21
Seillac, 31 May 20 06 1 Spin-Orbital Entanglement and Violation of the Kanamori- Goodenough Rules Andrzej M. Oleś Max-Planck-Institut für Festkörperforschung, Stuttgart M. Smoluchowski Institute of Physics, Jagellonian University, Kraków Self-organized Strongly Correlated Electron Systems Seillac, 31 May 2006 Peter Horsch, Max-Planck-Institut FKF, Stuttgart Giniyat Khaliullin, Max-Planck-Institut FKF, Stuttgart Louis-Felix Feiner, Philips Research Laboratories, Eindhoven Institute of oo

Seillac, 31 May 20061 Spin-Orbital Entanglement and Violation of the Kanamori-Goodenough Rules Andrzej M. Oleś Max-Planck-Institut für Festkörperforschung,

Embed Size (px)

Citation preview

Seillac, 31 May 2006 1

Spin-Orbital Entanglement and Violation of the Kanamori-Goodenough Rules

Andrzej M. Oleś

Max-Planck-Institut für Festkörperforschung, Stuttgart M. Smoluchowski Institute of Physics, Jagellonian University, Kraków

Self-organized Strongly Correlated Electron SystemsSeillac, 31 May 2006

•Peter Horsch, Max-Planck-Institut FKF, Stuttgart

•Giniyat Khaliullin, Max-Planck-Institut FKF, Stuttgart

•Louis-Felix Feiner, Philips Research Laboratories, Eindhoven

Institute of Theoretical Physics, Utrecht University

oo

Seillac, 31 May 2006 2

Outline

• Spin-orbital superexchange models• Goodenough-Kanamori rules in transition metal oxides

• Example: magnetic and optical properties of LaMnO3

• Violation of Goodenough-Kanamori rules in t2g systems due to spin-orbital entanglement

• Continuous orbital transition

• Spin-orbital fluctuations in LaVO3

Seillac, 31 May 2006 3

Orbital physics in transition metal oxides

Current status:

Focus on Orbital Physics

New Journal of Physics

2004-2005

http://www.njp.org

LaVO3

t2g orbitals

LaMnO3

eg orbitals

C-AF A-AFGoodenough-Kanamori rules:

AO order supports FM spin order

FO order supports AF spin order

Seillac, 31 May 2006 4

Electron interactions and multiplet structure

[AMO and G. Stollhoff, PRB 29, 314 (1984)]

)(

2)(

,

,,25

int

iiiiiiii

iH

iiiH

iiiH

iii

ddddddddJ

SSJnnJUnnUH

Two parameters: U – intraorbital Coulomb interaction, JH – Hund’s exchange

Anisotropy in Hund’s exchange:

Seillac, 31 May 2006 5[AMO et al., PRB 72, 214431 (2005)]

Multiplet structure of transition metal ions

Follows from three Racah parameters (Griffith, 1971):

single parameter: η=JH /U

Seillac, 31 May 2006 6

orbji

jijijiji

orbn HKSSJJHijHJH

)()()(1)(

Magnetic and optical properties of Mott insulators (t<<U)

Spin-orbital superexchange model for a perovskite, γ=a,b,c (J=4t2/U):

contains orbital operators:

By averaging over orbital operators one finds effective spin model:

c abij ij

jiabjics SSJSSJH

Here spin and orbital operators are disentangled.

Superexchange determines partial optical sum rule for individual band n:

0

)(2

20)()( )(

2)(2

d

e

aijHK nnn

[G. Khaliullin, P. Horsch, and AMO, PRB 70, 195103 (2004)]

)()( ijij KandJ

)( ijJJ

Seillac, 31 May 2006 7

Exchange constants and optical spectral weights in LaMnO3

Jc and Jab for varying orbital angle spectral weights for increasing T

[ AMO, G. Khaliullin, P. Horsch, and L.F. Feiner, PRB 72, 214431 (2005) ]

AF

FM

S=2 spins and eg orbitals are disentangled (MF can be used)

A-AF phase

xz

xz

B

A

|sin|cos|

,|sin|cos|

22

22

orbital order:

exp: F. Moussa et al., PRB 54, 15149 (1996) exp: N.N. Kovaleva et al., PRL 93, 147204 (2004)

Seillac, 31 May 2006 8

Spin waves in La1-x SrxMnO3 and in bilayer manganites

Isotropic spin waves in La1-xSrxMnO3

[ AMO and L.F. Feiner, PRB 65, 052414 (2002); 67, 092407 (2003) ]

Double exchange and superexchange explain Jab and Jc

FM phase

Anisotropic spin waves in La2-2xSr1+2xMn2O7

[ T.G. Perring et al., PRL 87, 217201 (2001) ] [ T.G. Perring et al., PRB 77, 711 (1996) ]

2Dqq

x=0.30 x=0.35

Seillac, 31 May 2006 9

Charge transfer insulator: KCuF3

Jc and Jab for varying orbital angle

Valid if S=1/2 spins and eg orbitals disentangle (MF can be used)

spectral weights for increasing T

Parameters: J =33 meV, η =0.12, R=2U/( 2Δ+Up ) =1.2

One of the best examples of a 1D AF Heisenberg model

optical properties would help to fix the parameters

[ AMO et al., PRB 72, 214431 (2005) ]

Seillac, 31 May 2006 10

Spin-orbital models with entanglement

• d1 model – titanates (LaTiO3, YTiO3), S=1/2, t2g orbitals;

• d2 model – vanadates (LaVO3, YVO3), S=1, t2g orbitals, (xy)1(yz/zx)1 configuration;

• d9 model – KCuF3, S=1/2, eg orbitals.

