136
Today’s Outline - April 07, 2014 C. Segre (IIT) PHYS 406 - Spring 2014 April 07, 2014 1 / 13

segre/phys406/14S/lecture_20.pdf · Generalized classical scattering problem z q b initial direction is conventionally along the z-axis b is the impact parameter, the per-pendicular

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Page 1: segre/phys406/14S/lecture_20.pdf · Generalized classical scattering problem z q b initial direction is conventionally along the z-axis b is the impact parameter, the per-pendicular

Today’s Outline - April 07, 2014

• Classical scattering

• Quantum scattering

• Partial wave analysis

• Phase shifts

Homework Assignment #08:Chapter 10:5,6,7,8,9,10due Wednesday, April 09, 2014

Midterm Exam #2:Monday, April 14, 2014

C. Segre (IIT) PHYS 406 - Spring 2014 April 07, 2014 1 / 13

Page 2: segre/phys406/14S/lecture_20.pdf · Generalized classical scattering problem z q b initial direction is conventionally along the z-axis b is the impact parameter, the per-pendicular

Today’s Outline - April 07, 2014

• Classical scattering

• Quantum scattering

• Partial wave analysis

• Phase shifts

Homework Assignment #08:Chapter 10:5,6,7,8,9,10due Wednesday, April 09, 2014

Midterm Exam #2:Monday, April 14, 2014

C. Segre (IIT) PHYS 406 - Spring 2014 April 07, 2014 1 / 13

Page 3: segre/phys406/14S/lecture_20.pdf · Generalized classical scattering problem z q b initial direction is conventionally along the z-axis b is the impact parameter, the per-pendicular

Today’s Outline - April 07, 2014

• Classical scattering

• Quantum scattering

• Partial wave analysis

• Phase shifts

Homework Assignment #08:Chapter 10:5,6,7,8,9,10due Wednesday, April 09, 2014

Midterm Exam #2:Monday, April 14, 2014

C. Segre (IIT) PHYS 406 - Spring 2014 April 07, 2014 1 / 13

Page 4: segre/phys406/14S/lecture_20.pdf · Generalized classical scattering problem z q b initial direction is conventionally along the z-axis b is the impact parameter, the per-pendicular

Today’s Outline - April 07, 2014

• Classical scattering

• Quantum scattering

• Partial wave analysis

• Phase shifts

Homework Assignment #08:Chapter 10:5,6,7,8,9,10due Wednesday, April 09, 2014

Midterm Exam #2:Monday, April 14, 2014

C. Segre (IIT) PHYS 406 - Spring 2014 April 07, 2014 1 / 13

Page 5: segre/phys406/14S/lecture_20.pdf · Generalized classical scattering problem z q b initial direction is conventionally along the z-axis b is the impact parameter, the per-pendicular

Today’s Outline - April 07, 2014

• Classical scattering

• Quantum scattering

• Partial wave analysis

• Phase shifts

Homework Assignment #08:Chapter 10:5,6,7,8,9,10due Wednesday, April 09, 2014

Midterm Exam #2:Monday, April 14, 2014

C. Segre (IIT) PHYS 406 - Spring 2014 April 07, 2014 1 / 13

Page 6: segre/phys406/14S/lecture_20.pdf · Generalized classical scattering problem z q b initial direction is conventionally along the z-axis b is the impact parameter, the per-pendicular

Today’s Outline - April 07, 2014

• Classical scattering

• Quantum scattering

• Partial wave analysis

• Phase shifts

Homework Assignment #08:Chapter 10:5,6,7,8,9,10due Wednesday, April 09, 2014

Midterm Exam #2:Monday, April 14, 2014

C. Segre (IIT) PHYS 406 - Spring 2014 April 07, 2014 1 / 13

Page 7: segre/phys406/14S/lecture_20.pdf · Generalized classical scattering problem z q b initial direction is conventionally along the z-axis b is the impact parameter, the per-pendicular

Today’s Outline - April 07, 2014

• Classical scattering

• Quantum scattering

• Partial wave analysis

• Phase shifts

Homework Assignment #08:Chapter 10:5,6,7,8,9,10due Wednesday, April 09, 2014

Midterm Exam #2:Monday, April 14, 2014

C. Segre (IIT) PHYS 406 - Spring 2014 April 07, 2014 1 / 13

Page 8: segre/phys406/14S/lecture_20.pdf · Generalized classical scattering problem z q b initial direction is conventionally along the z-axis b is the impact parameter, the per-pendicular

Generalized classical scattering problem

z

θ

b

initial direction is conventionallyalong the z-axis

b is the impact parameter, the per-pendicular (to the z-axis distancefrom the initial trajectory to thescattering center

