40
TEMA: Seguridad de redes Inalámbricas WPA y WPA2. CURSO: introducción a la ingeniería de sistemas Profesor: Ing. Daniel Urrutia Estudiante : Gutiérrez Sánchez Christian Julian ESPECIALIDAD: Computación e Informática CICLO: I Semestre Grupo: 2

Seguridad de redes Inalámbricas

Embed Size (px)

Citation preview

Page 1: Seguridad de redes Inalámbricas

TEMA: Seguridad de redes Inalámbricas

WPA y WPA2.

CURSO: introducción a la ingeniería de sistemas

Profesor: Ing. Daniel Urrutia

Estudiante: Gutiérrez Sánchez Christian Julian

ESPECIALIDAD: Computación e Informática

CICLO: I Semestre

Grupo: 2

TURNO: Mañana

Arequipa - Perú

Page 2: Seguridad de redes Inalámbricas

Seguridad de redes Inalámbricas

Son muchos los motivos para preocuparnos por la seguridad de una red inalámbrica. Por ejemplo, queremos evitar compartir nuestro ancho de banda públicamente. A nadie con algo de experiencia se le escapa que las redes inalámbricas utilizan un medio inseguro para sus comunicaciones y esto tiene sus repercusiones en la seguridad. Tendremos situaciones en las que precisamente queramos compartir públicamente el acceso a través de la red inalámbrica, pero también tendremos que poder configurar una red inalámbrica para limitar el acceso en función de unas credenciales. También tenemos que tener en cuanta que las tramas circulan de forma pública y en consecuencia cualquiera que estuviera en el espacio cubierto por la red, y con unos medios simples, podría capturar la tramas y ver el tráfico de la red. Aunque esto pueda sonar a película de Hollywood, está más cerca de lo que podríamos pensar.

Para resolver los problemas de seguridad que presenta una red inalámbrica tendremos que poder, por un lado, garantizar el acceso mediante algún tipo de credencial a la red y por otro garantizar la privacidad de las comunicaciones aunque se hagan a través de un medio inseguro.

Una empresa no debería utilizar redes inalámbricas para sus comunicaciones si tiene información valiosa en su red que desea mantener segura y no ha tomado las medidas de protección adecuadas. Cuando utilizamos una página web para enviar un número de tarjeta de crédito deberemos, hacerlo siempre utilizando una web segura porque eso garantiza que se transmite cifrada. Pues en una red inalámbrica tendría que hacerse de una forma parecida para toda la información que circula, para que proporcione al menos la misma seguridad que un cable. Pensemos que en una red inalámbrica abierta se podría llegar a acceder a los recursos de red compartidos.

WEP

WEP (Wired Equivalent Privacy), que viene a significar ?Privacidad Equivalente a Cable?, es un sistema que forma parte del estándar 802.11 desde sus orígenes. Es el sistema más simple de cifrado y lo admiten,creo, la totalidad de los adaptadores inalámbricos. El cifrado WEP se realiza en la capa MAC del adaptador de red inalámbrico o en el punto de acceso, utilizando claves compartidas de 64 o 128 bits. Cada clave consta de dos partes, una de las cuales la tiene que configurar el usuario/administrador en cada uno de los adaptadores o puntos de acceso de la red. La otra parte se genera automáticamente y se denomina vector de inicialización (IV). El objetivo del vector de inicialización es obtener claves distintas para cada trama. Ahora vamos a ver una descripción del funcionamiento del cifrado WEP.

Page 3: Seguridad de redes Inalámbricas

Cuando tenemos activo el cifrado WEP en cualquier dispositivo inalámbrico, bien sea una adaptador de red o un punto de acceso, estamos forzando que el emisor cifre los datos y el CRC de la trama 802.11. El receptor recoge y la descifra. Para no incurrir en errores de concepto, esto es sólo aplicable a comunicaciones estaciones 802.11, cuando el punto de acceso recoge una trama y la envía a través del cable, la envía sin cifrar. El cifrado se lleva a cabo partiendo de la clave compartida entre dispositivos que, como indicamos con anterioridad, previamente hemos tenido que configurar en cada una de las estaciones. En realidad un sistema WEP almacena cuatro contraseñas y mediante un índice indicamos cual de ellas vamos a utilizar en las comunicaciones.

El proceso de cifrado WEP agrega un vector de inicialización (IV) aleatorio de 24 bits concatenándolo con un la clave compartida para generar la llave de cifrado. Observamos como al configurar WEP tenemos que introducir un valor de 40 bits (cinco dígitos hexadecimales), que junto con los 24 bits del IV obtenemos la clave de 64 bits. El vector de inicialización podría cambiar en cada trama trasmitida. WEP usa la llave de cifrado para generar la salida de datos que serán, los datos cifrados más 32 bits para la comprobación de la integridad, denominada ICV (integrity check value). El valor ICV se utiliza en la estación receptora donde se recalcula y se compara con el del emisor para comprobar si ha habido alguna modificación y tomar una decisión, que puede ser rechazar el paquete.

Para cifrar los datos WEP utiliza el algoritmo RC4, que básicamente consiste en generar un flujo de bits a partir de la clave generada, que utiliza como semilla, y realizar una operación XOR entre este flujo de bits y los datos que tiene que cifrar. El valor IV garantiza que el flujo de bits no sea siempre el mismo. WEP incluye el IV en la parte no cifrada de la trama, lo que aumenta la inseguridad. La estación receptora utiliza este IV con la clave compartida para descifrar la parte cifrada de la trama.

Lo más habitual es utilizar IV diferentes para transmitir cada trama aunque esto no es un requisito de 801.11. El cambio del valor IV mejora la seguridad del cifrado WEP dificultando que se pueda averiguar la contraseña capturando tramas, aunque a pesar de todo sigue siendo inseguro.

Debilidades de WEP

Las debilidades de WEP se basan en que, por un lado, las claves permanecen estáticas y por otro lado los 24 bits de IV son insuficientes y se transmiten sin cifrar. Aunque el algoritmo RC4 no esté considerado de los más seguros, en este caso la debilidad de WEP no es culpa de RC4, sino de su propio diseño.

Si tenemos un vector de inicialización de 24 bits tendremos 2^24 posibles IV distintos y no es difícil encontrar distintos paquetes generados con el mismo IV. Si la red tiene bastante tráfico estas repeticiones se dan con cierta frecuencia. Un atacante puede recopilar suficientes paquetes similares cifrados con el mismo IV y utilizarlos para determinar el valor del flujo de bits y de la clave compartida. El

Page 4: Seguridad de redes Inalámbricas

valor del IV se transmite sin cifrar por lo que es público. Esto puede parecer muy complicado, pero hay programas que lo hacen automáticamente y en horas o días averiguan la contraseña compartida. No olvidemos que aunque la red tenga poco tráfico el atacante puede generarlo mediante ciertas aplicaciones.

Una vez que alguien ha conseguido descifrar la contraseña WEP tiene el mismo acceso a la red que si pudiera conectarse a ella mediante cable. Si la red está configurada con un servidor DHCP, entonces el acceso es inmediato, y si no tenemos servidor DHCP pues al atacante le puede llevar cinco minutos más.

Vista la debilidad real de WEP lo ideal es que se utilizaran claves WEP dinámicas, que cambiaran cada cierto tiempo lo que haría materialmente imposible utilizar este sistema para asaltar una red inalámbrica, pero 802.11 no establece ningún mecanismo que admita el intercambio de claves entre estaciones. En una red puede ser tedioso, simplemente inviable, ir estación por estación cambiando la contraseña y en consecuencia es habitual que no se modifiquen, lo que facilita su descifrado.

Algunos adaptadores sólo admiten cifrado WEP por lo que a pesar de su inseguridad puede ser mejor que nada. Al menos evitaremos conexiones en abierto incluso evitaremos conexiones y desconexiones a la red si hay varias redes inalámbricas disponibles.

IEEE 802.11i

Hemos visto que con WEP utilizamos claves estáticas que son relativamente fáciles de averiguar. La solución al problema que plantea WEP consiste en establecer un sistema dinámico de claves sin necesidad de intervención del administrador y con este propósito se establece el estándar IEEE 802.11i.

El estándar IEEE 802.11i incluye protocolos de gestión de claves y mejoras de cifrado y autenticación con IEEE 802.1X.

