dr.-Ing. K. Roll Sommerschool Dortmund 2012; Slide 103

    Joining: Simulation of Spot Welding

    0.75 mm

    1 Per. 3 Per.

    6 Per. 10 Per.

    Processing conditions: flat upper electrode, 2.8 kN, AC1

    Processing time: 1, 3, 6,10 periods

    Welding Simulation

    Sheet metal forming simulation for automotive applications Prof. Dr.-Ing. K. Roll Sommerschool Dortmund 2012; Slide 104

    Forming to Welding Distortion

    Welding Lines

    Welding Simulation

  • 53

    Sheet metal forming simulation for automotive applications Prof. Dr.-Ing. K. Roll Sommerschool Dortmund 2012; Slide 105

    Forming to Welding Distortion Welding Simulation

    Sheet metal forming simulation for automotive applications Prof. Dr.-Ing. K. Roll Sommerschool Dortmund 2012; Slide 106

    Simulation of the part properties (Static, Crash,

    Fatigue..)

    Results of the forming

    simulation are input for

    • Crash - analysis

    • Static analysis

    • Fatigue analysis

    • Static analysis

    of the tool

    Results of the forming

    simulation are input for

    • Crash - analysis

    • Static analysis

    • Fatigue analysis

    • Static analysis

    • Welding distortion

    Simulation of the part properties

  • 54

    Sheet metal forming simulation for automotive applications Prof. Dr.-Ing. K. Roll Sommerschool Dortmund 2012; Slide 107

    Simulation of the part properties (Static, Crash,

    Fatigue..)

    Problems:

    • Each simulation method (static, crash, etc. ) needs a " own " FE - Program

    (exception Forming - Crash with explicit codes)

    • Each simulation method (static, crash, etc. ) needs a „own“ FE - Mesh

    • Each simulation method has " own " material and failure models

    • Data must be mapped between the programs statically and kinematically

    compatibly.

    • Today it is only possible to interpolate Scalars such as thickness, plastic

    strain, etc.

    • Which influence does the " damage " have by the mapping process on the

    characteristics of the component?

    • With the extrapolation of Tensors still many questions are open (e.g.: as

    equilibrium can be achieved with mapping?)

    Solved Progress ?

    Simulation of the part properties

    Sheet metal forming simulation for automotive applications Prof. Dr.-Ing. K. Roll Sommerschool Dortmund 2012; Slide 108

    Coupling Crash - Forming Simulation

    Crash - / Staticsimulation Formingsimulation

    (Prototyp Dies)

    Job No. 1

    Today

    Styling

    Formingsimulation

    (Hard Dies)

    Formingsimulation

    Crash - / Staticsimulation

    Tomorrow

    With Forming

    History

    Crash - / Staticsimulation Formingsimulation

    (Prototyp Dies) Crash - / Staticsimulation Formingsimulation

    (Prototyp Dies)

    Job No.. 1

    Today Today

    Styling

    Formingsimulation

    (Hard Dies)

    Formingsimulation

    Crash - / Staticsimulation

    Tomorrow

    With Forming

    History

    Formingsimulation

    (Hard Dies)

    Formingsimulation

    Crash - / Staticsimulation

    Forming simulation

    (Hard Dies)

    Formingsimulation

    Crash - / Staticsimulation

    Tomorrow

    With Forming

    History

    Forming to Crash

  • 55

    Sheet metal forming simulation for automotive applications Prof. Dr.-Ing. K. Roll Sommerschool Dortmund 2012; Slide 109

    Crash - Forming Simulation - Example

    50285 Nodes

    Crash Model:

    10855 Elements

    10759 Nodes

    Forming Simulation Modell:

    Thickness-Distribution after Mapping

    49007 Elements (AUTOFORM)

    50285

    Crash Model:

    10855 Elements

    10759 Nodes

    Forming to Crash

    Sheet metal forming simulation for automotive applications Prof. Dr.-Ing. K. Roll Sommerschool Dortmund 2012; Slide 110

    Crash-Forming Simulation

    §

    Forming properties from 64 parts are mapped to the Crash - Simulation

    Forming to Crash

  • 56

    Sheet metal forming simulation for automotive applications Prof. Dr.-Ing. K. Roll Sommerschool Dortmund 2012; Slide 111

    Crash-Forming Simulation

    •Euro-NCAP-Test (deformable Wall): 64 km/h with 40% Overlapping

    Standard

    With Influence of Thickness &

    plastic strain

    -

    Forming to Crash

    Sheet metal forming simulation for automotive applications Prof. Dr.-Ing. K. Roll Sommerschool Dortmund 2012; Slide 112

    Crash to Forming: Failure and Damage

    Three Point Bending Test B-column

    Forming to Crash

  • 57

    Sheet metal forming simulation for automotive applications Prof. Dr.-Ing. K. Roll Sommerschool Dortmund 2012; Slide 113

    Crash to Forming: Failure and Damage

    Three point Bending Test B-column

    Experiment Simulation

    with forming

    simulation

    Simulation

    without forming

    Simulation

    Failure at 196 mm

    Buckling at 82.1 mm

    Barlat + Failure Source: FhG - IWM, Freiburg

    Forming to Crash

    Sheet metal forming simulation for automotive applications Prof. Dr.-Ing. K. Roll Sommerschool Dortmund 2012; Slide 114

    Fatigue - Part of the Suspension System Forming to Fatigue

  • 58

    Sheet metal forming simulation for automotive applications Prof. Dr.-Ing. K. Roll Sommerschool Dortmund 2012; Slide 115

    Fatigue - Stress Calculation

    +15%

    +16%

    +16%

    +9%

    +16%

    +16%

    “Classical Simulation with

    Constant Sheet Thickness

    Simulation with Sheet Thickness

    after the Forming Process

    Forming to Fatigue

    Sheet metal forming simulation for automotive applications Prof. Dr.-Ing. K. Roll Sommerschool Dortmund 2012; Slide 116

    Fatigue - Failure

    +52%

    +47%

    +15%

    +55%

    +108%

    +108%

    1.