θ is the scattering angle, the angu-lar deviation of the final trajectoryfrom the initial

assume that the scattering center is fixed (no recoil)

given the initial energy E , impact parameter b, and interaction forces,calculate the scattering angle θ

C. Segre (IIT) PHYS 406 - Spring 2014 April 07, 2014 2 / 13

Page 9: segre/phys406/14S/lecture_20.pdf · Generalized classical scattering problem z q b initial direction is conventionally along the z-axis b is the impact parameter, the per-pendicular

Generalized classical scattering problem

z

θ

b

initial direction is conventionallyalong the z-axis

b is the impact parameter, the per-pendicular (to the z-axis distancefrom the initial trajectory to thescattering center

θ is the scattering angle, the angu-lar deviation of the final trajectoryfrom the initial

assume that the scattering center is fixed (no recoil)

given the initial energy E , impact parameter b, and interaction forces,calculate the scattering angle θ

C. Segre (IIT) PHYS 406 - Spring 2014 April 07, 2014 2 / 13

Page 10: segre/phys406/14S/lecture_20.pdf · Generalized classical scattering problem z q b initial direction is conventionally along the z-axis b is the impact parameter, the per-pendicular

Generalized classical scattering problem

z

θ

b

initial direction is conventionallyalong the z-axis

b is the impact parameter, the per-pendicular (to the z-axis distancefrom the initial trajectory to thescattering center

θ is the scattering angle, the angu-lar deviation of the final trajectoryfrom the initial

assume that the scattering center is fixed (no recoil)

given the initial energy E , impact parameter b, and interaction forces,calculate the scattering angle θ

C. Segre (IIT) PHYS 406 - Spring 2014 April 07, 2014 2 / 13

Page 11: segre/phys406/14S/lecture_20.pdf · Generalized classical scattering problem z q b initial direction is conventionally along the z-axis b is the impact parameter, the per-pendicular

Generalized classical scattering problem

z

θ

b

initial direction is conventionallyalong the z-axis

b is the impact parameter, the per-pendicular (to the z-axis distancefrom the initial trajectory to thescattering center

θ is the scattering angle, the angu-lar deviation of the final trajectoryfrom the initial

assume that the scattering center is fixed (no recoil)

given the initial energy E , impact parameter b, and interaction forces,calculate the scattering angle θ

C. Segre (IIT) PHYS 406 - Spring 2014 April 07, 2014 2 / 13

Page 12: segre/phys406/14S/lecture_20.pdf · Generalized classical scattering problem z q b initial direction is conventionally along the z-axis b is the impact parameter, the per-pendicular

Generalized classical scattering problem

z

θ

b

initial direction is conventionallyalong the z-axis

b is the impact parameter, the per-pendicular (to the z-axis distancefrom the initial trajectory to thescattering center

θ is the scattering angle, the angu-lar deviation of the final trajectoryfrom the initial

assume that the scattering center is fixed (no recoil)

given the initial energy E , impact parameter b, and interaction forces,calculate the scattering angle θ

C. Segre (IIT) PHYS 406 - Spring 2014 April 07, 2014 2 / 13

Page 13: segre/phys406/14S/lecture_20.pdf · Generalized classical scattering problem z q b initial direction is conventionally along the z-axis b is the impact parameter, the per-pendicular

Generalized classical scattering problem

z

θ

b

initial direction is conventionallyalong the z-axis

b is the impact parameter, the per-pendicular (to the z-axis distancefrom the initial trajectory to thescattering center

θ is the scattering angle, the angu-lar deviation of the final trajectoryfrom the initial

assume that the scattering center is fixed (no recoil)

given the initial energy E , impact parameter b, and interaction forces,calculate the scattering angle θ

C. Segre (IIT) PHYS 406 - Spring 2014 April 07, 2014 2 / 13

Page 14: segre/phys406/14S/lecture_20.pdf · Generalized classical scattering problem z q b initial direction is conventionally along the z-axis b is the impact parameter, the per-pendicular

Differential cross-section

particles incident through the in-finitesmal area dσ will scatterthrough the solid angle dΩ

dσ = b dφ db

dΩ =r dθ R sin θ dφ

R2

= sin θ dθ dφ

D(θ) =dσ

dΩ=

b

sin θ

∣∣∣∣dbdθ∣∣∣∣

z

Rdθ

db

R

bdφ

Rsinθdφ

RsinθdΩ

the total cross section is

σ =

∫D(θ) dΩ

if the Luminosity, L, is defined as the number of incident particles per unitarea per unit time the number of particles incident through dσ is

dN = L dσ = LD(θ) dΩ −→ D(θ) =1

LdN

C. Segre (IIT) PHYS 406 - Spring 2014 April 07, 2014 3 / 13

Page 15: segre/phys406/14S/lecture_20.pdf · Generalized classical scattering problem z q b initial direction is conventionally along the z-axis b is the impact parameter, the per-pendicular