TKIP

TKIP (Temporary Key Integrity Protocol) es un protocolo de gestión de claves dinámicas admitido por cualquier adaptador que permite utilizar una clave distinta para cada paquete transmitido. La clave se construye a partir de la clave base, la dirección MAC de la estación emisora y del número de serie del paquete como vector de inicialización.

Cada paquete que se transmite utilizando TKIP incluye un número de serie único de 48 bits que se incrementa en cada nueva transmisión para asegurar que todas las claves son distintas. Esto evita "ataques de colisión" que se basan en paquetes cifrados con la misma clave.

Page 5: Seguridad de redes Inalámbricas

Por otro lado al utilizar el número de serie del paquete como vector de inicialización (IV), también evitamos IV duplicados. Además, si se inyectara un paquete con una contraseña temporal que se hubiese podido detectar, el paquetes estaría fuera de secuencia y sería descartado.

En cuanto a la clave base, se genera a partir del identificador de asociación, un valor que crea el punto de acceso cada vez que se asocia una estación. Además del identificador de asociación, para generar la clave base se utilizan las direcciones MAC de la estación y del punto de acceso, la clave de sesión y un valor aleatorio.

Como veremos más adelante, la clave de sesión puede ser estática y compartida (PSK) por toda la red o bien, mediante 802.1X, transmitirla por un canal seguro.

CCMP

CCMP (Counter Mode with Cipher Block Chaining Message Authentication Code Protocol) es un nuevo protocolo que utiliza AES como algoritmo criptográfico y proporciona integridad y confidencialidad.

CCMP se basa en el modo CCM del algoritmo de cifrado AES y utiliza llaves de 128 bits con vectores de inicialización de 48 bits.

CCMP consta del algoritmo de privacidad que es el "Counter Mode" (CM) y del algoritmo de integridad y autenticidad que es el "Cipher Block Chaining Message Authentication Code" (CBC-MAC).

CCMP es obligatorio sobre RSN (Robust Secure Network).

WRAP

Existe un sistema de cifrado opcional denominado WRAP (Wireless Robust Authentication Protocol) que puede sustituir a CCMP.

WPA

WPA es la abreviatura de Wifi Protect Access, y consiste en un mecanismo de control de acceso a una red inalámbrica, pensado con la idea de eliminar las debilidades de WEP. También se le conoce con el nombre de TSN (Transition Security Network).

Page 6: Seguridad de redes Inalámbricas

WPA utiliza TKIP TKIP (Temporal Key Integrity Protocol) para la gestión de las claves dinámicas mejorando notablemente el cifrado de datos, incluyendo el vector de inicialización. En general WPA es TKIP con 8021X. Por lo demás WPA funciona de una manera parecida a WEP pero utilizando claves dinámicas, utiliza el algoritmo RC4 para generar un flujo de bits que se utilizan para cifrar con XOR y su vector de inicialización (IV) es de 48 bits. La modificación dinámica de claves puede hacer imposible utilizar el mismo sistema que con WEP para abrir una red inalámbrica con seguridad WPA.

Además WPA puede admitir diferentes sistemas de control de acceso incluyendo la validación de usuario-contraseña, certificado digital u otro sistema o simplemente utilizar una contraseña compartida para identificarse.

WPA-PSK

Es el sistema más simple de control de acceso tras WEP, a efectos prácticos tiene la misma dificultad de configuración que WEP, una clave común compartida, sin embargo, la gestión dinámica de claves aumenta notoriamente su nivel de seguridad. PSK se corresponde con las iniciales de PreShared Key y viene a significar clave compartida previamente, es decir, a efectos del cliente basa su seguridad en una contraseña compartida.

WPA-PSK usa una clave de acceso de una longitud entre 8 y 63 caracteres, que es la clave compartida. Al igual que ocurría con WEP, esta clave hay que introducirla en cada una de las estaciones y puntos de acceso de la red inalámbrica. Cualquier estación que se identifique con esta contraseña, tiene acceso a la red.

Las características de WPA-PSK lo definen como el sistema, actualmente, más adecuado para redes de pequeñas oficinas o domésticas, la configuración es muy simple, la seguridad es aceptable y no necesita ningún componente adicional.

Debilidades de WPA-PSK

La principal debilidad de WPA-PSK es la clave compartida entre estaciones. Cuando un sistema basa su seguridad en un contraseña siempre es susceptible de sufrir un ataque de fuera bruta, es decir ir comprobando contraseñas, aunque dada la longitud de la contraseña y si está bien elegida no debería plantear mayores problemas. Debemos pensar que hay un momento de debilidad cuando la estación establece el diálogo de autenticación. Este diálogo va cifrado con las claves compartidas, y si se ?entienden? entonces se garantiza el acceso y se inicia el uso de claves dinámicas. La debilidad consiste en que conocemos el contenido del paquete de autenticación y conocemos su valor cifrado. Ahora lo que queda es, mediante un proceso de ataque de diccionario o de fuerza bruta, intentar determinar la contraseña.

Page 7: Seguridad de redes Inalámbricas

WPA empresarial

En redes corporativas resultan imprescindibles otros mecanismos de control de acceso más versátiles y fáciles de mantener como por ejemplo los usuario de un sistema identificados con nombre/contraseña o la posesión de un certificado digital. Evidentemente el hardware de un punto de acceso no tiene la capacidad para almacenar y procesar toda esta información por lo que es necesario recurrir a otros elementos de la red cableada para que comprueben unas credenciales. Ahora bien, parece complicado que un cliente se pueda validar ante un componente de la red por cable si todavía no tenemos acceso a la red, parece el problema del huevo y la gallina. En este punto es donde entra en juego el IEEE 802.1X, que describimos a continuación, para permitir el tráfico de validación entre un cliente y una máquina de la de local. Una vez que se ha validado a un cliente es cuando WPA inicia TKIP para utilizar claves dinámicas.

Los clientes WPA tienen que estar configurados para utilizar un sistema concreto de validación que es completamente independiente del punto de acceso. Los sistemas de validación WPA pueden ser, entre otros, EAP-TLS, PEAP, EAP-TTLS que describimos más adelante.

802.1X

Debido a las carencias de 802.11 ha sido necesario establecer una nueva normativa estándar que permita tanto la autenticación como el intercambio dinámico de contraseñas, de forma fácil y segura.

El estándar IEEE 802.1X proporciona un sistema de control de dispositivos de red, de admisión, de tráfico y gestión de claves para dispositivos tos en una red inalámbrica. 802.1X se basa en puertos, para cada cliente dispone de un puerto que utiliza para establecer una conexión punto a punto. Mientras el cliente no se ha validado este puerto permanece cerrado. Cada una de estas funcionalidades se puede utilizar por separado, permitiendo a WPA, por ejemplo, utilizar 802.1X para aceptar a una estación cliente.

Para el control de admisión 802.1X utiliza un protocolo de autenticación denominado EAP y para el cifado de datos CCMP y esto es lo que se conoce como RSN (Robust Secure Network) o también WPA2. No todo el hardware admite CCMP.

Page 8: Seguridad de redes Inalámbricas

EAP

Hemos visto que 802.1X utiliza un protocolo de autenticación llamado EAP (Extensible Authentication Protocol) que admite distintos métodos de autenticación como certificados, tarjetas inteligentes, ntlm, Kerberos, ldap, etc. En realidad EAP actúa como intermediario entre un solicitante y un motor de validación permitiendo la comunicación entre ambos.

El proceso de validación está conformado por tres elementos, un solicitante que quiere ser validado mediante unas credenciales, un punto de acceso y un sistema de validación situado en la parte cableada de la red. Para conectarse a la red, el solicitante se identifica mediante una credenciales que pueden ser un certificado digital, una pareja nombre/usuario u otros datos. Junto con las credenciales, el cliente solicitante tiene que añadir también qué sistema de validación tiene que utilizar. Evidentemente no podemos pretender que el punto de acceso disponga del sistema de validación. Por ejemplo, si queremos utilizar como credenciales los usuarios de un sistema, será el punto de acceso el que tendrá que preguntar al sistema si las credenciales son correctas. En general EAP actúa de esta forma, recibe una solicitud de validación y la remite a otro sistema que sepa como resolverla y que formará parte de la red cableada. De esta forma vemos como el sistema EAP permite un cierto tráfico de datos con la red local para permitir la validación de un solicitante. El punto de acceso rechaza todas las tramas que no estén validadas, que provengan de un cliente que no se he identificado, salvo aquéllas que sean una solicitud de validación. Estos paquetes EAP que circulan por la red local se denominan EAPOL (EAP over LAN). Una vez validado, el punto de acceso admite todo el tráfico del cliente.