Spin-orbital models were derived in:

d1 model [G. Khaliullin and S. Maekawa, PRL 85, 3950 (2000)]

d2 model [G. Khaliullin, P. Horsch, and AMO, PRL 86, 3879 (2001)]

d9 model [L.F. Feiner, AMO, and J. Zaanen, PRL 78, 2799 (1997)]

Seillac, 31 May 2006 11

Orbital degrees of freedom

In t2g systems (d1,d2) two flavors are active, e.g. yz and zx along c axis – described by pseudospin operators:

},,{ ziiii TTTT

At finite η the orbital operators contain:zj

zijijiji TTTTTTTT )(

21

Pseudospin operators for eg systems (d9) with 3z2-r2 and x2-y2:zi

ci

xi

zi

bai TT

21)(

41),( ,)3(

GdFeO3-type distortions induce orbital interactions leading to FO order:

ij

zj

ziorb TTVH

)()( j

ijiorb TTVH

Jahn-Teller ligand distortions favor AO order:

eg orbitals t2g orbitals.,,21

21

21 z

izi

yi

yi

xi

xi TTT

Seillac, 31 May 2006 12

Spin-orbital superexchange at JH=0

=> chain along c axis

=> 2D model in ab planes

Seillac, 31 May 2006 13

Intersite spin, orbital and spin-orbital correlations

Spin correlations:

Orbital and spin-orbital correlations for t2g (d1 and d2) systems:

,)(ji

tij TTT

2)(2STTSSTTSSC jijijiji

tij

Orbital and spin-orbital correlations for eg (d9) model:

,)()(

21)(

jijieij TTTTT

.)()( )()(

21)( e

ijijjijijieij TSTTTTSSC

2)2( SSSS jiij

• Definitions follow from the structure of the spin-orbital SE at JH0;

• Method: exact diagonalization of four-site systems.

Seillac, 31 May 2006 14

Intersite correlations for increasing Hund’s exchange η

V=0 V=J

Sij – spin correlations

Tij – orbital correlations

Cij – spin-orbital correlations

[AMO, P. Horsch, L.F. Feiner, G. Khaliullin, PRL 96, 147205 (2006)]

d1

d2

d9

• all correlations identical in d1 at η=0: Sij =Tij =Cij = 0.25 [SU(4)];

• regions of Sij<0 and Tij<0 both at V=0 and V=J in d1(2) models;

• Cij<0 in low-spin (S=0) states;

• different signs of Sij and Tij in d9

GK rules violated in d1, d2

Seillac, 31 May 2006 15[AMO, P. Horsch, L.F. Feiner, G. Khaliullin, PRL 96, 147205 (2006)]

V=0 V=J

Spin exchange constants Jij for increasing Hund’s exchange η

d1

d2

d9

In the shadded areas

Jij is negative FM

Sij is negative AF

for d1 and d2 t2g models

=> GK rules are violated

In d9 eg model

spin correlations Sij

follow the sign of Jij

=> GK rules are obeyed

)(ijij JJ

Seillac, 31 May 2006 16

Dynamical exchange constants due to entanglement

Fluctuations of Jij are measured by

2122)( ijij JJJ Fluctuations dominate the behavior of t2g systems at η=0, V=0:

1,0 JJ ij d1 model:

d2 model: 247.0,04.0 JJ ij

[ SU(4) symmetry ]

Fluctuations large but do not dominate for eg system at η=0, V=0:

d9 model: 50.0,56.0 JJ ij ,i.e., ijJJ

for a bond <ij> fluctuations: ( S=0 / T=1 ) ( S=1 / T=0 )

Seillac, 31 May 2006 17

Quantum corrections in spin-orbital models

[AMO, P. Horsch, L.F. Feiner, G. Khaliullin, PRL 96, 147205 (2006)]

Large corrections beyond MF due to spin-orbital entanglement

Seillac, 31 May 2006 18

Continuous orbital phase transition in d2 model

zj

zijijiji TTTTTTTT )(

21

with full t2g orbital dynamics:V=J

continuous transition

0,02,2 zz TTTT

when only Ising term:zj

ziji TTTT

sharp transition0,12,2 zz TTTT

orbital transitions are continuous

S=0 S=4

quantum numbers T and Tz nonconserved

T and Tz conserved

Seillac, 31 May 2006 19

Optical spectral weights for the C-AF phase of LaVO3

mean-field approach orbital and spin-orbital dynamics

[G. Khaliullin, P. Horsch, and AMO, PRB 70, 195103 (2004)]

spin-orbital fluctuations important at T>0!

orbital disorder unlike in LaMnO3Data: S. Miyasaka et al.,

[ JPSJ 71, 2086 (2002) ]

Seillac, 31 May 2006 20

Conclusions1. Spins and orbitals disentangle in eg systems ( LaMnO3 )

[AMO, G. Khaliullin, P.Horsch, and L.F. Feiner, PRB 72, 214431 (2005)]

2. In systems with t2g degrees of freedom

3. Dynamic spin and orbital fluctuations in t2g systems: spin triplet

orbital singlet

spin singlet

orbital triplet

[AMO, P. Horsch, L.F. Feiner, and G. Khaliullin, PRL 96, 147205 (2006)]

4. Joint spin-orbital fluctuations in LaVO3

magnetic and optical properties [G. Khaliullin, P. Horsch, and AMO, PRL 86, 3879 (2001); PRB 70, 195103 (2004)]

spins and orbitals are entangled

static Goodenough-Kanamori rules are violated

Any other experimental manifestations of entanglement?

Seillac, 31 May 2006 21

Thank you

for your attention!