Differential cross-section

particles incident through the in-finitesmal area dσ

will scatterthrough the solid angle dΩ

dσ = b dφ db

dΩ =r dθ R sin θ dφ

R2

= sin θ dθ dφ

D(θ) =dσ

dΩ=

b

sin θ

∣∣∣∣dbdθ∣∣∣∣

z

Rdθ

db

R

bdφ

Rsinθdφ

RsinθdΩ

the total cross section is

σ =

∫D(θ) dΩ

if the Luminosity, L, is defined as the number of incident particles per unitarea per unit time the number of particles incident through dσ is

dN = L dσ = LD(θ) dΩ −→ D(θ) =1

LdN

C. Segre (IIT) PHYS 406 - Spring 2014 April 07, 2014 3 / 13

Page 16: segre/phys406/14S/lecture_20.pdf · Generalized classical scattering problem z q b initial direction is conventionally along the z-axis b is the impact parameter, the per-pendicular

Differential cross-section

particles incident through the in-finitesmal area dσ will scatterthrough the solid angle dΩ

dσ = b dφ db

dΩ =r dθ R sin θ dφ

R2

= sin θ dθ dφ

D(θ) =dσ

dΩ=

b

sin θ

∣∣∣∣dbdθ∣∣∣∣

z

Rdθ

db

R

bdφ

Rsinθdφ

RsinθdΩ

the total cross section is

σ =

∫D(θ) dΩ

if the Luminosity, L, is defined as the number of incident particles per unitarea per unit time the number of particles incident through dσ is

dN = L dσ = LD(θ) dΩ −→ D(θ) =1

LdN

C. Segre (IIT) PHYS 406 - Spring 2014 April 07, 2014 3 / 13

Page 17: segre/phys406/14S/lecture_20.pdf · Generalized classical scattering problem z q b initial direction is conventionally along the z-axis b is the impact parameter, the per-pendicular

Differential cross-section

particles incident through the in-finitesmal area dσ will scatterthrough the solid angle dΩ

dσ = b dφ db

dΩ =r dθ R sin θ dφ

R2

= sin θ dθ dφ

D(θ) =dσ

dΩ=

b

sin θ

∣∣∣∣dbdθ∣∣∣∣

z

Rdθ

db

R

bdφ

Rsinθdφ

RsinθdΩ

the total cross section is

σ =

∫D(θ) dΩ

if the Luminosity, L, is defined as the number of incident particles per unitarea per unit time the number of particles incident through dσ is

dN = L dσ = LD(θ) dΩ −→ D(θ) =1

LdN

C. Segre (IIT) PHYS 406 - Spring 2014 April 07, 2014 3 / 13

Page 18: segre/phys406/14S/lecture_20.pdf · Generalized classical scattering problem z q b initial direction is conventionally along the z-axis b is the impact parameter, the per-pendicular

Differential cross-section

particles incident through the in-finitesmal area dσ will scatterthrough the solid angle dΩ

dσ = b dφ db

dΩ =r dθ R sin θ dφ

R2

= sin θ dθ dφ

D(θ) =dσ

dΩ=

b

sin θ

∣∣∣∣dbdθ∣∣∣∣

z

Rdθ

db

R

bdφ

Rsinθdφ

RsinθdΩ

the total cross section is

σ =

∫D(θ) dΩ

if the Luminosity, L, is defined as the number of incident particles per unitarea per unit time the number of particles incident through dσ is

dN = L dσ = LD(θ) dΩ −→ D(θ) =1

LdN

C. Segre (IIT) PHYS 406 - Spring 2014 April 07, 2014 3 / 13

Page 19: segre/phys406/14S/lecture_20.pdf · Generalized classical scattering problem z q b initial direction is conventionally along the z-axis b is the impact parameter, the per-pendicular

Differential cross-section

particles incident through the in-finitesmal area dσ will scatterthrough the solid angle dΩ

dσ = b dφ db

dΩ =r dθ R sin θ dφ

R2

= sin θ dθ dφ

D(θ) =dσ

dΩ=

b

sin θ

∣∣∣∣dbdθ∣∣∣∣

z

Rdθ

db

R

bdφ

Rsinθdφ

RsinθdΩ

the total cross section is

σ =

∫D(θ) dΩ

if the Luminosity, L, is defined as the number of incident particles per unitarea per unit time the number of particles incident through dσ is

dN = L dσ = LD(θ) dΩ −→ D(θ) =1

LdN

C. Segre (IIT) PHYS 406 - Spring 2014 April 07, 2014 3 / 13

Page 20: segre/phys406/14S/lecture_20.pdf · Generalized classical scattering problem z q b initial direction is conventionally along the z-axis b is the impact parameter, the per-pendicular

Differential cross-section

particles incident through the in-finitesmal area dσ will scatterthrough the solid angle dΩ

dσ = b dφ db

dΩ =r dθ R sin θ dφ

R2

= sin θ dθ dφ

D(θ) =dσ

=b

sin θ

∣∣∣∣dbdθ∣∣∣∣

z

Rdθ

db

R

bdφ

Rsinθdφ

RsinθdΩ

the total cross section is

σ =

∫D(θ) dΩ

if the Luminosity, L, is defined as the number of incident particles per unitarea per unit time the number of particles incident through dσ is

dN = L dσ = LD(θ) dΩ −→ D(θ) =1

LdN

C. Segre (IIT) PHYS 406 - Spring 2014 April 07, 2014 3 / 13

Page 21: segre/phys406/14S/lecture_20.pdf · Generalized classical scattering problem z q b initial direction is conventionally along the z-axis b is the impact parameter, the per-pendicular

Differential cross-section

particles incident through the in-finitesmal area dσ will scatterthrough the solid angle dΩ

dσ = b dφ db

dΩ =r dθ R sin θ dφ

R2

= sin θ dθ dφ

D(θ) =dσ

dΩ=

b

sin θ

∣∣∣∣dbdθ∣∣∣∣

z

Rdθ

db

R

bdφ

Rsinθdφ

RsinθdΩ

the total cross section is

σ =

∫D(θ) dΩ

if the Luminosity, L, is defined as the number of incident particles per unitarea per unit time the number of particles incident through dσ is

dN = L dσ = LD(θ) dΩ −→ D(θ) =1

LdN

C. Segre (IIT) PHYS 406 - Spring 2014 April 07, 2014 3 / 13

Page 22: segre/phys406/14S/lecture_20.pdf · Generalized classical scattering problem z q b initial direction is conventionally along the z-axis b is the impact parameter, the per-pendicular

Differential cross-section

particles incident through the in-finitesmal area dσ will scatterthrough the solid angle dΩ

dσ = b dφ db

dΩ =r dθ R sin θ dφ

R2

= sin θ dθ dφ

D(θ) =dσ

dΩ=

b

sin θ

∣∣∣∣dbdθ∣∣∣∣

z

Rdθ

db

R

bdφ

Rsinθdφ

RsinθdΩ

the total cross section is

σ =

∫D(θ) dΩ

if the Luminosity, L, is defined as the number of incident particles per unitarea per unit time the number of particles incident through dσ is

dN = L dσ = LD(θ) dΩ −→ D(θ) =1

LdN

C. Segre (IIT) PHYS 406 - Spring 2014 April 07, 2014 3 / 13

Page 23: segre/phys406/14S/lecture_20.pdf · Generalized classical scattering problem z q b initial direction is conventionally along the z-axis b is the impact parameter, the per-pendicular

Differential cross-section

particles incident through the in-finitesmal area dσ will scatterthrough the solid angle dΩ

dσ = b dφ db

dΩ =r dθ R sin θ dφ

R2

= sin θ dθ dφ

D(θ) =dσ

dΩ=

b

sin θ

∣∣∣∣dbdθ∣∣∣∣

z

Rdθ

db

R

bdφ

Rsinθdφ

RsinθdΩ

the total cross section is

σ =

∫D(θ) dΩ

if the Luminosity, L, is defined as the number of incident particles per unitarea per unit time the number of particles incident through dσ is

dN = L dσ = LD(θ) dΩ −→ D(θ) =1

LdN

C. Segre (IIT) PHYS 406 - Spring 2014 April 07, 2014 3 / 13

Page 24: segre/phys406/14S/lecture_20.pdf · Generalized classical scattering problem z q b initial direction is conventionally along the z-axis b is the impact parameter, the per-pendicular

Differential cross-section

particles incident through the in-finitesmal area dσ will scatterthrough the solid angle dΩ

dσ = b dφ db

dΩ =r dθ R sin θ dφ

R2

= sin θ dθ dφ

D(θ) =dσ

dΩ=

b

sin θ

∣∣∣∣dbdθ∣∣∣∣

z

Rdθ

db

R

bdφ

Rsinθdφ

RsinθdΩ

the total cross section is

σ =

∫D(θ) dΩ

if the Luminosity, L, is defined as the number of incident particles per unitarea per unit time

the number of particles incident through dσ is

dN = L dσ = LD(θ) dΩ −→ D(θ) =1

LdN

C. Segre (IIT) PHYS 406 - