27
Doing the Work: Linyou Cao, Majid Esfandyarpour, Erik C. Garnett, Soo-Jin Pengyu Fan Soo-Jin Kim, Dianmin Lin, Juhyung Kang, Jung Hyun Park, Isabell Thomann. Speaking: Mark Brongersma @ Stanford University Funding: AFOSR, DOE EFRC, Samsung Semiconductor Nanowire Nanophotonics and Optoelectronics Thank you: Mike McGehee group (Stanford) Yi Cui group (Stanford) Pieter Kik (CREOL) Nader Engheta (Upenn) Erez Hasman (Technion) Reflection Absorption/Emission Transmission P <<

Semiconductor Nanowire Nanophotonics and ... - IEEEsite.ieee.org/sfbanano/files/2016/07/NanoCON-Day-3-IEEE_Stanford_June2016...Semiconductor Nanowire Nanophotonics and Optoelectronics

  • Upload
    others

  • View
    21

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Semiconductor Nanowire Nanophotonics and ... - IEEEsite.ieee.org/sfbanano/files/2016/07/NanoCON-Day-3-IEEE_Stanford_June2016...Semiconductor Nanowire Nanophotonics and Optoelectronics

Doing the Work: Linyou Cao, Majid Esfandyarpour, Erik C. Garnett, Soo-JinPengyu Fan Soo-Jin Kim, Dianmin Lin, Juhyung Kang, Jung Hyun Park, Isabell Thomann.

Speaking: Mark Brongersma @ Stanford University

Funding: AFOSR, DOE EFRC, Samsung

Semiconductor Nanowire Nanophotonics and Optoelectronics

Thank you: Mike McGehee group (Stanford) Yi Cui group (Stanford)Pieter Kik (CREOL)Nader Engheta (Upenn)Erez Hasman (Technion)

Reflection Absorption/Emission Transmission

P << 

Page 2: Semiconductor Nanowire Nanophotonics and ... - IEEEsite.ieee.org/sfbanano/files/2016/07/NanoCON-Day-3-IEEE_Stanford_June2016...Semiconductor Nanowire Nanophotonics and Optoelectronics

Optoelectronic Devices are Everywhere…

Flexible displaySamsung

LasersSolar cells, SunPower

Image sensors

Page 3: Semiconductor Nanowire Nanophotonics and ... - IEEEsite.ieee.org/sfbanano/files/2016/07/NanoCON-Day-3-IEEE_Stanford_June2016...Semiconductor Nanowire Nanophotonics and Optoelectronics

Most Optoelectronic Devices Rely on Planar Device Technologies

http://spie.org/Images/Graphics/Newsroom/Imported‐2012/004167/004167_10_fig3.jpg

www.olympusmicro.com

CMOS Image sensors (Sony)

Keisuke Nakayama H.A. Atwater et al., Appl. Phys. Lett. 93, 121904 (2008)

Can metamaterials have an impact on these technologies ??..Lower power, higher speed, thinner.. 

Page 4: Semiconductor Nanowire Nanophotonics and ... - IEEEsite.ieee.org/sfbanano/files/2016/07/NanoCON-Day-3-IEEE_Stanford_June2016...Semiconductor Nanowire Nanophotonics and Optoelectronics

Enhanced Light-Matter Interaction Comes For Free at the Nanoscale

Electronics1st transistor and IC

Current technology

Linyou Cao et al., Nano Lett., 2649, 10 (2010)

Semiconductor nanostructures

Semiconductor wafersOptical Properties Semiconductors

30 nm 185 nm

Noble metal and high-index semiconductor nanostructures exhibit strong, tunable optical resonances

Page 5: Semiconductor Nanowire Nanophotonics and ... - IEEEsite.ieee.org/sfbanano/files/2016/07/NanoCON-Day-3-IEEE_Stanford_June2016...Semiconductor Nanowire Nanophotonics and Optoelectronics

