69
Sex allocation theory Sex allocation theory Dominique Allainé UMR-CNRS 5558 « Biométrie et Biologie Evolutive » Université Lyon 1 France [email protected]

Sex allocation theory Dominique Allainé UMR-CNRS 5558 « Biométrie et Biologie Evolutive » Université Lyon 1 France [email protected]

Embed Size (px)

Citation preview

Page 1: Sex allocation theory Dominique Allainé UMR-CNRS 5558 « Biométrie et Biologie Evolutive » Université Lyon 1 France allaine@biomserv.univ-lyon1.fr

Sex allocation theorySex allocation theory

Dominique AllainéUMR-CNRS 5558« Biométrie et Biologie Evolutive »Université Lyon 1 France

[email protected]

Page 2: Sex allocation theory Dominique Allainé UMR-CNRS 5558 « Biométrie et Biologie Evolutive » Université Lyon 1 France allaine@biomserv.univ-lyon1.fr

Allocation to sex

Sex allocation is the allocation of resources to male versus female reproductive function

Definition

Charnov, E.L. 1982.The theory of sex allocation

Page 3: Sex allocation theory Dominique Allainé UMR-CNRS 5558 « Biométrie et Biologie Evolutive » Université Lyon 1 France allaine@biomserv.univ-lyon1.fr

Introduction

Two types of reproduction concerned:

• Dioecy: individuals produce only one type of gamete during their lifetime

• Hermaphrodism: individuals produce the two types of gametes during their lifetime

sequential hermaphrodism

simultaneous hermaphrodism

Page 4: Sex allocation theory Dominique Allainé UMR-CNRS 5558 « Biométrie et Biologie Evolutive » Université Lyon 1 France allaine@biomserv.univ-lyon1.fr

Introduction

Problematic

4. In what condition hermaphrodism or dioecy is evolutionarily stable?

1. In dioecious species, what is the sex ratio maintained by natural selection?

2. In sequential hermaphrodites, what is the order of sexes and the time of sex change ?

3. In simultaneous hermaphrodites, what is, at equilibrium, the resource allocated to males and females at each reproductive event ?

5. In what condition, natural selection favors the ability of individuals to modify their allocation to sexes ?

Page 5: Sex allocation theory Dominique Allainé UMR-CNRS 5558 « Biométrie et Biologie Evolutive » Université Lyon 1 France allaine@biomserv.univ-lyon1.fr

Introduction

An old problem

« … I formerly thought that when a tendency to produce the two sexes in equal numbers was advantageous to the species, it would follow from natural selection, but I now see that the whole problem is so intricate that it is safer to leave its solution for the future. »

Charles Darwin, 1871. The descent of man, and selection in relation to sex.

2nd Edition 1874

Page 6: Sex allocation theory Dominique Allainé UMR-CNRS 5558 « Biométrie et Biologie Evolutive » Université Lyon 1 France allaine@biomserv.univ-lyon1.fr

Fisher’s model

The first solution

« If we consider the aggregate of an entire generation of such offspring it is clear that the total reproductive value of the males in this group is exactly equal to the total value of all the females, because each sex supply half the ancestry of all future generations of the species. From this it follows that the sex ratio will so adjust itself, under the influence of Natural Selection, that the total expenditure incurred in respect of children of each sex, shall be equal »

R.A. Fisher. 1930. The genetical theory of natural selection

Page 7: Sex allocation theory Dominique Allainé UMR-CNRS 5558 « Biométrie et Biologie Evolutive » Université Lyon 1 France allaine@biomserv.univ-lyon1.fr

Two comments

1. It is a frequency-dependant model

2. It is a verbal model

How to demonstrate the Fisher’s equal allocation principle?How to demonstrate the Fisher’s equal allocation principle?

Fisher’s model

Page 8: Sex allocation theory Dominique Allainé UMR-CNRS 5558 « Biométrie et Biologie Evolutive » Université Lyon 1 France allaine@biomserv.univ-lyon1.fr

Concept adapted to ecology by J. Maynard-Smith

An ESS is a strategy, noted r* that, if played in the population,cannot be invaded by an alternative strategy s, played by a mutant individual introduced in the population

Fisher’s model

ESS approach

The fitness of an individual playing the strategy s in a population where individuals play the strategy r is noted W(s,r)

Page 9: Sex allocation theory Dominique Allainé UMR-CNRS 5558 « Biométrie et Biologie Evolutive » Université Lyon 1 France allaine@biomserv.univ-lyon1.fr

