16
Selfcatalyzed IIIV nanowires and heterostructures for photovoltaic applications Anna Fontcuberta i Morral Motivation Where are we?

Self catalyzed III V nanowires heterostructures for ... · Self‐catalyzed III‐V nanowires and heterostructures for photovoltaic applications Anna Fontcuberta i Morral MotivationWhere

  • Upload
    others

  • View
    7

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Self catalyzed III V nanowires heterostructures for ... · Self‐catalyzed III‐V nanowires and heterostructures for photovoltaic applications Anna Fontcuberta i Morral MotivationWhere

Self‐catalyzed III‐V nanowires and heterostructures for photovoltaic applications

Anna Fontcuberta i Morral

MotivationWhere are we?

Page 2: Self catalyzed III V nanowires heterostructures for ... · Self‐catalyzed III‐V nanowires and heterostructures for photovoltaic applications Anna Fontcuberta i Morral MotivationWhere

MotivationOur group

Novel materials

cv

Novel properties

B. Ketterer et al, ACS Nano (2011)

cv

Photovoltaic applications

C. Colombo et al, APL (2009)

np

1 µm

* Including organic thin film solar cells

• Urgent need for renewable energy harvesting.•Nanowires in third generation solar cells:

MotivationMotivation

Nanoscale materials such as nanowires will pave 

the route

3rd generation PV:

Reduce cost

Increase efficiency

Page 3: Self catalyzed III V nanowires heterostructures for ... · Self‐catalyzed III‐V nanowires and heterostructures for photovoltaic applications Anna Fontcuberta i Morral MotivationWhere

MotivationHow to increase efficiency

Lattice mismatch does not play a role: any material combination allowed

Intrinsic light management

Nanowires

Source: A. Polman, H.A. Atwater, Nature Materials (2012)

MotivationHow to reduce costs?

1 µm

1 High quality III‐V nanowires and nanowire arrays can be obtained on cheap substrates such as silicon.

2 The devices can be peeled off and the substrate reused(Ref.  AtwaterGroup, Adv. Mater. 2009).

3 A coaxial pn junction geometry is advantageous for charge carrier collection.

4 Atomically precise  high quality functional layers on the facets of the nanowires are possible: MODEL SYSTEM

Si (111)

Page 4: Self catalyzed III V nanowires heterostructures for ... · Self‐catalyzed III‐V nanowires and heterostructures for photovoltaic applications Anna Fontcuberta i Morral MotivationWhere

MotivationOutline

1. Fabrication of  devices on silicon 

2. Design of the nanowire configuration 

Growth mechanisms dopingpassivation

npdevices

MotivationNanowire growth mechanisms

Catalyst‐free (gallium assisted) growth

Physical Review B 77, 155326 (2008); Appl. Phys. Lett. 92, 063112 (2008)

Page 5: Self catalyzed III V nanowires heterostructures for ... · Self‐catalyzed III‐V nanowires and heterostructures for photovoltaic applications Anna Fontcuberta i Morral MotivationWhere

MotivationNanowire growth mechanisms

GaAs NW

GaAsSubstrate

Nucleation at SiO2 pinholes As‐limited growth

MotivationGrowth on Si: the polarity question

(111)B/A

AsGa

Si

(111)

Assuming that growth occurs in the (111)B direction,it is often assumed that:

1. If the first layer nucleates with B polarity, then we have growth perpendicular to the substrate

2. Otherwise, growth proceeds in a 19o

Polarity B Polarity A

GaAs seed

(As terminated) (Ga terminated)

Page 6: Self catalyzed III V nanowires heterostructures for ... · Self‐catalyzed III‐V nanowires and heterostructures for photovoltaic applications Anna Fontcuberta i Morral MotivationWhere

Motivation3D twinning

Sequential seed formation  and 3D twinning at the initial stages of growth.

Nano Lett. 11, 3827 (2011)

100% yield of vertical wires

Motivation3D twinning

Nano Lett. 11, 3827 (2011)

1ML 3ML

Ga

Importance of initial stages

Nanoscale 4 1486 (2012)

Vertical growth

Multiple seed + 3D twinning:Non‐vertical growth

1

2

Page 7: Self catalyzed III V nanowires heterostructures for ... · Self‐catalyzed III‐V nanowires and heterostructures for photovoltaic applications Anna Fontcuberta i Morral MotivationWhere

MotivationNanowire growth mechanisms

Growth precursors gathered and preferentially decomposed at the metal catalyst droplet.

Saturation at the metal droplet leads to precipitation  formation of the nanowire underneath

Vapor‐Liquid‐Solid (VLS) mechanism 

Growth on the facets is equivalent to high quality 2D MBE growth.

2D growth on the facets

1 µm

MotivationRadial heterostructures

Quantum wells Quantum dots

AlAs/GaAs

MQWs

GaAs S1

GaAs S2

(110)

(011)GaAs 

Core

[1‐11]

AB

(10‐1)

10 nmMQWs

A

GaAs Core

[1‐11]

GaAs

S1

GaAs

S2MQWs

B

Small 4 899‐903 (2008)J. Mater. Chem. (2009) 

E. Uccelli et al, ACS Nano(2010)

Page 8: Self catalyzed III V nanowires heterostructures for ... · Self‐catalyzed III‐V nanowires and heterostructures for photovoltaic applications Anna Fontcuberta i Morral MotivationWhere

Small 4 899‐903 (2008)J. Mater. Chem. (2009) 

MotivationOptical properties

MotivationReduction of the surface recombination

Appl. Phys. Lett. , 97, 201907 (2010)

AlGaAs(/GaAs)

GaAs

Page 9: Self catalyzed III V nanowires heterostructures for ... · Self‐catalyzed III‐V nanowires and heterostructures for photovoltaic applications Anna Fontcuberta i Morral MotivationWhere

MotivationReduction of the surface recombination

Appl. Phys. Lett. , 97, 201907 (2010)

AlGaAs(/GaAs)

GaAs

Unpassivated wires:

Existence of depletion regionTrap density: 1012cm‐2

Capped wires:

No depletion regionRecombination at the interfaceVelocity: < 2.9x103 cm/s

MotivationDoping mechanisms

• Si is soluble in Ga• The doping concentration is 

governed by the Si flux and the nw growth rate. 