Development of Metafilms and Metasurfaces from Resonant Nanostructures

L. Cao, M.L. Brongersma et al., Nano Lett., 2649, 10 (2010)

Semiconductor nanostructures

30 nm 185 nm

Assembly nanostructures into metasurfaces and metafilms 

Absorption/Emission Transmission

P << 

Page 6: Semiconductor Nanowire Nanophotonics and ... - IEEEsite.ieee.org/sfbanano/files/2016/07/NanoCON-Day-3-IEEE_Stanford_June2016...Semiconductor Nanowire Nanophotonics and Optoelectronics

Short History of Resonant High-index Nanostructures

2000 Kuester & Holloway Artificial dielectrics materials in RF range 2003 – Visible & Near IR: Pendry, Joannopoulos, Kuznetsov, Luk’yanchuk, Evlyukhin,

Polman, Novotny, Kivshar, Chang-Hasnein, Brener, Brongersma, Valentine, Zheludev, Rockstuhl, Cui, Seo, etc.

– IR: Brener, Brongersma, Hasman, Schuler , Zheludev, etc..– RF: Cummer, Gopinath, Lippens, Kuester & Holloway, etc.

1908 Gustav Mie: Light scattering from a dielectric sphere

1947 L. Lewin Medium with spheresL. Lewin, Inst. Electr. Eng. III Radio Commun. Eng. 94, 65–68. 1947,

Gustav Mie, Ann. Phys. 25, 377–445 (1908)

1980 Long, McAllister, and Shen Dielectric Resonator AntennasS. A. Long, M. W. McAllister, and L. C. Shen, "The Resonant  Cylindrical Dielectric Cavity Antenna," IEEE Transactions on Antennas and Propagation, 31, 406, 1983.

Page 7: Semiconductor Nanowire Nanophotonics and ... - IEEEsite.ieee.org/sfbanano/files/2016/07/NanoCON-Day-3-IEEE_Stanford_June2016...Semiconductor Nanowire Nanophotonics and Optoelectronics

Engineering optical resonance frequency with size

Beneficial Properties of Resonant Semiconductor Nanostructures

Effective light concentration to the deep subwavelength scales

|E|2

x

y

E

d =100nm

d

d

SiO2 (n = 1.45)

Air

g = 10 nm

= 550 nm

Si

Engineering optical resonance frequency with shape

Cao, Brongersma et al., Nano Lett., 2649, 10, 2010.

30 nm                                                                      180 nmDiameter

Length

D

Ho-Seok Ee et al., Nano Letters, 15, 1759 (2015).

Page 8: Semiconductor Nanowire Nanophotonics and ... - IEEEsite.ieee.org/sfbanano/files/2016/07/NanoCON-Day-3-IEEE_Stanford_June2016...Semiconductor Nanowire Nanophotonics and Optoelectronics

Wide range of  resonances  in simple structures

Mature processing semiconductor fabrication techniques

Doping and band engineering to realize devices  (e.g. pn junctions, transistors, Q‐wells..)

Electrical doping can be used to tune carrier density and thus the optical properties  

Mobile carrier densities and thus optical properties are low enough to impact them by gating

Beneficial Properties of Resonant Semiconductor Nanostructures

Interaction of multiple Mie resonances

Light can generate long‐lived carriers and vice versa (detectors, sources,…)

Ohmic loss can be “zero” (h < Egap)  or loss can be useful (photocarrier generation!)

Person et al., Nano Lett. 13, 1367‐1868 (2013).Y.H. Fu et al., Nature Comm. 4, 1527 (2013).

Page 9: Semiconductor Nanowire Nanophotonics and ... - IEEEsite.ieee.org/sfbanano/files/2016/07/NanoCON-Day-3-IEEE_Stanford_June2016...Semiconductor Nanowire Nanophotonics and Optoelectronics

Quantifying Light Scattering from Nanowires

Microscope for performing darkfield light scattering measurements

Linyou Cao et al., Nano Lett., 2649–2654, 10, 2010.

Iscatter

I scat

ter(

a.u.