Fisher’s model

ESS approach

W(r*,r*) > W(s,r*) r* is the unique best response to r*

r* is an ESS if:

Or:

W(r*,r*) = W(s,r*) r* is not the unique best response to r*

and W(r*,r) > W(r,r) but r* is a better response to r than r

Page 10: Sex allocation theory Dominique Allainé UMR-CNRS 5558 « Biométrie et Biologie Evolutive » Université Lyon 1 France allaine@biomserv.univ-lyon1.fr

Formalization of the Fisher’s model

Consider a population of N females of a dioecious species with discrete generations

Each female produces C offspring at each reproductive event

Consider S1 and S2 the proportions of males and females that survive to the age of first reproduction

Each female produces a proportion r of sons

Consider a mutant female that produces a proportion s of sons

We consider:

1. a continuous variable, for example the proportion of males produced2. a strategy r adopted by the females of the population3. a strategy s adopted by a mutant female4. an optimal strategy r*

When applied to sex allocation :

Page 11: Sex allocation theory Dominique Allainé UMR-CNRS 5558 « Biométrie et Biologie Evolutive » Université Lyon 1 France allaine@biomserv.univ-lyon1.fr

The offspring of the N+1 females, produce as a whole K offspring

The relative contribution of the mutant female to grandchildren through her sons is:

NCrS1CsS1

CsS1k

2

1

(1)

(2)

Formalization of the Fisher’s model

1. Formalization by Shaw and Mohler (1953)

r)S2NC(1s)S2C(1

s)S2C(1k

2

1

The relative contribution of the mutant female to grandchildren through her daughters is:

Page 12: Sex allocation theory Dominique Allainé UMR-CNRS 5558 « Biométrie et Biologie Evolutive » Université Lyon 1 France allaine@biomserv.univ-lyon1.fr

The relative contribution of the mutant female to genes of grandchildren,that is her relative fitness, is the sum of (1) and (2)

r)S2NC(1s)S2C(1

s)S2C(1

NCrS1CsS1

CsS1k

2

1 W r)(s,

(3)

If N is large, (3) can be approximated by:

r)S2NC(1

s)S2C(1

NCrS1

CsS1k

2

1W r)(s,

(4)

This is the Shaw and Mohler equationThis is the Shaw and Mohler equation

Formalization of the Fisher’s model

1. Formalization by Shaw and Mohler (1953)

Page 13: Sex allocation theory Dominique Allainé UMR-CNRS 5558 « Biométrie et Biologie Evolutive » Université Lyon 1 France allaine@biomserv.univ-lyon1.fr

r)S2-C(1 f CrS1 m

s)S2-C(1 f̂ CsS1 m̂ :given

Then (4) becomes :

ˆˆ

W r)(s,

f

f

m

m (5)

This is a generalization of the Shaw and Mohler’s equationThis is a generalization of the Shaw and Mohler’s equation

Formalization of the Fisher’s model

1. Formalization by Shaw and Mohler (1953)

Page 14: Sex allocation theory Dominique Allainé UMR-CNRS 5558 « Biométrie et Biologie Evolutive » Université Lyon 1 France allaine@biomserv.univ-lyon1.fr

2. The marginal value criterion

Consider a population of N females of a dioecious species with discrete generations

Each female allocates an optimal proportion M* of resources to males and an optimal proportion F* = 1-M* of resources to females

Consider a mutant female that allocates a proportion M of resources to males anda proportion F = 1-M of resources to females

Formalization of the Fisher’s model

Page 15: Sex allocation theory Dominique Allainé UMR-CNRS 5558 « Biométrie et Biologie Evolutive » Université Lyon 1 France allaine@biomserv.univ-lyon1.fr

The relative fitness of the mutant female in a population allocating M* is:

*)(

)(

*)(

)(W M*)(M,

FN

F

MN

M

(M) is the competitive ability of males having received an allocation M

(F) is the competitive ability of females having received an allocation F

*)(

)(

MN

M

is the genetic profit through males

*)(

)(

FN

F

is the genetic profit through females

2. The marginal value criterion

Formalization of the Fisher’s model

Page 16: Sex allocation theory Dominique Allainé UMR-CNRS 5558 « Biométrie et Biologie Evolutive » Université Lyon 1 France allaine@biomserv.univ-lyon1.fr