El sistema de autenticación puede ser un servidor RADIUS situado en la red local.

Los pasos que sigue el sistema de autenticación 802.1X son:

El cliente envía un mensaje de inicio EAP que inicia un intercambio de mensajes para permitir autenticar al cliente.

El punto de acceso responde con un mensaje de solicitud de identidad EAP para solicitar las credenciales del cliente.

El cliente envía un paquete respuesta EAP que contiene las credenciales de validación y que es remitido al servidor de validación en la red local, ajeno al punto de acceso.

El servidor de validación analiza las credenciales y el sistema de validación solicitado y determina si autoriza o no el acceso. En este punto tendrán que coincidir las configuraciones del cliente y del servidor, las credenciales tienen que coincidir con el tipo de datos que espera el servidor.

Page 9: Seguridad de redes Inalámbricas

El servidor pude aceptar o rechazar la validación y le envía la respuesta al punto de acceso.

El punto de acceso devuelve un paquete EAP de acceso o de rechazo al cliente.

Si el servidor de autenticación acepta al cliente, el punto de acceso modifica el estado del puerto de ese cliente como autorizado para permitir las comunicaciones.

De lo que hemos visto, el protocolo 802.1X tiene un mecanismo de autenticación independiente del sistema de cifrado. Si el servidor de validación 802.1X está configurado adecuadamente, se puede utilizar para gestionar el intercambio dinámico de claves, e incluir la clave de sesión con el mensaje de aceptación. El punto de acceso utiliza las claves de sesión para construir, firmar y cifrar el mensaje de clave EAP que se manda tras el mensaje de aceptación. El cliente puede utilizar el contenido del mensaje de clave para definir las claves de cifrado aplicables. En los casos prácticos de aplicación del protocolo 802.1X, el cliente puede cambiar automáticamente las claves de cifrado con la frecuencia necesaria para evitar que haya tiempo suficiente como para poder averiguarla.

Existen múltiples tipos de EAP, algunos son estándares y otros son soluciones propietarias de empresas. Entre los tipos de EAP podemos citar:

EAP-TLS

Es un sistema de autenticación fuerte basado en certificados digitales, tanto del cliente como del servidor, es decir, requiere una configuración PKI (Public Key Infraestructure) en ambos extremos. TLS (transport Layer Security) es el nuevo estándar que sustituye a SSL (Secure Socket Layer).

EAP-TTLS

El sistema de autenticación se basa en una identificación de un usuario y contraseña que se transmiten cifrados mediante TLS, para evitar su transmisión en texto limpio. Es decir se crea un túnel mediante TLS para transmitir el nombre de usuario y la contraseña. A diferencia de EAP-TLS sólo requiere un certificado de servidor.

PEAP

El significado de PEAP se corresponde con Protected EAP y consiste en un mecanismo de validación similar a EAP-TTLS, basado en usuario y contraseña también protegidos.

Page 10: Seguridad de redes Inalámbricas

La capa MAC

El estándar 802.11 define en su capa ce control de acceso al medio (MAC, médium access control) una serie de funciones para realizar las operaciones propias de las redes inalámbricas. La capa MAC se encarga, en general, de gestionar y mantener las comunicaciones entre estaciones 801.11, bien sean puntos de acceso a adaptadores de red. La capa MAC tiene que coordinar el acceso a un canal de radio compartido y utilizar su capa Física (PHY) 802.11b o 802.11g para detectar la portadora y transmisión y recepción de tramas.

Un adaptador de red cliente tiene que obtener primero el acceso al medio antes de poder transmitir tramas. El medio es una canal de radio compartido. El estándar 802.11 define dos formas de acceso al medio, función de coordinación distribuida (DCF) y función de coordinación de punto (PCF) que no vamos a tratar.

DCF es obligatorio en todas las estaciones inalámbricas y se basa en el protocolo CSMA/CA (carrier sense multiple access/collision avoidance). Una estación sólo puede transmitir cuando el canal está libre, si otra estación envía una trama debe esperar a que el canal esté libre para poder transmitir. Observamos como Ethernet utiliza CSMA/CD (carrier sense multiple access/collision detection) ligeramente diferente del caso inalámbrico.

En CSMA/CA cuando estación que quiere transmitir realiza una serie de pasos:

Escuchar en el canal correspondiente.

Si el canal está libre envía la trama.

Si el canal está ocupado espera un tiempo aleatorio denominado contención y vuelve a intentarlo.

Transcurrido el tiempo de contención vuelve a repetir todo el proceso hasta que pueda enviar la trama.

En las estaciones inalámbricas una estación emisora no puede escuchar las colisiones mientras envía datos, básicamente porque no pueden activar el receptor mientras transmiten una trama. Como consecuencia, la estación receptora debe enviar un ACK si no hubo errores en la recepción. Si la estación emisora no recibe el ACK tras un periodo de tiempo establecido supone que ha habido una colisión o una interferencia de radiofrecuencia y reenvía la trama.

Observamos que las colisiones pueden deteriorar seriamente el tráfico de la red, porque implica que el emisor, por un lado tenga que espere a recibir el ACK que no va a llegar y por otro, volver a intentar enviar la trama. Por este motivo el control de acceso al medio debería establecer algún tipo de mecanismo que paliara esta deficiencia.

Page 11: Seguridad de redes Inalámbricas

La capa MAC comprueba, como condición para permitir el acceso al medio, una forma de evitar colisiones, el valor del vector de ubicación de red (network allocation vector, NAV), que es un contador residente en cada estación y que representa la cantidad de tiempo que tardó en transmitirse la anterior trama de cualquier estación. El valor de NAV tiene que ser cero antes de que una estación intente enviar una trama, porque sabe que durante ese tiempo ya hay otra estación emitiendo y si trata de emitir entrará en estado de contención, cosa que se trata de evitar. Antes de transmitir una trama la estación calcula el tiempo necesario para la transmisión basándose en su longitud y en la tasa de transmisión y lo sitúa en el campo de duración en la cabecera de la trama. Cuando cualquier estación recibe la trama, toma el campo de duración y lo utiliza para establecer su correspondiente NAV. Este proceso reserva el medio para la estación emisora y evita que otras estaciones comiencen a transmitir mientras no haya acabado.

Como hemos visto, un aspecto importante de DCF es un temporizador aleatorio que la estación utiliza cuando detecta una colisión por estar el medio ocupado. Si el canal está en uso la estación tendrá que esperar un tiempo aleatorio antes de volver a intentar tener acceso al medio y de esta forma garantizamos que dos estaciones no van a transmitir al mismo tiempo. Este tiempo se conoce como contención.

Identificación de un nodo

Cada nodo se identifica mediante los 6 bytes de su dirección MAC. Cada nodo receptor reconoce su propia dirección MAC.

Funciones de la capa MAC 802.11

Vemos a continuación un resumen significativo de las funciones de la capa MAC para redes en modo infraestructura:

Búsqueda (Scanning)

El estándar 802.11 define tanto la búsqueda activa como pasiva, sistemas que utiliza un adaptador de red para localizar puntos de acceso. La búsqueda pasiva es obligatoria donde cada adaptador de red busca canales individuales para encontrar la mejor señal del punto de acceso. Periódicamente, cada punto de acceso difunde señales como si fuera un faro, y el adaptador de red recibe estas señales (beacon) mientras busca tomando nota de sus datos. Estas beacon (señales de faro) contienen datos sobre el punto de acceso incluyendo por ejemplo el SSID, tasas de transmisión admitidas, etc. El adaptador de red puede usar esta información para compararla y determinar junto con otras características, como la fuerza de la señal, qué punto de acceso utilizar.

Page 12: Seguridad de redes Inalámbricas

La búsqueda activa es similar salvo que la propia tarjeta inicia el proceso difundiendo una trama de prueba a la que responden todos los puntos de acceso que estén al alcance con otra trama de prueba. En la búsqueda activa se permite que un adaptador de red reciba respuesta inmediata del punto de acceso sin necesidad de esperar a una transmisión beacon. En la práctica la búsqueda activa impone un carga adicional en la red debido a las tramas de prueba y sus respuestas.

Autenticación (Authentication)

La autenticación es el proceso para comprobar la identidad de un adaptador en la red para aceptarlo o rechazarlo. El estándar 802.11 especifica dos formas de autenticación, el sistema abierto y el sistema basado en una clave compartida.

El sistema abierto es obligatorio y consta de dos pasos.

El adaptador de red inicia el proceso enviando una trama de solicitud de autenticación al punto de acceso.

El punto de acceso responde con una trama de autenticación que indica si acepta o rechaza la autenticación en el campo de código de estado de la trama.

La autenticación de clave compartida es opcional y básicamente comprueba si la clave WEP es la correcta. El hecho de ser opcional para el protocolo no impide que esté en la práctica totalidad de los adaptadores y puntos de acceso. Este proceso consta de cuatro pasos:

El adaptador de red inicia el proceso enviando una trama de solicitud de autenticación al punto de acceso.

El punto de acceso responde con una trama de autenticación que contiene un texto de desafío.

El adaptador de red utiliza su clave WEP para cifrar el texto de desafío y lo devuelve al punto de acceso en otra trama de autenticación.

El punto de acceso descifra el valor cifrado, lo compara con el original y responde con una trama de autenticación que indica si acepta o rechaza la autenticación. Si coinciden el valor original y el de la respuesta el punto de acceso supone que el solicitante tiene la clave correcta.

Asociación

La asociación es un proceso por el cual el punto de acceso reserva recursos y sincroniza con una estación cliente.

Page 13: Seguridad de redes Inalámbricas

Una vez que el adaptador de red se ha autenticado, también tiene que asociarse al punto de acceso antes poder transmitir tramas de datos. La asociación es importante para sincronizar a ambos elementos con información importante como por ejemplo las tasas de transmisión admitidas.

El adaptador de de inicia la asociación enviando una trama de solicitud de asociación que contiene elementos como el SSID y tasas de transferencia admitidas. El punto de acceso reserva memoria para ese cliente, le asigna un ID de asociación y le responde con una trama de respuesta de asociación que contiene el ID de asociación junto con otra información referente al punto de acceso. Una vez que el adaptador de red y el punto de acceso hayan completado el proceso de asociación pueden comenzar a transmitir tramas de datos entre ellos, es decir el cliente puede utilizar el punto de de acceso para comunicar con otros clientes de la red.

WEP

WEP es opcional en el estándar 802.11. Cuando tenemos WEP activo, el adaptador de red va a cifrar el cuerpo, no la cabecera, de cada trama antes de transmitirla. Para cifrar utiliza la clave común, la misma que tiene que utilizar el receptor para descifrarla.

El sistema de cifrado WEP está descrito en en la sección de seguridad.

RTS/CTS

Se puede presentar un problema en una red inalámbrica cuando dos estaciones asociadas al mismo punto de acceso no se ven entre sí. Cuando intenten transmitir ninguna de ellas detectará a la otra por lo que pueden transmitir simultáneamente, lo que origina una corrupción de datos en el resto de las estaciones. Para solucionar este problema se puede establecer un mecanismo para que cada estación notifique al punto de acceso que va a transmitir.

Las funciones request-to send y clear-to-send (RTS/CTS) permiten al punto de acceso controlar el uso del medio de las estaciones activando RTS/CTS. Si el adaptador activa RTS/CTS, entonces primero enviará una trama RTS al punto de acceso antes de enviar una trama de datos. El punto de acceso responde con una trama CTS indicando que el adaptador puede enviar la trama de datos. Con la trama CTS el punto de acceso envía un valor en el campo de duración de la cabecera de la trama que evita que otras estaciones transmitan hasta que el adaptador que haya iniciado RTS pueda enviar su trama de datos.

Este proceso de solicitud de envío evita colisiones entre nodos ocultos. El saludo RTS/CTS continúa en cada trama mientras que el tamaño de la trama exceda del umbral establecido en el adaptador correspondiente. En la mayoría de adaptadores de red los usuarios pueden fijar un umbral máximo de tamaño de trama para que el adaptador de red active RTS/CTS. Por ejemplo, si establecemos

Page 14: Seguridad de redes Inalámbricas

un tamaño de trama de 1.000 bytes, cualquier trama de un tamaño superior a 1.000 bytes disparará RTS/CTS. De esta forma el proceso sólo afectaría a las tramas más grandes y más costosas de retransmitir pero las más pequeñas es mejor arriesgarse.

Como hemos visto, el uso de RTS/CTS puede solucionar el problemas que se presentaba cuando dos nodos asociados al mismo punto de acceso no se ven entre sí.

Modo ahorro energía (Power Save Mode)

El funcionamiento normal de las redes inalámbricas supone un acceso constante al medio (CAM, Constant Access Mode), es decir, escucha de forma constante la red con el consiguiente consumo de energía. En dispositivos móviles puede representar un serio inconveniente el excesivo consumo de batería, por lo que 802.11 establece unos mecanismos para intentar evitarlo. El mecanismo consiste en apagar el adaptador y hacer que se active en periodos regulares en todos los adaptadores de la red en busca de un paquete beacon especial denominado TIM. Durante el tiempo que transcurre entre paquetes TIM el adaptador se desactiva para ahorrar energía. Todos los adaptadores de una red tienen que activarse simultáneamente para escuchar el TIM del punto de acceso.

El TIM informa a los clientes que tienen datos pendientes en el punto de acceso. Cuando un adaptador sabe mediante el TIM que tiene datos pendientes permanece activo el tiempo necesario para recibirlos. El punto de acceso dispone de un buffer para almacenar los datos hasta que los envía al adaptador. Una vez que el adaptador ha recibido sus datos, entonces vuelve al modo inactivo.

Un punto de acceso indica la presencia de tráfico de difusión mediante paquetes DTIM (delivery traffic information map). DTIM es un temporizador múltiplo de TIM. Gracias a este valor, que podemos configurar en el punto de acceso, podemos especificar cuánto tiempo tiene que permanecer una estación activa para buscar tráfico de difusión.

El sistema de ahorro de energía es también opcional en el protocolo 802.11, y permite activar o desactivar el adaptador de forma inteligente para que ahorre energía cuando no tiene que transmitir datos. Cuando el ahorro de energía está activado el adaptador indica al punto de acceso su deseo de entrar al estado "dormido" mediante un bit de estado de la cabecera de la trama. El punto de acceso toma nota de todos los adaptadores que quieren entrar en el modo de ahorro de energía y utiliza un buffer para los paquetes correspondientes a estas estaciones.

Para poder todavía recibir tramas de datos el adaptador dormido tiene que despertar periódicamente, en el instante adecuado, para recibir las transmisiones

Page 15: Seguridad de redes Inalámbricas

beacon TIM del punto de acceso. Estos beacon identifican si las estaciones dormidas tienen tramas en el buffer en el punto de acceso y esperando para su entrega a los respectivos destinos. Los adaptadores con tramas a la espera las solicitan al punto de acceso y una vez recibidas puede volver al estado de dormido.

Fragmentación

La función de fragmentación permite que una estación divida los paquetes de datos en tramas más pequeñas para evitar la necesidad de retransmitir tramas grandes en un ambiente de interferencias de radiofrecuencia. Los bits erróneos ocasionados por las interferencias es más probable que afecten a una simple trama y disminuimos la carga si sólo retransmitimos tramas pequeñas. Como en el caso de RTS/CTS, los usuarios normalmente pueden establecer un umbral de tamaño de trama máximo para que el adaptador active la fragmentación. El tamaño de la trama es mayor que el umbral fijado, el adaptador lo divide en múltiples tramas adaptadas a ese tamaño.

Tramas 802.11

El estándar 802.11 define varios tipos de tramas cada de las cuales tiene un objeto específico. Hemos visto anteriormente que tenemos que anunciar los puntos de acceso, asociar estaciones, autenticar clientes y otras funciones. Todas estas funciones normalmente se gestionan mediante unas tramas especiales, a parte de las tramas propias de transmisión de datos. Podemos clasificar las tramas dependiendo de la función que desempeñan. Tenemos tramas de datos, las que transportan la información de capas superiores, tramas de gestión que permiten mantener las comunicaciones y tramas de control para, como su nombre indica, controlar el medio.

Cada trama contiene distintos campos de control, que incluyen por ejemplo el tipo de trama, si WEP está activo, si está activo el ahorro de energía, la versión del protocolo 802.11. Una trama 802.11 también incluye las direcciones MAC de origen y destino, un número de secuencia, un campo de control y el campo de datos.

Tramas de gestión

Las tramas 802.11 de gestión son las que permiten mantener comunicaciones a las estaciones inalámbricas y tenemos distintos tipos:

Trama de autenticación

Ya habíamos visto que la autenticación es el proceso para comprobar la identidad de un adaptador en la red para aceptarlo o rechazarlo. El adaptador cliente inicia

Page 16: Seguridad de redes Inalámbricas

el proceso enviando al punto de acceso una trama de autenticación que contiene su identidad en el campo de datos.

El diálogo que se establece con las tramas de autenticación depende del sistema de autenticación que use el punto de acceso, si es abierto o con clave compartida. Cuando se trata de sistemas abiertos, el cliente sólo envía la trama de autenticación y el punto de acceso responde con otra trama de autenticación que indica si acepta o rechaza la conexión. En el caso de la autenticación de clave compartida, el punto de acceso tiene que comprobar que la estación tiene la llave correcta por lo que tenemos dos tramas de autenticación más en el diálogo, una que envía el punto de acceso con un texto para que lo cifre la estación con su clave y otra de respuesta de la estación cliente con el desafío cifrado. Esto ya estaba descrito en la función de autenticación.

Trama de des-autenticación

Es una trama que envía una estación a otra cuando quiere terminar las comunicaciones.

Trama de solicitud de asociación

Este tipo de trama la utiliza la estación cliente para inciar el proceso de asociación. Ya hemos visto que la asociación es un proceso por el cual el punto de acceso reserva recursos y sincroniza con una estación cliente. La asociación la inicia el cliente enviado al punto de acceso una trama de solicitud de asociación y el punto de acceso establece un ID de asociación para identificar al cliente y le reserva memoria.

Las tramas de asociación contienen los datos necesarios para esta función como son el SSID de la red, las tasas de transferencia, etc. En la función de asociación se define con más detalle el mecanismo de asociación.

Trama de respuesta de asociación

Este tipo de trama la utilizan los puntos de acceso para responder una solicitud de asociación. Esta trama puede contener si se acepta o rechaza la asociación. Si se acepta la asociación la trama también incluye el ID de asociación y las tasas de transferencia admitidas.

Trama de solicitud de re-asociación

Page 17: Seguridad de redes Inalámbricas

Cuando un cliente asociado con un punto de acceso se desplaza al radio de cobertura de otro punto de acceso de la misma red con mejor señal intenta establecer una re-asociación. La re-asociación implica que los puntos de acceso coordinen los buffer. Como era de esperar, para establecer una re-asociación con un nuevo punto de acceso, el cliente le envía una trama de re-asociación.

Trama de respuesta de re-asociación

La trama de respuesta de re-asociación es similar a la trama de respuesta de asociación, al fin y al cabo, lo que hacer es asociar con un nuevo punto de acceso.

Trama de des-asociación

Es una trama que puede enviar un estación cuando va a cerrar sus conexiones de red. Esta trama permite que el punto de acceso pueda liberar los recursos que tiene asignado a la estación durante el proceso de asociación.

Trama beacon (baliza)

Un punto de acceso envía tramas beacon periódicamente para difundir su presencia y la información de la red, el SSID, etc. a las estaciones clientes en su radio de cobertura. Las estaciones pueden obtener lista de puntos de acceso disponibles buscando tramas beacon continuamente en todos canales 802.11. Las tramas beacon contienen la información necesaria para identificar las características de la red y poder conectar con el punto de acceso deseado.

Trama de solicitud de prueba

Las estaciones utilizan tramas de solicitud de prueba cuando necesitan obtener información de otra estación, por ejemplo obtener una lista de puntos de acceso disonibles.

Trama de respuesta de prueba

Esta trama es la respuesta de una estación a una solicitud. Esta trama contiene la información necesaria como por ejemplo las tasas de transmisión.

Tramas de Control

Las tramas 802.11 de control se utilizan para colaborar en la entrega de tramas de datos entre estaciones.

Page 18: Seguridad de redes Inalámbricas

Trama Request to Send (RTS)

Se utilizan para reducir las colisiones en el caso de dos estaciones asociadas a un mismo punto de acceso pero mutuamente fuera de rango de cobertura. La estación envía una trama RTS para iniciar el diálogo de comienzo de transmisión de una trama.

Trama Clear to Send (CTS)

Las estaciones utilizan las tramas CTS para responder a una trama RTS para dejar el canal libre de transmisiones. Las tramas CTS contienen un valor de tiempo durante el cual el resto de las estaciones dejan de transmitir el tiempo necesario para transmitir la trama.

Tramas Acknowledgement (ACK)

Las tramas ACK tienen como objetivo confirmar la recepción de una trama. En caso de no llegar la trama ACK el emisor vuelve a enviar la trama de datos.

Tramas de datos

Evidentemente existen tramas de datos que son las encargadas de transportar la información de las capas superiores.

Page 19: Seguridad de redes Inalámbricas

WI-Fi

Wi-Fi (/waɪfaɪ/; en algunos países hispanoparlantes /wɪfɪ/) es un mecanismo de conexión de dispositivos electrónicos de forma inalámbrica. Los dispositivos habilitados con Wi-Fi, tales como: un ordenador personal, una consola de videojuegos, un Smartphone o un reproductor de audio digital, pueden conectarse a Internet a través de un punto de acceso de red inalámbrica. Dicho punto de acceso (o hotspot) tiene un alcance de unos 20 metros (65 pies) en interiores y al aire libre una distancia mayor. Pueden cubrir grandes áreas la superposición de múltiples puntos de acceso.

Wi-Fi es una marca de la Wi-Fi Alliance (anteriormente la WECA: Wireless Ethernet Compatibility Alliance), la organización comercial que adopta, prueba y certifica que los equipos cumplen los estándares 802.11 relacionados a redes inalámbricas de área local.

Historia

Esta nueva tecnología surgió por la necesidad de establecer un mecanismo de conexión inalámbrica que fuese compatible entre los distintos dispositivos. Buscando esa compatibilidad fue que en 1999 las empresas 3com, Airones, Intersil, Lucent Technologies, Nokia y Symbol Technologies se reunieron para crear la Wireless Ethernet Compatibility Alliance WECA, actualmente llamada Wi-Fi Alliance. El objetivo de la misma fue designar una marca que permitiese fomentar más fácilmente la tecnología inalámbrica y asegurar la compatibilidad de equipos.

De esta forma, en abril de 2000 WECA certifica la interoperabilidad de equipos según la norma IEEE 802.11b, bajo la marca Wi-Fi. Esto quiere decir que el usuario tiene la garantía de que todos los equipos que tengan el sello Wi-Fi pueden trabajar juntos sin problemas, independientemente del fabricante de cada uno de ellos. Se puede obtener un listado completo de equipos que tienen la certificación Wi-Fi en Alliance - Certified Products.

En el año 2002 la asociación WECA estaba formada ya por casi 150 miembros en su totalidad. La familia de estándares 802.11 ha ido naturalmente evolucionando desde su creación, mejorando el rango y velocidad de la transferencia de información, entre otras cosas.

La norma IEEE 802.11 fue diseñada para sustituir el equivalente a las capas físicas y MAC de la norma 802.3 (Ethernet). Esto quiere decir que en lo único que se diferencia una red Wi-Fi de una red Ethernet es en cómo se transmiten las tramas o paquetes de datos; el resto es idéntico. Por tanto, una red local inalámbrica 802.11 es completamente compatible con todos los servicios de las redes locales (LAN) de cable 802.3 (Ethernet).

Page 20: Seguridad de redes Inalámbricas

El nombre WI-FI

Aunque se tiende a creer que el término Wi-Fi es una abreviatura de Wireless Fidelity (Fidelidad inalámbrica), equivalente a Hi-Fi, High Fidelity, término frecuente en la grabación de sonido, la WECA contrató a una empresa de publicidad para que le diera un nombre a su estándar, de tal manera que fuera fácil de identificar y recordar. Phil Belanger, miembro fundador de Wi-Fi Alliance que apoyó el nombre Wi-Fi escribió:

"Wi-Fi" y el "Style logo" del Ying Yang fueron inventados por la agencia Interbrand.

Nosotros (WiFi Alliance) contratamos a Interbrand para que nos hiciera un logotipo y un

nombre que fuera corto, tuviera mercado y fuera fácil de recordar. Necesitábamos algo

que fuera algo más llamativo que “IEEE 802.11b de Secuencia Directa”. Interbrand creó

nombres como “Prozac”, “Compaq”, “OneWorld”, “Imation”, por mencionar algunos.

Incluso inventaron un nombre para la compañía: VIATO.”

Phil Belanger

Estándares que certifica Wi-Fi

Existen diversos tipos de Wi-Fi, basado cada uno de ellos en un estándar IEEE 802.11 aprobado. Son los siguientes:

Los estándares IEEE 802.11b, IEEE 802.11g e IEEE 802.11n disfrutan de una aceptación internacional debido a que la banda de 2.4 GHz está disponible casi universalmente, con una velocidad de hasta 11 Mbps , 54 Mbps y 300 Mbps, respectivamente.

En la actualidad ya se maneja también el estándar IEEE 802.11a, conocido como WIFI 5, que opera en la banda de 5 GHz y que disfruta de una operatividad con canales relativamente limpios. La banda de 5 GHz ha sido recientemente habilitada y, además, no existen otras tecnologías (Bluetooth, microondas, ZigBee, WUSB) que la estén utilizando, por lo tanto existen muy pocas interferencias. Su alcance es algo menor que el de los estándares que trabajan a 2.4 GHz (aproximadamente un 10%), debido a que la frecuencia es mayor (a mayor frecuencia, menor alcance).

Existe un primer borrador del estándar IEEE 802.11n que trabaja a 2.4 GHz y a una velocidad de 108 Mbps. Sin embargo, el estándar 802.11g es capaz de alcanzar ya transferencias a 108 Mbps, gracias a diversas técnicas de aceleramiento. Actualmente existen ciertos dispositivos que permiten utilizar esta tecnología, denominados Pre-N.

Existen otras tecnologías inalámbricas como Bluetooth que también funcionan a una frecuencia de 2.4 GHz, por lo que puede presentar interferencias con Wi-Fi. Debido a esto, en la versión 1.2 del estándar Bluetooth por ejemplo se actualizó su especificación

Page 21: Seguridad de redes Inalámbricas

para que no existieran interferencias con la utilización simultánea de ambas tecnologías, además se necesita tener 40.000 k de velocidad.

Seguridad y Fiabilidad

Especialmente en las conexiones de larga distancia (mayor de 100 metros). En realidad Wi-Fi está diseñado para conectar ordenadores a la red a distancias reducidas, cualquier uso de mayor alcance está expuesto a un excesivo riesgo de interferencias.

Un muy elevado porcentaje de redes son instalados sin tener en consideración la seguridad convirtiendo así sus redes en redes abiertas (o completamente vulnerables ante el intento de acceder a ellas por terceras personas), sin proteger la información que por ellas circulan. De hecho, la configuración por defecto de muchos dispositivos Wi-Fi es muy insegura (routers, por ejemplo) dado que a partir del identificador del dispositivo se puede conocer la clave de éste; y por tanto acceder y controlar el dispositivo se puede conseguir en sólo unos segundos.

El acceso no autorizado a un dispositivo Wi-Fi es muy peligroso para el propietario por varios motivos. El más obvio es que pueden utilizar la conexión. Pero además, accediendo al Wi-Fi se puede monitorizar y registrar toda la información que se transmite a través de él (incluyendo información personal, contraseñas....). La forma de hacerlo seguro es seguir algunos consejos1 :

Cambios frecuentes de la contraseña de acceso, utilizando diversos caracteres, minúsculas, mayúsculas y números.

Se debe modificar el SSID que viene predeterminado.

Realizar la desactivación del broad casting SSID y DHCP.

Configurar los dispositivos conectados con su IP (indicar específicamente qué dispositivos están autorizados para conectarse).

Utilización de cifrado: WPA.

Existen varias alternativas para garantizar la seguridad de estas redes. Las más comunes son la utilización de protocolos de cifrado de datos para los estándares Wi-Fi como el WEP, el WPA, o el WPA2 que se encargan de codificar la información transmitida para proteger su confidencialidad, proporcionados por los propios dispositivos inalámbricos. La mayoría de las formas son las siguientes:

WEP, cifra los datos en su red de forma que sólo el destinatario deseado pueda acceder a ellos. Los cifrados de 64 y 128 bits son dos niveles de seguridad WEP. WEP codifica los datos mediante una “clave” de cifrado antes de enviarlo al aire. Este tipo de cifrado no está muy recomendado debido a las grandes vulnerabilidades que presenta ya que cualquier cracker puede conseguir sacar la clave, incluso aunque esté bien configurado y la clave utilizada sea compleja.

WPA: presenta mejoras como generación dinámica de la clave de acceso. Las claves se insertan como dígitos alfanuméricos.

Page 22: Seguridad de redes Inalámbricas

IPSEC (túneles IP) en el caso de las VPN y el conjunto de estándares IEEE 802.1X, que permite la autenticación y autorización de usuarios.

Filtrado de MAC, de manera que sólo se permite acceso a la red a aquellos dispositivos autorizados. Es lo más recomendable si solo se va a usar con los mismos equipos, y si son pocos.

Ocultación del punto de acceso: se puede ocultar el punto de acceso (Router) de manera que sea invisible a otros usuarios.

El protocolo de seguridad llamado WPA2 (estándar 802.11i), que es una mejora relativa a WPA. En principio es el protocolo de seguridad más seguro para Wi-Fi en este momento. Sin embargo requieren hardware y software compatibles, ya que los antiguos no lo son.

Sin embargo, no existe ninguna alternativa totalmente fiable, ya que todas ellas son susceptibles de ser vulneradas.

Dispositivos

Existen varios dispositivos Wi-Fi, los cuales se pueden dividir en dos grupos: Dispositivos de Distribución o Red, entre los que destacan los routers, puntos de acceso y Repetidores; yDispositivos Terminales que en general son las tarjetas receptoras para conectar a la computadora personal, ya sean internas (tarjetas PCI) o bien USB.

Router WiFi.

Dispositivos de Distribución o Red:

Los puntos de acceso son dispositivos que generan un "set de servicio", que

podría definirse como una "Red Wi-Fi" a la que se pueden conectar otros

dispositivos. Los puntos de acceso permiten, en resumen, conectar dispositivos

en forma inalámbrica a una red existente. Pueden agregarse más puntos de

Page 23: Seguridad de redes Inalámbricas

acceso a una red para generar redes de cobertura más amplia, o conectar

antenas más grandes que amplifiquen la señal.

Los router inalámbricos son dispositivos compuestos, especialmente diseñados

para redes pequeñas (hogar o pequeña oficina). Estos dispositivos incluyen, un

Router (encargado de interconectar redes, por ejemplo, nuestra red del hogar con

internet), un punto de acceso (explicado más arriba) y generalmente un switch

que permite conectar algunos equipos vía cable. Su tarea es tomar la conexión a

internet, y brindar a través de ella acceso a todos los equipos que conectemos,

sea por cable o en forma inalámbrica.

Los repetidores inalámbricos son equipos que se utilizan para extender la

cobertura de una red inalámbrica, éstos se conectan a una red existente que tiene

señal más débil y crean una señal limpia a la que se pueden conectar los equipos

dentro de su alcance.

Los dispositivos terminales abarcan tres tipos mayoritarios: tarjetas PCI, tarjetas PCMCIA y tarjetas USB:

Las tarjetas PCI para Wi-Fi se agregan (o vienen de fábrica) a los ordenadores de

sobremesa. Hoy en día están perdiendo terreno debido a las tarjetas USB. Dentro

de este grupo también pueden agregarse las tarjetas MiniPCI que vienen

integradas en casi cualquier computador portátil disponible hoy en el mercado.

Las tarjetas PCMCIA son un modelo que se utilizó mucho en los

primeros ordenadores portátiles, aunque están cayendo en desuso, debido a la

integración de tarjeta inalámbricas internas en estos ordenadores. La mayor parte

de estas tarjetas solo son capaces de llegar hasta la tecnología B de Wi-Fi, no

permitiendo por tanto disfrutar de una velocidad de transmisión demasiado

elevada

Las tarjetas USB para Wi-Fi son el tipo de tarjeta más común que existe en las

tiendas y más sencillo de conectar a un pc, ya sea de sobremesa o portátil,

haciendo uso de todas las ventajas que tiene la tecnología USB. Hoy en día

puede encontrarse incluso tarjetas USB con el estándar 802.11N (Wireless-N) que

es el último estándar liberado para redes inalámbricas.