)

Page 10: Semiconductor Nanowire Nanophotonics and ... - IEEEsite.ieee.org/sfbanano/files/2016/07/NanoCON-Day-3-IEEE_Stanford_June2016...Semiconductor Nanowire Nanophotonics and Optoelectronics

Quantification of the Color Tuning   

Scattering spectra show a redshift and multiple peaks emergence for large wiresdiameter in nm

Wavelength (nm)

Linyou Cao et al., Nano Lett., 2649–2654, 10, 2010.

Sca

ttere

d lig

ht in

tens

ity (a

.u.)

Page 11: Semiconductor Nanowire Nanophotonics and ... - IEEEsite.ieee.org/sfbanano/files/2016/07/NanoCON-Day-3-IEEE_Stanford_June2016...Semiconductor Nanowire Nanophotonics and Optoelectronics

Polarization‐dependence of  Light Scattering from SiNWs

Observed color under white light illumination can change with illumination conditions

I sca

tter(

a.u.

)

Linyou Cao et al., Nano Lett., 2649–2654, 10, 2010.

Page 12: Semiconductor Nanowire Nanophotonics and ... - IEEEsite.ieee.org/sfbanano/files/2016/07/NanoCON-Day-3-IEEE_Stanford_June2016...Semiconductor Nanowire Nanophotonics and Optoelectronics

Example: Optical properties of high index nanowires

Optical Properties of Dielectric/Semiconductor Structures

Free space photons can couple to Mie or leaky mode resonances

Intuitive resonance condition: mλeff =  2πr

TMml

For top-illumination resonances split in TM and TE modes

m: # wavelengths l : # radial maxima

Nomenclature

|H|2

Page 13: Semiconductor Nanowire Nanophotonics and ... - IEEEsite.ieee.org/sfbanano/files/2016/07/NanoCON-Day-3-IEEE_Stanford_June2016...Semiconductor Nanowire Nanophotonics and Optoelectronics

Example: Optical interconnection schemes require ultrafast, low noise photodetectors

Device Applications of Semiconductor Nanowires

Speed typically scales with a linear size of the detector

Power and noise scale typically scale with capacitance/area Small detectors are good

Example of a fabricated Ge nanowire detector structure

Challenge: Wires are small compared to the diffraction limit……

L. Cao, J.S. White, J-S Park, J.A. Schuller, B.M. Clemens, and M.L. Brongersma, Nature Mat. 8, 643-647 (2009).

Solution: Light absorption in designed semiconductor nanostructures is naturally enhanced

Page 14: Semiconductor Nanowire Nanophotonics and ... - IEEEsite.ieee.org/sfbanano/files/2016/07/NanoCON-Day-3-IEEE_Stanford_June2016...Semiconductor Nanowire Nanophotonics and Optoelectronics

Pho

tocu

rrent

(a.

u.)

Wavelength (nm)

Photocurrent shows strong enhancements at some s

Spectral Photocurrent Response of Ge nanowires

Spectral photocurrent measurements on Ge nanowires of different radius

L. Cao, J.S. White, J-S Park, J.A. Schuller, B.M. Clemens, and M.L. Brongersma, Nature Mat. 8, 643-647 (2009).

R=10 nm R=25 nm R=110 nm

Qabs = σabs/σgeom

= optical size/physical size

σgeom

σabs

Page 15: Semiconductor Nanowire Nanophotonics and ... - IEEEsite.ieee.org/sfbanano/files/2016/07/NanoCON-Day-3-IEEE_Stanford_June2016...Semiconductor Nanowire Nanophotonics and Optoelectronics

Simple optimization procedure

Engineering Better NW Photodetectors and Solar Cells

10 nm radius

25 nm radius

110 nm radius

SimulatedExperiment

Page 16: Semiconductor Nanowire Nanophotonics and ... - IEEEsite.ieee.org/sfbanano/files/2016/07/NanoCON-Day-3-IEEE_Stanford_June2016...Semiconductor Nanowire Nanophotonics and Optoelectronics

Can We Build NW Molecules and Materials ?Optical coupling of closely-spaced nanowires

Wire stateAnti-bonding

Bonding state

E = ħωState of individual nanowires States of coupled nanowires

The science of coupling nanowires

Linyou Cao, Pengyu Fan, and Mark L. Brongersma, Nano Letters 11, 1463-1468, (2011).