In the Fisher’s model, competitive abilities ((M) and (F)) are

linear: (M) = aM and (F) = bF a and b being constants

for example: (M) = CsS1 and (F) = C(1-s)S2 with a = CS1 and b = CS2 and allocation is measured by sex ratio (M = s and F = (1-s))

These competitive abilities are often measured by the number ofmales and females offspring surviving to the age of reproduction

2. The marginal value criterion

Formalization of the Fisher’s model

Page 17: Sex allocation theory Dominique Allainé UMR-CNRS 5558 « Biométrie et Biologie Evolutive » Université Lyon 1 France allaine@biomserv.univ-lyon1.fr

It follows that:

*)(

)(

*)(

)(W M*)(M,

FN

F

MN

M

*

ˆ

*

ˆ W M*)(M,

f

f

m

m

2. The marginal value criterion

Formalization of the Fisher’s model

This is the Shaw and Mohler equationThis is the Shaw and Mohler equation

Page 18: Sex allocation theory Dominique Allainé UMR-CNRS 5558 « Biométrie et Biologie Evolutive » Université Lyon 1 France allaine@biomserv.univ-lyon1.fr

3. Model of inclusive fitness

Formalization of the Fisher’s model

Consider a population of N females of a dioecious species with discrete generations

Each female produces C offspring at each reproductive event

Each female produces a proportion r of sons

Consider S1 and S2 the proportions of males and females that survive to the age of first reproduction

Consider a mutant female that produces a proportion s of sons

Page 19: Sex allocation theory Dominique Allainé UMR-CNRS 5558 « Biométrie et Biologie Evolutive » Université Lyon 1 France allaine@biomserv.univ-lyon1.fr

the fitness W of a female is measured by:

W = number of adult daughters + number of females inseminated by her sons

r)S2-C(1 f CrS1 m

s)S2-C(1 f̂ CsS1 m̂ :given

2f Nm

mNf f W(r) and

m

m̂f f̂

Nm

m̂Nf f̂ W(s):Then

3. Model of inclusive fitness

Formalization of the Fisher’s model

Page 20: Sex allocation theory Dominique Allainé UMR-CNRS 5558 « Biométrie et Biologie Evolutive » Université Lyon 1 France allaine@biomserv.univ-lyon1.fr

f

m

f

m

2

1

m

m̂ff̂

2f

1 r)W(s,

Then, the relative fitness of a mutant female is :

3. Model of inclusive fitness

Formalization of the Fisher’s model

This is the Shaw and Mohler equationThis is the Shaw and Mohler equation

Page 21: Sex allocation theory Dominique Allainé UMR-CNRS 5558 « Biométrie et Biologie Evolutive » Université Lyon 1 France allaine@biomserv.univ-lyon1.fr

The relative fitness of a mutant female is :

Formalization of the Fisher’s model

The Shaw and Mohler (1953)’ equation

r)(1

s)(1

r

sW r)(s,

Page 22: Sex allocation theory Dominique Allainé UMR-CNRS 5558 « Biométrie et Biologie Evolutive » Université Lyon 1 France allaine@biomserv.univ-lyon1.fr

Solution with equal costs of production

The question is :

Does a mutant female contribute more to the next generation than a non mutantfemale?

In other words :

Is the fitness of the mutant female greater than the fitness of a non mutantfemale?

Or, does the « mutant » allele will invade the population ?

Or, is the relative fitness of the mutant female W(s,r) greater than 1 ?

Fisher’s model

Page 23: Sex allocation theory Dominique Allainé UMR-CNRS 5558 « Biométrie et Biologie Evolutive » Université Lyon 1 France allaine@biomserv.univ-lyon1.fr

What is the optimal sex ratio (allocation)?

Solution with equal costs of production

Fisher’s model

Two conditions are needed:

(2) 0s

W

(1) 0s

W

*rrs

2

2

*rrs

To have an extremum

To have a maximum

r* is the value such that the fitness W is maximised for s=r=r*

Page 24: Sex allocation theory Dominique Allainé UMR-CNRS 5558 « Biométrie et Biologie Evolutive » Université Lyon 1 France allaine@biomserv.univ-lyon1.fr

2

1r* 0 *2r-1 0

s

W

*

rrs

r* = 0.5 is an ESS

Solution with equal costs of production

Fisher’s model

r)r(1

2r1

s

W

Page 25: Sex allocation theory Dominique Allainé UMR-CNRS 5558 « Biométrie et Biologie Evolutive » Université Lyon 1 France allaine@biomserv.univ-lyon1.fr