También existen impresoras, cámaras Web y otros periféricos que funcionan con

la tecnología Wi-Fi, permitiendo un ahorro de mucho cableado en las instalaciones

de redes y especialmente, gran movilidad.

En relación con los drivers, existen directorios de "Chipsets de adaptadores Wireless."

Page 24: Seguridad de redes Inalámbricas

Ventajas y Desventajas

Las redes Wi-Fi poseen una serie de ventajas, entre las cuales podemos destacar:

Al ser redes inalámbricas, la comodidad que ofrecen es muy superior a las redes cableadas porque cualquiera que tenga acceso a la red puede conectarse desde distintos puntos dentro de un rango suficientemente amplio de espacio.

Una vez configuradas, las redes Wi-Fi permiten el acceso de múltiples ordenadores sin ningún problema ni gasto en infraestructura, no así en la tecnología por cable.

La Wi-Fi Alliance asegura que la compatibilidad entre dispositivos con la marca Wi-Fi es total, con lo que en cualquier parte del mundo podremos utilizar la tecnología Wi-Fi con una compatibilidad total.

Pero como red inalámbrica, la tecnología Wi-Fi presenta los problemas intrínsecos de cualquier tecnología inalámbrica. Algunos de ellos son:

Una de las desventajas que tiene el sistema Wi-Fi es una menor velocidad en comparación a una conexión con cables, debido a las interferencias y pérdidas de señal que el ambiente puede acarrear.

La desventaja fundamental de estas redes existe en el campo de la seguridad. Existen algunos programas capaces de capturar paquetes, trabajando con su tarjeta Wi-Fi en modo promiscuo, de forma que puedan calcular la contraseña de la red y de esta forma acceder a ella. Las claves de tipo WEP son relativamente fáciles de conseguir con este sistema. La alianza Wi-Fi arregló estos problemas sacando el estándar WPA y posteriormente WPA2, basados en el grupo de trabajo 802.11i. Las redes protegidas con WPA2 se consideran robustas dado que proporcionan muy buena seguridad. De todos modos muchas compañías no permiten a sus empleados tener una red inalámbrica [cita requerida]. Este problema se agrava si consideramos que no se puede controlar el área de cobertura de una conexión, de manera que un receptor se puede conectar desde fuera de la zona de recepción prevista (e.g. desde fuera de una oficina, desde una vivienda colindante).

Hay que señalar que esta tecnología no es compatible con otros tipos de conexiones sin cables como Bluetooth, GPRS, UMTS, etc.

Seguridad red de área local inalámbrica

Uno de los problemas de este tipo de redes es precisamente la seguridad ya que cualquier persona con una terminal inalámbrica podría comunicarse con un punto de acceso privado si no se disponen de las medidas de seguridad adecuadas. Dichas medidas van encaminadas en dos sentidos: por una parte está el cifrado de los datos que se transmiten y en otro plano, pero igualmente importante, se considera la autenticación

Page 25: Seguridad de redes Inalámbricas

entre los diversos usuarios de la red. En el caso del cifrado se están realizando diversas investigaciones ya que los sistemas considerados inicialmente se han conseguido descifrar. Para la autenticación se ha tomado como base el protocolo de verificación EAP (Extensible Authentication Protocol), que es bastante flexible y permite el uso de diferentes algoritmos.

Velocidad

Otro de los problemas que presenta este tipo de redes es que actualmente (a nivel de red local) no alcanzan la velocidad que obtienen las redes de datos cableadas.

Además, en relación con el apartado de seguridad, el tener que cifrar toda la información supone que gran parte de la información que se transmite sea de control y no información útil para los usuarios, por lo que incluso se reduce la velocidad de transmisión de datos útiles y no se llega a tener un buen acceso.

Extensible Authentication Protocol

Extensible Authentication Protocol (EAP) es una autenticación framework usada habitualmente en redes WLAN Point-to-Point Protocol. Aunque el protocolo EAP no está limitado a LAN inalámbricas y puede ser usado para autenticación en redes cableadas, es más frecuentemente su uso en las primeras. Recientemente los estándares WPA y WPA2 han adoptado cinco tipos de EAP como sus mecanismos oficiales de autenticación.

Es una estructura de soporte, no un mecanismo específico de autenticación. Provee algunas funciones comunes y negociaciones para el o los mecanismos de autenticación escogidos. Estos mecanismos son llamados métodos EAP, de los cuales se conocen actualmente unos 40. Además de algunos específicos de proveedores comerciales, los definidos por RFC de la IETF incluyen EAP-MD5, EAP-OTP, EAP-GTC, EAP-TLS, EAP-IKEv2, EAP-SIM, y EAP-AKA.

Los métodos modernos capaces de operar en ambientes inalámbricos incluyen EAP-TLS, EAP-SIM, EAP-AKA, PEAP, LEAP y EAP-TTLS. Los requerimientos para métodos EAP usados en LAN inalámbricas son descritos en la RFC 4017. Cuando EAP es invocada por un dispositivo NAS (Network Access Server) capacitado para 802.1X, como por ejemplo un punto de acceso802.11 a/b/g, los métodos modernos de EAP proveen un mecanismo seguro de autenticación y negocian un PMK (Pair-wise Master Key) entre el dispositivo cliente y el NAS. En esas circunstancias, la PMK puede ser usada para abrir una sesión inalámbrica cifrada que usa cifrado TKIP o AES.

EAP fue diseñado para utilizarse en la autenticación para acceso a la red, donde la conectividad de la capa IP puede no encontrase disponible. Dado a que EAP no requiere

Page 26: Seguridad de redes Inalámbricas

conectividad IP, solamente provee el suficiente soporte para el transporte confiable de protocolos de autenticación y nada más.

EAP es un protocolo lock-step, el cual solamente soporta un solo paquete en transmisión. Como resultado, EAP no pude transportar eficientemente datos robustos, a diferencia de protocolos de capas superiores como TCP.

Aunque EAP provee soporte para retransmisión, este asume que el ordenamiento de paquetes es brindado por las capas inferiores, por lo cual el control de orden de recepción de tramas no está soportado. Ya que no soporta fragmentación y re-ensamblaje, los métodos de autenticación de basados en EAP que generan tramas más grandes que el soportado por defecto por EAP, deben aplicar mecanismos especiales para poder soportar la fragmentación (Por ejemplo EAP-TLS). Como resultado, puede ser necesario para un algoritmo de autenticación agregar mensajes adicionales para poder correr sobre EAP. Cuando se utiliza autentificación a base de certificados, el certificado es más grande que el MTU de EAP, por lo que el número de round-trips (viaje redondo de paquetes) entre cliente y servidor puede aumentar debido a la necesidad de fragmentar dicho certificado.

Se debe considerar que cuando EAP corre sobre una conexión entre cliente y servidor donde se experimenta una significante pérdida de paquetes, los métodos EAP requerirán muchos round-trips y se reflejará en dificultades de conexión.

Proceso de Intercambio de Autenticación EAP

1.- El Servidor de Autenticación envía un Request (Solicitud) de Autenticación al cliente, el mensaje de Request tiene un campo de Tipo, en el cual el cliente debe responder que es lo que está solicitando, los tipos existentes son: Identidad, Notificación, Nak, MD5-Challenge, One-Time Password (OTP), Generic Token-Card (GTC), Tipos Expandidos y Experimental.

2.- El Cliente envía un paquete Response (Respuesta) al Servidor. Al igual que en el paquete Request, el paquete Response contiene un campo de Tipo, el cual corresponde al campo de Tipo en el paquete de Request.

3.- El Servidor de autenticación envía un paquete Request adicional, al cual el cliente envía un Response. La secuencia de Request y Response continua según sea necesario. Como se mencionó, EAP es un protocolo lock-step, por lo que no se puede enviar el siguiente paquete sin haber recibido uno válido antes. El servidor es responsable de transmitir las solicitudes de retrasmisión, dichos métodos se describen en el RFC de EAP, el RFC 3748. Después de un número de retransmisiones, el Servidor PUEDE terminar la conversación EAP. El Servidor NO PUEDE enviar un paquete de Success o Failure cuando se retransmite o cuando falla en recibir una respuesta a dichos paquetes por parte del cliente.