• Si incroporates as a p‐typedopant. 

Incorporation through the Ga droplet

SiSi

Nano Lett. 10, 1734 (2010)

Doped shells, 

n or p type, can be achieved.

2D growth on the facets

Appl. Phys. Lett. 94, 173108 (2009)

(Si substituting Ga: n‐type, Si substituting As: p‐type)

Page 10: Self catalyzed III V nanowires heterostructures for ... · Self‐catalyzed III‐V nanowires and heterostructures for photovoltaic applications Anna Fontcuberta i Morral MotivationWhere

MotivationRadial heterostructures and doping

p i n

Nw core Intrinsic middle shell Doped external shell

Ga rich conditions

Si incorporated in      As site

p‐doped core

As rich conditions

Intrinsic shell

Si cell OFF

As rich conditions

n‐doped shell

Si incorporated in     Ga site

Nano Lett. 10, 1734 (2010)

MotivationSolar cell results

Open circuit voltage = 0.6V

Short circuit current = 10mA/cm2

Fill factor = 65%

Efficiency = 4.5%

C.Colombo et al.Appl. Phys. Lett. 94, 173108 (2009)

n

p

Page 11: Self catalyzed III V nanowires heterostructures for ... · Self‐catalyzed III‐V nanowires and heterostructures for photovoltaic applications Anna Fontcuberta i Morral MotivationWhere

MotivationSpatially resolved measurements

A

Photocurrent comes only from p‐i‐n junction

Photocurrent homogeneous along nanowire

MotivationTowards nanowire based photovoltaics

I

1) Contacting scheme on arrays

25 mm2 Si arraysη~10%FF~0.8

A. Dalmau et al, submitted (2012)

2) III‐V arrays on silicon

What is the ideal inter‐wire distance?

Page 12: Self catalyzed III V nanowires heterostructures for ... · Self‐catalyzed III‐V nanowires and heterostructures for photovoltaic applications Anna Fontcuberta i Morral MotivationWhere

MotivationLight absorption in standing nanowires

2µm

Diameter50-400nm

GaAs

Interaction between a planar wave and a standing nanowire:

(Olivier Demichel, Martin Heiss, in preparation)

MotivationLight absorption in standing nanowires

2µm

Diameter50-400nm

GaAs

Interaction between a planar wave and a standing nanowire:

(Olivier Demichel, Martin Heiss, in preparation)

Page 13: Self catalyzed III V nanowires heterostructures for ... · Self‐catalyzed III‐V nanowires and heterostructures for photovoltaic applications Anna Fontcuberta i Morral MotivationWhere

MotivationAbsorption cross‐section vs optimal pitch

0 250 500 750 1000 1250 1500 1750 2000

1013

1014

1015

P= 1800 nm P= 1400 nm P= 1200 nm P= 1000 nm P= 840 nm P= 680 nm P= 520 nm P= 440 nm P= 360 nm P= 280 nm P= 200 nm

Car

rier

gene

ratio

n ra

te m

-1s-1

Nanowire axis z position (nm)

150 nm diameter AM1.5G

P

MotivationAbsorption cross‐section vs optimal pitch

90 90 120 150 180 210 240 270 300 390 450 510 600 750 900 1050

150 nm diameter AM1.5G

P

Page 14: Self catalyzed III V nanowires heterostructures for ... · Self‐catalyzed III‐V nanowires and heterostructures for photovoltaic applications Anna Fontcuberta i Morral MotivationWhere

0 200 400 600 800 1000 12000.0

0.2

0.4

0.6

0.8

1.0

Cover fractionAbs

orpt

ion

Effi

cien

cy (

tota

l)

Nanowire pitch (nm)

Absorption

MotivationOptimal pitch150 nm diameter AM1.5G

MotivationSingle standing nanowire device?

n‐type

undoped

p‐type

n

p?

(in cooperation with Sunflake and Niels Bohr Institute, Copenhagen)

Page 15: Self catalyzed III V nanowires heterostructures for ... · Self‐catalyzed III‐V nanowires and heterostructures for photovoltaic applications Anna Fontcuberta i Morral MotivationWhere

MotivationSingle standing nanowire device?

1 µm

MotivationConclusions

1. Versatility of Ga‐catalyzed GaAs nanowires obtained by MBE.

2. High quality radial heterostructures can be obtained.

3. Control on the type of doping enables the fabrication of pin junctions for solar cell applications.

4. Nanowire arrays act as metamaterials: the optical properties depend on the nw arrangement. This will be used for further optimization of the efficiency‐to‐cost ratio.

Page 16: Self catalyzed III V nanowires heterostructures for ... · Self‐catalyzed III‐V nanowires and heterostructures for photovoltaic applications Anna Fontcuberta i Morral MotivationWhere

MotivationAcknowledgements

Cooperations: J. Arbiol (Institute of Materials Barcelona), P. Krogstrup (Niels Bohr Institut)

M. Heiβ E. UccelliB. Ketterer

A. DalmauO. Demichel E. Russo

C. Colombo

S. Conesa-Boj

D. RüfferY. Fontana A. Casadei

G.Tütüncuoglu F. Matteini

L. Zweifel