1. The derived does not depend on s

2. If r = r* = 0.5, W’ = 0 whatever the value of s thus W(s,r*) = cte

3. If r = r*, s = r* is the best but not the unique best response to r*

4. If r < 0.5 W’ > 0 and s = 1 is the best response to r

5. If r > 0.5, W’ < 0 and s = 0 is the best response to r

Solution with equal costs of production

Fisher’s model

Comments:

Page 26: Sex allocation theory Dominique Allainé UMR-CNRS 5558 « Biométrie et Biologie Evolutive » Université Lyon 1 France allaine@biomserv.univ-lyon1.fr

s ≠ r

s = r

best

resp

onse

(s

)

Sex ratio in the population (r)

Solution with equal costs of production

Fisher’s model

Page 27: Sex allocation theory Dominique Allainé UMR-CNRS 5558 « Biométrie et Biologie Evolutive » Université Lyon 1 France allaine@biomserv.univ-lyon1.fr

The first model assumed that the energetic cost of production of both sexes was the same. Allocation was measured directly by the sex ratio.

Fisher (1930)« From this it follows that the sex ratio will so adjust itself, under the influence of Natural Selection, that the total expenditure incurred in respect of children of each sex, shall be equal »

What happens if the costs of production of the two sexes differ ?

Fisher’s model

Model with different costs of production

Page 28: Sex allocation theory Dominique Allainé UMR-CNRS 5558 « Biométrie et Biologie Evolutive » Université Lyon 1 France allaine@biomserv.univ-lyon1.fr

Consider a population of N females of a dioecious species with discrete generations

Each female has a quantity R of resources to allocate at each reproductive event

Each female allocates a proportion q* of resources to the production of males

Consider a mutant female allocating a proportion q of resources to the production of males

Fisher’s model

Model with different costs of production

Page 29: Sex allocation theory Dominique Allainé UMR-CNRS 5558 « Biométrie et Biologie Evolutive » Université Lyon 1 France allaine@biomserv.univ-lyon1.fr

C2

q*)S2-R(1 *f

C1

S1*Rq m*

C2

q)S2-R(1 f

C1

RqS1 m

*f

f

*m

mW q*)(q,

and

then *q-1

q-1

*q

qW q*)(q,

Same form as the model with equal costs

Fisher’s model

Model with different costs of production

Page 30: Sex allocation theory Dominique Allainé UMR-CNRS 5558 « Biométrie et Biologie Evolutive » Université Lyon 1 France allaine@biomserv.univ-lyon1.fr

2

1q* 0 *2q-1 0

q

W

*

qq

The optimal strategy is an equal allocation to males and females

This is the Fisher’s prediction !This is the Fisher’s prediction !

Fisher’s model

Model with different costs of production

Page 31: Sex allocation theory Dominique Allainé UMR-CNRS 5558 « Biométrie et Biologie Evolutive » Université Lyon 1 France allaine@biomserv.univ-lyon1.fr

Because each female has a quantity R of resources to allocate at each reproductive event and because young of the two sexes are not equally costly to produce, q* = 0.5 implies that the Fisher’s equal allocation principle can be written as:

n♂ x C♂ = n♀x C♀

Fisher’s model

Model with different costs of production

Page 32: Sex allocation theory Dominique Allainé UMR-CNRS 5558 « Biométrie et Biologie Evolutive » Université Lyon 1 France allaine@biomserv.univ-lyon1.fr

Fisher’s model does not predict a sex ratio equal to 0.5 in the population if costs of production of the two sexes differ.

Costs of production should be used sensu Trivers (1972) that is to say in term of fitness cost and not only in term of energetic cost (cf. Charnov 1979).

Fisher’s principle should be rephrased in terms of equal investment rather than of equal allocation

Conclusion

Fisher’s model

Page 33: Sex allocation theory Dominique Allainé UMR-CNRS 5558 « Biométrie et Biologie Evolutive » Université Lyon 1 France allaine@biomserv.univ-lyon1.fr

Biased sex ratio

Local Mate Competition (LMC)

Patches of habitat

In some species of parasitoids, the environment is made of patches, each patch being occupied by fertilized females

Page 34: Sex allocation theory Dominique Allainé UMR-CNRS 5558 « Biométrie et Biologie Evolutive » Université Lyon 1 France allaine@biomserv.univ-lyon1.fr