50nm

Page 17: Semiconductor Nanowire Nanophotonics and ... - IEEEsite.ieee.org/sfbanano/files/2016/07/NanoCON-Day-3-IEEE_Stanford_June2016...Semiconductor Nanowire Nanophotonics and Optoelectronics

A.E. Krasnok et al, Opt. Express 20, 20599 (2012)

Dielectric Yagi Uda antenna 

R.M. Bakker et al., Nano Letters 15, 2137 (2015). 

Electric and Magnetic hotspots

Dielectric Antennas of more Complex Architecture

A.M. Miroshnichenko, et al., Nano Letters 12, 6459 (2012).

Fano Resonance in dielectric oligomers  Reflective dielectric metasurfaces

S. Liu et al. Optica 1, 320 (2014).

Page 18: Semiconductor Nanowire Nanophotonics and ... - IEEEsite.ieee.org/sfbanano/files/2016/07/NanoCON-Day-3-IEEE_Stanford_June2016...Semiconductor Nanowire Nanophotonics and Optoelectronics

Lenses are everywhere

18 Photo credit: google images

iPhone’s Protruding Camera

Professional Camera Microscope Drone

Solar concentrator Optical Communication

Page 19: Semiconductor Nanowire Nanophotonics and ... - IEEEsite.ieee.org/sfbanano/files/2016/07/NanoCON-Day-3-IEEE_Stanford_June2016...Semiconductor Nanowire Nanophotonics and Optoelectronics

3 um

100nm Si

Pancharatnam-Berry phase

Optical Antennas+

“Dielectric Gradient Metasurface Optical Elements,” Dianmin Lin, Science, 298 ‐302, 345 (2014).

Page 20: Semiconductor Nanowire Nanophotonics and ... - IEEEsite.ieee.org/sfbanano/files/2016/07/NanoCON-Day-3-IEEE_Stanford_June2016...Semiconductor Nanowire Nanophotonics and Optoelectronics

DGMOE of Axicon and Generated Bessel beam

5 μm

0 50 100-50 z (μm)

x (μ

m)

0

10

-10

I (a.

u.)

1.0

0

x (μm)0 10-10

0.5

λ=550nmRCP

Experimentally measured intensity profile of Bessel beam

y

x

Semiconductors offer: low optical loss, facile integration with electronics, easy patterning, .. New opportunities to construct low-loss gradient metasurface optical elements

Experiment on DGMOE Axicon based on Si nanobeams

Page 21: Semiconductor Nanowire Nanophotonics and ... - IEEEsite.ieee.org/sfbanano/files/2016/07/NanoCON-Day-3-IEEE_Stanford_June2016...Semiconductor Nanowire Nanophotonics and Optoelectronics

Enhancing Light Absorption in a Ge Metafilm on Metal Substrate

SEM image of fabricated sample Optical reflection image A 50-nm-thick Ge film is patterned into a metafilm consisting of many subwavelength Ge beams

Patterning the Ge film at subwavelength scale enhances the broadband light absorption

Soo Jin Kim et al., Nature Communications 6, 7591 (2015).

Power flow ( = 800 nm) 

The flow light (Poynting vector) shows an antenna effect that ‘funnels’ light into the beams

Optical, Mie-like resonances in the Ge beams are at the origin of the strong light absorption

The continuous film look grey and patterned Ge film look black !

Page 22: Semiconductor Nanowire Nanophotonics and ... - IEEEsite.ieee.org/sfbanano/files/2016/07/NanoCON-Day-3-IEEE_Stanford_June2016...Semiconductor Nanowire Nanophotonics and Optoelectronics

500 550 600 650 700 750 800 850 9000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

w = 60 nm w500 600 700 800 900

0

0.2

0.4

Abs

orpt

ivity 0.6

0.8

1

Wavelength (nm)

Absorptivity ( 1 – Reflectivity)

Reflection measurement from Ge nanobeams on Au

Example: Array with 60 nm beams illuminated 800 nm, TM polarized light Strong absorption is observed at the nanobeam resonance wavelength

Individu

al beam

Soo Jin Kim et al., Nature Communications 6, 7591 (2015).

Page 23: Semiconductor Nanowire Nanophotonics and ... - IEEEsite.ieee.org/sfbanano/files/2016/07/NanoCON-Day-3-IEEE_Stanford_June2016...Semiconductor Nanowire Nanophotonics and Optoelectronics

500 550 600 650 700 750 800 850 900 9500

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

w500 550 600 650 700 750 800 850 900

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

500 600 700 800 9000

0.2

0.4

Abs

orpt

ivity 0.6

0.8

1

Wavelength (nm)

Absorptivity ( 1 – Reflectivity)

w = 60 nm

Tuning of the absorption spectrum by changing the beam width

Resonance wavelength is tunable with the beam width Reflection spectra Ge metafilms with constant duty cycle of 1:3 (beam width : period) First-order effective medium theory predicts that optical properties are independent of period

εeff = fGe εGe + (1‐fGe)εairFor TM polarization: 

30 45 60

w = 30 nmw = 45 nm

Soo Jin Kim et al., Nature Communications 6, 7591 (2015).

Page 24: Semiconductor Nanowire Nanophotonics and ... - IEEEsite.ieee.org/sfbanano/files/2016/07/NanoCON-Day-3-IEEE_Stanford_June2016...Semiconductor Nanowire Nanophotonics and Optoelectronics

Broadband Absorption Can be Achieved with Big and Small Beams

Just 120 nm beams Just 30 nm beams 120 nm and 30 nm beam

800 nm

Experiment                                                   simulation

Metafilms with wide (120 nm) and narrow (30 nm) beams were created SEM images of the subwavelength nanobeam arrays

Reflection measurements show strong absorption at resonance wavelength beams

Sample with wide and narrow beams show strong absorption at short and long

Page 25: Semiconductor Nanowire Nanophotonics and ... - IEEEsite.ieee.org/sfbanano/files/2016/07/NanoCON-Day-3-IEEE_Stanford_June2016...Semiconductor Nanowire Nanophotonics and Optoelectronics

Metafilms Offering Lateral Spectral Splitting Capabilities

Goal: Demonstrate ability to collect different s into spatially separated regionsSchematic showing the concept TEM & SEM images first batch of devices

Si

Device with narrow and wide Si beams spectrally splits light of different s into differently-sized beams

Beams of different width resonate and collect light at different wavelengths

Photocurrent from differently-sized beams can be collected separately

Metafilms offer new ways to perform spectral photon sorting at the nanoscale !

Page 26: Semiconductor Nanowire Nanophotonics and ... - IEEEsite.ieee.org/sfbanano/files/2016/07/NanoCON-Day-3-IEEE_Stanford_June2016...Semiconductor Nanowire Nanophotonics and Optoelectronics

Lateral spectral splitting of light at sub scale

Goal: Demonstrate ability to collect different s into spatially separated regions

Absorption spectra small and BIG beams Power flow at short and LONG wavelengths

Peak absorbtion (on resonance) in small  (blue curve) and BIG (red curve) beams is well over 50%  Total absorption close to unity (black dashed curve) 

Si

= 595nm                       = 625nm 

Si

Spectral splitting without color filters has application in image sensors and biosensors

Page 27: Semiconductor Nanowire Nanophotonics and ... - IEEEsite.ieee.org/sfbanano/files/2016/07/NanoCON-Day-3-IEEE_Stanford_June2016...Semiconductor Nanowire Nanophotonics and Optoelectronics

Many Optoelectronic Devices Rely on Planar Device Technologies

http://spie.org/Images/Graphics/Newsroom/Imported‐2012/004167/004167_10_fig3.jpg

www.olympusmicro.com

CMOS Image sensors (Sony)

Keisuke Nakayama H.A. Atwater et al., Appl. Phys. Lett. 93, 121904 (2008)

Can metamaterials have an impact on these technologies ??  !!