    1.

    2.2.

    Simulation with Sheet Thickness

    after the Forming Process

    “Classical” Simulation with

    Constant Sheet Thickness

    Ranking List of Failure

    Forming to Fatigue

  • 59

    Sheet metal forming simulation for automotive applications Prof. Dr.-Ing. K. Roll Sommerschool Dortmund 2012; Slide 117

    • Warm forming and hot forming

    • Press hardening (22MnB5), hot stamping

    • New lightweight materials (Al, Mg, Ti?)

    • Hybrid composites (sheet metal / textiles, sheet metal / polymer,

    sandwich sheets, sheet metal / fiber-reinforced polymers, …)

    • Tailored (engineered) blanks, bonded blanks, patchwork blanks

    special sheets for lightweight design

    • Aluminum fusion alloys and cladded blanks

    • Functionally graded materials

    • Tailored heat treated blanks (Al, 22MnB5)

    • Cold forming of HSS, AHSS, UHSS

    • Mechanical joining processes

    • Servo presses

    • Special technologies (EMF, superplastic forming,..)

    Trends in Metalforming I Outlook

    Sheet metal forming simulation for automotive applications Prof. Dr.-Ing. K. Roll Sommerschool Dortmund 2012; Slide 118

    This has the following consequences for the simulation

    • Thermal-mechanical coupling will have to be the standard

    • Heating methods (induction, conduction) will have to be simulated

    • Tooling properties (thermal, elastic) will have to be considered

    • Structural optimization of tools and dies will be required

    • In the long term the system machine-tooling-process will have

    to be simulated

    • The real time has to be used and shown

    • Development of new, sophisticated material models

    • Joining technologies for new materials will have to be

    simulated as well

    • Adhesives in mechanical joining processes will have

    to be simulated

    Trends in Metalforming II Outlook

  • 60

    Sheet metal forming simulation for automotive applications Prof. Dr.-Ing. K. Roll Sommerschool Dortmund 2012; Slide 119

    Vision: the future simulation environment

    Source: Dr. Haufe, DynaMore

    Rückfederung Kompensation

    Walzen Mapping Crash - Umformen

    ; ; ; ; ; ; T

    Mapping

    Beurteilung des Gefüges

    Anisotropie in Dickenrichtung

    Oberflächenqualität etc.

    Möglichst universales, durchgängiges Materialmodell oder größtmö gliche Kompatibilität!

    Glühen Fügen

    Beurteilung der Herstellbarkeit

    Anisotropie in der Ebene

    Umformbarkeit etc.

    Energieaufnahme

    Entwicklung Bauteilgeometrie

    Div. Anforderungen aus Crash/Festigkeit/ Steifigkeit

    Beurteilung des Gefüges

    Beurteilung der Wärmeeinflusszone

    Rückfederung Kompensation

    Springback Compensation

    Rolling Annealing Mapping Crash-simulation - Forming

    Beurteilung des Gefüges

    Anisotropie in Dickenrichtung

    Oberflächenqualität etc.

    • texture

    • grain size

    • strength

    • transformation

    • ductility

    One description of the material for all simulations if possible

    Joining

    Beurteilung der Herstellbarkeit

    Anisotropie in der Ebene

    Umformbarkeit etc.

    • yield locus

    • hardening

    • phase transformation

    • damage

    • accuracy

    Energieaufnahme

    Entwicklung Bauteilgeometrie

    Div. Anforderungen aus Crash/Festigkeit/ Steifigkeit

    •Energyconsumption

    •Intrusion

    •Stiffness

    •Fatigue

    Beurteilung des Gefüges

    Beurteilung der Wärmeeinflusszone

    •depend on joining Technique

    •thermal wakening

    •mechanical

    hardening

    •Welding distortion

    Mapping

    Outlook

    Sheet metal forming simulation for automotive applications Prof. Dr.-Ing. K. Roll Sommerschool Dortmund 2012; Slide 120

    Vision of Digital Factory

    Facility

    Line

    Cell

    Operation

    Specific

    Process

    Building

    Worker Focus :

    • technical processes

    • facility components

    • quality

    • costs

    • capacities

    Focus :

    • technical processes

    • facility components

    • quality

    • costs

    • capacities

    Not a single production facility

    will

    without having been completely

    supported by digital planning

    methods

    Not a single production facility

    will

    without having been completely

    supported by digital planning

    methods

    be planned

    be built/

    go into operation

    be working

    be planned

    be built/

    go into operation

    be working

    Facility

    Line

    Cell

    Operation

    Specific

    Process

    Building

    Worker

    Facility

    Line

    Cell

    Operation

    Specific

    Process

    Building

    Worker Focus :

    • technical processes

    • facility components

    • quality

    • costs

    • capacities

    Focus :

    • technical processes

    • facility components

    • quality

    • costs

    • capacities

    Not a single production facility

    will

    without having been completely

    supported by digital planning

    methods

    Not a single production facility

    will

    without having been completely

    supported by digital planning

    methods

    be planned

    be built/

    go into operation

    be working

    be planned

    be built/

    go into operation

    be working

    Outlook

  • 61

    Sheet metal forming simulation for automotive applications Prof. Dr.-Ing. K. Roll Sommerschool Dortmund 2012; Slide 121

    Thank you for your attention!