Biased sex ratio

LMC

layingmating

laying

Offspring born on a patch mate on the patch

Then, males die and fertilized females disperse to vacant patches

♀♀ ♀

♂♂

♂♂

♀♀ ♀

♀♂

♂♀

♀ ♂

♀ ♂

Page 35: Sex allocation theory Dominique Allainé UMR-CNRS 5558 « Biométrie et Biologie Evolutive » Université Lyon 1 France allaine@biomserv.univ-lyon1.fr

Biased sex ratio

In this kind of species, there is a local competition between males to fertilize females on the birth patch

Males are then the costly sex and a female-biased sex ratio is expected

LMC

Page 36: Sex allocation theory Dominique Allainé UMR-CNRS 5558 « Biométrie et Biologie Evolutive » Université Lyon 1 France allaine@biomserv.univ-lyon1.fr

Biased sex ratio

To predict the sex ratio in this situation, Hamilton has relaxed one

assumption of the Fisher’s model: the hypothesis of a panmictic reproduction

Consider a population of n females of a diploid species, dioecious with discrete generations

Each female produces C offspring at each reproductive event

Each female produces a proportion r of sons

Consider a mutant female that produces a proportion s of sons

LMC : diploid species (Hamilton 1967)

Page 37: Sex allocation theory Dominique Allainé UMR-CNRS 5558 « Biométrie et Biologie Evolutive » Université Lyon 1 France allaine@biomserv.univ-lyon1.fr

s1)r(n

s1r)-1)(1(nss1

r)-2(1

1 r) W(s,

LMCBiased sex ratio

0 (nr*)

*nr

*nr

r*)n-(11- 0

s

W Then,

2*rrs

It comes : 2n

1 -

2

1

2n

1-n *r

f

f̂1)f(n

m̂1)m(n

f

2

1 r)W(s, :Then

Page 38: Sex allocation theory Dominique Allainé UMR-CNRS 5558 « Biométrie et Biologie Evolutive » Université Lyon 1 France allaine@biomserv.univ-lyon1.fr

r* is an ESS

Sex ratio in the population (r)

s best

resp

onse

to r

Unique best response

n = 3

0 s1)r-(n

s1)r-(n1

s1)r-(n

n-

s

W

2

2

22

2

LMC : diploid species

Biased sex ratio

Page 39: Sex allocation theory Dominique Allainé UMR-CNRS 5558 « Biométrie et Biologie Evolutive » Université Lyon 1 France allaine@biomserv.univ-lyon1.fr

r*

n

LMC : diploid species

Biased sex ratio

0 *r 1, n if Fisher 0.5 *r , n if

2n

1 -

2

1 *r

Page 40: Sex allocation theory Dominique Allainé UMR-CNRS 5558 « Biométrie et Biologie Evolutive » Université Lyon 1 France allaine@biomserv.univ-lyon1.fr

Many studies on parasitoid species give evidence that the sex ratio may be extremely biased towards females in these species.

Biased sex ratio

LMC: test in parasitoid wasps

Page 41: Sex allocation theory Dominique Allainé UMR-CNRS 5558 « Biométrie et Biologie Evolutive » Université Lyon 1 France allaine@biomserv.univ-lyon1.fr

Local Resource Competition (LRC) Clark (1978)

Biased sex ratio

tt+1 Male dispersal

Page 42: Sex allocation theory Dominique Allainé UMR-CNRS 5558 « Biométrie et Biologie Evolutive » Université Lyon 1 France allaine@biomserv.univ-lyon1.fr

LRC

In some primate species, males disperse early while

females stay with their mother beyond sexual maturity.

Daughters compete with each other (and with their mother if alive) for resources.

There is a local competition for resources between related females

Biased sex ratio

Females are then the costly sex and a male-biased sex ratio is expected

Page 43: Sex allocation theory Dominique Allainé UMR-CNRS 5558 « Biométrie et Biologie Evolutive » Université Lyon 1 France allaine@biomserv.univ-lyon1.fr

Consider a population of N females of a diploid species, dioecious with discrete generations

Each female produces C offspring at each reproductive event

Each female produces a proportion r of sons

Consider a mutant female that produces a proportion s of sons

Competition for resources affects females’ survival. Then the survival

of daughters will depend on sex ratio [(r) or (s)]

LRC

Biased sex ratio

Page 44: Sex allocation theory Dominique Allainé UMR-CNRS 5558 « Biométrie et Biologie Evolutive » Université Lyon 1 France allaine@biomserv.univ-lyon1.fr