4.-La conversación continúa hasta que el Servidor no puede autenticar al cliente, y en dicho caso el Servidor DEBE trasmitir un mensaje de Failure. Como alternativa, la conversación de autenticación puede continuar hasta que el Servidor determina que se ha

Page 27: Seguridad de redes Inalámbricas

cumplido con una autenticación satisfactoriamente, para dicho caso, el Servidor DEBE enviar un paquete de Success.

WPAWi-Fi Protected Access, llamado también WPA (en español «Acceso Wi-Fi protegido») es un sistema para proteger las redes inalámbricas (Wi-Fi); creado para corregir las deficiencias del sistema previo, Wired Equivalent Privacy (WEP).1 Los investigadores han encontrado varias debilidades en el algoritmo WEP (tales como la reutilización del vector de inicialización (IV), del cual se derivan ataques estadísticos que permiten recuperar la clave WEP, entre otros). WPA implementa la mayoría del estándar IEEE 802.11i, y fue creado como una medida intermedia para ocupar el lugar de WEP mientras 802.11i era finalizado. WPA fue creado por The Wi-Fi Alliance («La alianza Wi-Fi»).

WPA adopta la autenticación de usuarios mediante el uso de un servidor, donde se almacenan las credenciales y contraseñas de los usuarios de la red. Para no obligar al uso de tal servidor para el despliegue de redes, WPA permite la autenticación mediante una clave pre-compartida, que de un modo similar al WEP, requiere introducir la misma clave en todos los equipos de la red.

Una falla encontrada en la característica agregada al Wi-Fi llamada Wi-Fi Protected Setup (también bajo el nombre de QSS) permite eludir la seguridad e infiltrarse en las redes que usan los protocolos WPA y WPA2.

Historia

WPA fue diseñado para utilizar un servidor de autenticación (normalmente un servidor RADIUS), que distribuye claves diferentes a cada usuario (a través del protocolo 802.1x); sin embargo, también se puede utilizar en un modo menos seguro de clave precompartida para usuarios de casa o pequeña oficina.2 3 La información es cifrada utilizando el algoritmo RC4 (debido a que WPA no elimina el proceso de cifrado WEP, sólo lo fortalece), con una clave de 128 bits y un vector de inicialización de 48 bits.

Una de las mejoras sobre WEP, es la implementación del Protocolo de Integridad de Clave Temporal (TKIP - Temporal Key Integrity Protocol), que cambia claves dinámicamente a medida que el sistema es utilizado. Cuando esto se combina con un vector de inicialización (IV) mucho más grande, evita los ataques de recuperación de clave (ataques estadísticos) a los que es susceptible WEP.

Page 28: Seguridad de redes Inalámbricas

Adicionalmente a la autenticación y cifrado, WPA también mejora la integridad de la información cifrada. La comprobación de redundancia cíclica (CRC - Cyclic Redundancy Check) utilizado en WEP es inseguro, ya que es posible alterar la información y actualizar la CRC del mensaje sin conocer la clave WEP. WPA implementa un código de integridad del mensaje (MIC - Message Integrity Code), también conocido como "Michael". Además, WPA incluye protección contra ataques de "repetición" (replay attacks), ya que incluye un contador de tramas.

Al incrementar el tamaño de las claves, el número de llaves en uso, y al agregar un sistema de verificación de mensajes, WPA hace que la entrada no autorizada a redes inalámbricas sea mucho más difícil. El algoritmo Michael fue el más fuerte que los diseñadores de WPA pudieron crear, bajo la premisa de que debía funcionar en las tarjetas de red inalámbricas más viejas; sin embargo es susceptible a ataques. Para limitar este riesgo, los drivers de las estaciones se desconectarán un tiempo definido por el fabricante, si reciben dos colisiones Michael en menos de 60 segundos, podrán tomar medidas, como por ejemplo reenviar las claves o dejar de responder durante un tiempo específico.

Seguridad, ataques WPA TKIP

TKIP es vulnerable a un ataque de recuperación de keystream, esto es, sería posible reinyectar tráfico en una red que utilizara WPA TKIP.4 Esto es posible por diversas causas, algunas de ellas heredadas de WEP. Entre las causas, cabe destacar la evasión de las medidas anti reinyección de TKIP y se sigue una metodología similar a la utilizada en el popular ataque CHOP sobre el protocolo WEP. La evasión de protección anti reinyección de TKIP es posible debido a los diversos canales que se utilizan en el modo QoS especificado en el estándar 802.11ie, aunque también existe la posibilidad de aplicarlo en redes no QoS.

WPA2WPA2 (Wi-Fi Protected Access 2 - Acceso Protegido Wi-Fi 2) es un sistema para proteger las redes inalámbricas (Wi-Fi); creado para corregir las vulnerabilidades detectadas en WPA.

WPA2 está basada en el nuevo estándar 802.11i. WPA, por ser una versión previa, que se podría considerar de "migración", no incluye todas las características del IEEE 802.11i, mientras que WPA2 se puede inferir que es la versión certificada del estándar 802.11i.

El estándar 802.11i fue ratificado en junio de 2004.

La alianza Wi-Fi llama a la versión de clave pre-compartida WPA-Personal y WPA2-Personal y a la versión con autenticación 802.1x/EAP como WPA-Enterprise y WPA2-Enterprise.

Page 29: Seguridad de redes Inalámbricas

Los fabricantes comenzaron a producir la nueva generación de puntos de accesos apoyados en el protocolo WPA2 que utiliza el algoritmo de cifrado AES (Advanced Encryption Standard). Con este algoritmo será posible cumplir con los requerimientos de seguridad del gobierno de USA - FIPS140-2. "WPA2 está idealmente pensado para empresas tanto del sector privado cómo del público. Los productos que son certificados para WPA2 le dan a los gerentes de TI la seguridad que la tecnología cumple con estándares de interoperabilidad" declaró Frank Hazlik Managing Director de la Wi-Fi Alliance. Si bien parte de las organizaciones estaban aguardando esta nueva generación de productos basados en AES es importante resaltar que los productos certificados para WPA siguen siendo seguros de acuerdo a lo establecido en el estándar 802.11i.

Una vez finalizado el nuevo estándar 802.11ie se crea el WPA2 basado en este. WPA se podría considerar de «migración», mientras que WPA2 es la versión certificada del estándar de la IEEE.

El estándar 802.11i fue ratificado en junio de 2004.

La alianza Wi-Fi llama a la versión de clave pre-compartida WPA-Personal y WPA2-Personal y a la versión con autenticación 802.1x/EAP como WPA-Enterprise y WPA2-Enterprise.

Los fabricantes comenzaron a producir la nueva generación de puntos de acceso apoyados en el protocolo WPA2 que utiliza el algoritmo de cifrado AES (Advanced Encryption Standard). Con este algoritmo será posible cumplir con los requerimientos de seguridad del gobierno de USA - FIPS140-2. "WPA2 está idealmente pensado para empresas tanto del sector privado cómo del público. Los productos que son certificados para WPA2 le dan a los gerentes de TI la seguridad de que la tecnología cumple con estándares de interoperabilidad" declaró Frank Hazlik Managing Director de la Wi-Fi Alliance. Si bien parte de las organizaciones estaban aguardando esta nueva generación de productos basados en AES es importante resaltar que los productos certificados para WPA siguen siendo seguros de acuerdo a lo establecido en el estándar 802.11i

Seguridad ataques WPA2

Tanto la versión 1 de WPA, como la denominada versión 2, se basan en la transmisión de las autenticaciones soportadas en el elemento de información correspondiente. En el caso de WPA 1, en el tag propietario de Microsoft, y en el caso de WPA2 en el tag estándar 802.11i RSN.

Durante el intercambio de información en el proceso de conexión RSN, si el cliente no soporta las autenticaciones que especifica el AP (access point, punto de acceso), será desconectado pudiendo sufrir de esta manera un ataque DoS específico a WPA.

Además, también existe la posibilidad de capturar el 4-way handshake que se intercambia durante el proceso de autenticación en una red con seguridad robusta. Las claves PSK (pre-compartidas) son vulnerables a ataques de diccionario (no así las empresariales, ya que el servidor RADIUS generará de manera aleatoria dichas claves), existen proyectos

Page 30: Seguridad de redes Inalámbricas

libres que utilizan GPU con lenguajes específicos como CUDA (NVIDIA) y Stream (AMD) para realizar ataques de fuerza bruta hasta cien veces más rápido que con computadoras ordinarias.