LRC

r*)-(1*r

-1)*(r*)(2r (r*)' 0

s

W

*rs

r

However, ’(r*) > 0 => r* > 0.5

Biased sex ratio

(r)rr)(1

(r)r)-s(1(s)rs)(1

2

1W r)(s,

Page 45: Sex allocation theory Dominique Allainé UMR-CNRS 5558 « Biométrie et Biologie Evolutive » Université Lyon 1 France allaine@biomserv.univ-lyon1.fr

LRC: test in primates (Clark 1978)

Biased sex ratio

Galago crassicaudatus

From Clark (1978)

Page 46: Sex allocation theory Dominique Allainé UMR-CNRS 5558 « Biométrie et Biologie Evolutive » Université Lyon 1 France allaine@biomserv.univ-lyon1.fr

LRC: test in birds (Gowaty 1993)

Biased sex ratio

Dispersal female biased

Sex ratio female biased

Dispersal male biased

Sex ratio male biased

%males

Page 47: Sex allocation theory Dominique Allainé UMR-CNRS 5558 « Biométrie et Biologie Evolutive » Université Lyon 1 France allaine@biomserv.univ-lyon1.fr

Local Resource Enhancement (LRE) Emlen et al. (1986)

Biased sex ratio

In cooperative breeders, the sex ratio seems biased towards the helping sex

Initially, we thought that helpers help because they are in excess in the population.Being in excess for an unknown reason, individuals of the helping sex do not find mate and they can increase their fitness by helping.

However, Gowaty and Lennartz (1985) proposed an alternative interpretation.They argued that it is because they help that helpers are produced in excessbecause they help that helpers are produced in excess

This hypothesis was formalized by Emlen et al. in 1986

Page 48: Sex allocation theory Dominique Allainé UMR-CNRS 5558 « Biométrie et Biologie Evolutive » Université Lyon 1 France allaine@biomserv.univ-lyon1.fr

LRE

In cooperatively breeding species, offspring of one sex generally

stay in the family group and help parents in raising young.

For example, helpers are provisioning food for young

(local resource enhancement).

The helping sex is less costly in fitness term because it provides a

fitness benefit to parents by increasing reproductive success or decreasing

the workload of parents. So, helpers reimburse parental investment.

Helper repayment model

Biased sex ratio

Page 49: Sex allocation theory Dominique Allainé UMR-CNRS 5558 « Biométrie et Biologie Evolutive » Université Lyon 1 France allaine@biomserv.univ-lyon1.fr

LRE

Consider a population of N females of a diploid species, dioecious with discrete generations

Each female produces C offspring at each reproductive event

Each female produces a proportion r of sons

Consider a mutant female that produces a proportion s of sons

Helpers effect is expressed by a multiplicative coefficient H in the production of offspring

Biased sex ratio

Page 50: Sex allocation theory Dominique Allainé UMR-CNRS 5558 « Biométrie et Biologie Evolutive » Université Lyon 1 France allaine@biomserv.univ-lyon1.fr

LRE

(s)hb (s)hb 1 H(s) ffmm

Helpers’ effects are assumed to be additive !!!

femalea of and malea of onscontributi respective thebet b

helpers female ofnumber mean the(s)h

helpers male ofnumber mean the(s)h :given

fm

f

m

Helpers’ effect depends on the sex ratio produced by the mother

Biased sex ratio

Page 51: Sex allocation theory Dominique Allainé UMR-CNRS 5558 « Biométrie et Biologie Evolutive » Université Lyon 1 France allaine@biomserv.univ-lyon1.fr

LRE

r

s

r)-(1

s)-(1

H(r)

H(s)

2

1 r)W(s,

Biased sex ratio

*r-1

hb -

*r

hb 2-

*r-1

1 -

*r

1 0

s

W ffmm

*rr s

h2b 1

h2b 1

*r-1

*r : Then

ff

mm

Pen & Weissing demonstrated that:

Page 52: Sex allocation theory Dominique Allainé UMR-CNRS 5558 « Biométrie et Biologie Evolutive » Université Lyon 1 France allaine@biomserv.univ-lyon1.fr

LRE

In the great majority of cooperatively breeding species, only one sex helps so:

h2b 1 sex helping non n

sex helping n

The ESS depends only on 2 parameters :

1. Mean number of helpers2. Contribution of each helper

! Remember that the model assumes that contributions are additive !

Biased sex ratio

Page 53: Sex allocation theory Dominique Allainé UMR-CNRS 5558 « Biométrie et Biologie Evolutive » Université Lyon 1 France allaine@biomserv.univ-lyon1.fr

Biased sex ratio

Test of the Helper Repayment Hypothesis

0

1

2

34

0

1

2

0.4

0.5

0.6

0.7

0.8

0.9

1

number of subordinate males

number of subordinate females

juve

nile

sur

viva

l

We determined the winter survival of 198 juveniles from 53 litters

Winter survival of juveniles = 0.78 (95% confidence interval : 0.72-0.84)

Subordinate males may be consideredas helpers and may reimburse parentalinvestment by warming juveniles duringwinter

LRE: test in the alpine marmot

Page 54: Sex allocation theory Dominique Allainé UMR-CNRS 5558 « Biométrie et Biologie Evolutive » Université Lyon 1 France allaine@biomserv.univ-lyon1.fr

Biased sex ratio

Complete sex composition at emergence was determined for 53 litters representing a total of 207 juveniles

The overall sex ratio was 0.578 and significantly departed from 0.5

(95% confidence interval [0.511; 0.643])

Sex ratio at emergence

Sex ratio at birth

Five females in captivity gave birth to 22 sexed neonates

13 were males giving an overall sex ratio of 0.59

LRE: test in the alpine marmot

Page 55: Sex allocation theory Dominique Allainé UMR-CNRS 5558 « Biométrie et Biologie Evolutive » Université Lyon 1 France allaine@biomserv.univ-lyon1.fr

Biased sex ratio

Test of the Helper Repayment Hypothesis

LRE: test in the alpine marmot

0,4

0,6

0,8

1

0 1 2 3 4 5

Number of males ≥ 2 years-old

Juve

nile

Surv

ival

53

5425

2 Mean number of helpers = 0,836

Mean effect of a helper = mean percentage of increase in survivalb = 0,107

Sex ratio predicted = 0,541

Observed sex ratio = 0.578 [0.511; 0.643]

Page 56: Sex allocation theory Dominique Allainé UMR-CNRS 5558 « Biométrie et Biologie Evolutive » Université Lyon 1 France allaine@biomserv.univ-lyon1.fr

Biased sex ratio

What individual strategy should be ?

Individual level

Should all females have

the same strategy ?

Or not ?

Page 57: Sex allocation theory Dominique Allainé UMR-CNRS 5558 « Biométrie et Biologie Evolutive » Université Lyon 1 France allaine@biomserv.univ-lyon1.fr

Biased sex ratio

Individual level

Since the selection is only for the total expenditure, only the mean sex ratio is fixed and there is no effect on the variance, that is, a populationcan have any degree of heterogeneity so long as the totals expended onthe production of each sexes are equal (Kolman 1960)

Individuals producing offspring in sex ratios that deviate from 50/50are not selected against as long as these deviations exactly cancel outand result in a sex ratio at conception of 50/50 for the local breedingpopulation (Trivers and Willard 1973)

Page 58: Sex allocation theory Dominique Allainé UMR-CNRS 5558 « Biométrie et Biologie Evolutive » Université Lyon 1 France allaine@biomserv.univ-lyon1.fr

Biased sex ratio

Individual level

Parents should overproduce offspring of the most profitable sex in term of fitness return (Trivers and Willard 1973)

Facultative sex ratio adjustment

Page 59: Sex allocation theory Dominique Allainé UMR-CNRS 5558 « Biométrie et Biologie Evolutive » Université Lyon 1 France allaine@biomserv.univ-lyon1.fr

Biased sex ratio

Individual level: Trivers and Willard (1973)

Assumptions of the Trivers and Willard’s hypothesis

1. The condition of the young at the end of PI depends on thecondition of the mother during PI

2. Differences in condition of young at the end of PI endure intoadulthood

3. A slight advantage in condition has disproportionate effects on male reproductive success compared to the effects on female RS

3. => especially designed for polygynous species

Page 60: Sex allocation theory Dominique Allainé UMR-CNRS 5558 « Biométrie et Biologie Evolutive » Université Lyon 1 France allaine@biomserv.univ-lyon1.fr

Biased sex ratio

Predictions of the Trivers and Willard’s hypothesis

Females in relatively better condition tend to produce males andfemales in relatively poor condition tend to produce females

Many studies aimed to test the TW model especially in ungulates

=> inconsistent results probably because:

1. assumptions not respected2. predictions not clear (Leimar 1996)

Individual level: Trivers and Willard (1973)

Page 61: Sex allocation theory Dominique Allainé UMR-CNRS 5558 « Biométrie et Biologie Evolutive » Université Lyon 1 France allaine@biomserv.univ-lyon1.fr

Biased sex ratio

Individual level: LRC

Prediction of the LRC hypothesis

Females in a low quality environment should produce more offspring of the dispersing sex

The prediction may be the opposite of TW prediction: for example, in many primates, daughters are philopatric. So, dominant females (in good situation)should overproduce daughters and this is the opposite prediction of TW.

=> inconsistent results probably because :

Page 62: Sex allocation theory Dominique Allainé UMR-CNRS 5558 « Biométrie et Biologie Evolutive » Université Lyon 1 France allaine@biomserv.univ-lyon1.fr

Biased sex ratio

Individual level: Burley (1981)

In species where some males are more attractive to females than others, thereby leading to variation in male mating and reproductive success, and where male attractiveness has a genetic basis, females mated to attractive males should produce male-biased litters.

Assumptions and prediction

Page 63: Sex allocation theory Dominique Allainé UMR-CNRS 5558 « Biométrie et Biologie Evolutive » Université Lyon 1 France allaine@biomserv.univ-lyon1.fr

Biased sex ratio

Individual level: Burley (1981)

From Griffith et al. (2003)

On the blue tit Parus caeruleus

Assume the heritability ofUV coloration

Page 64: Sex allocation theory Dominique Allainé UMR-CNRS 5558 « Biométrie et Biologie Evolutive » Université Lyon 1 France allaine@biomserv.univ-lyon1.fr

Biased sex ratio

Individual level: Burley (1981)

Heritability confirmed but lowFrom Kölliker et al. (1999)

Test at the individual level: Great tit Parus major

Page 65: Sex allocation theory Dominique Allainé UMR-CNRS 5558 « Biométrie et Biologie Evolutive » Université Lyon 1 France allaine@biomserv.univ-lyon1.fr

Biased sex ratio

Individual level: Burley (1981)

In many species (especially in mammals), the attractiveness is hard to define

But if EPP occurs, and assuming that EPM are more attractive to females than cuckolded males, we predict that the sex ratio should increase with theproportion of EPY in the litter and that EPY should be more often males than their half-sib WPY

Most studies in birds failed to show that the sex ratio of EPY was more male-biased than the sex ratio of their half-sib WPY

Page 66: Sex allocation theory Dominique Allainé UMR-CNRS 5558 « Biométrie et Biologie Evolutive » Université Lyon 1 France allaine@biomserv.univ-lyon1.fr

Biased sex ratio

Individual level: Burley (1981)

In the alpine marmot we foundthat the sex ratio in mixed litterswas more male-biased as the proportion of EPY increased

EPY were more likely males (SR = 0.62 ± 0.09) than theirhalf-sib WPY (0.44 ± 0.08) butthe difference was not significant(p = 0.2) => lack of power ?

Test at the individual level: alpine marmots

Page 67: Sex allocation theory Dominique Allainé UMR-CNRS 5558 « Biométrie et Biologie Evolutive » Université Lyon 1 France allaine@biomserv.univ-lyon1.fr

Biased sex ratio

Individual level: LRE

Prediction of the LRE hypothesis

Females should produce more offspring of the helping sex when helpers are absent in the family group

Page 68: Sex allocation theory Dominique Allainé UMR-CNRS 5558 « Biométrie et Biologie Evolutive » Université Lyon 1 France allaine@biomserv.univ-lyon1.fr

Biased sex ratio

Test across females in the population

0

0.2

0.4

0.6

0.8

1

-1 0 1

absence/presence of helpersse

x ra

tio

25

57sr = 0.66sr = 0.49

Only the presence of helpershad a significant effect on sr(2 = 8.74, df =1, p = 0.003)

Test in individual females across multiple years

Ten mothers remained several years in their territoryThey produced a sex ratio according to their social environment (p = 0.002):

Helpers absent: sr = 0.65 [0.54;0.74] helpers present: sr = 0.46 [0.36; 0.56]

LRE: test in the alpine marmot

Page 69: Sex allocation theory Dominique Allainé UMR-CNRS 5558 « Biométrie et Biologie Evolutive » Université Lyon 1 France allaine@biomserv.univ-lyon1.fr

Biased sex ratio

LRE: test in the alpine marmot

These results suggest that mothers are able to facultatively adjust the sex ratiofacultatively adjust the sex ratio of their offspring

Mechanism ???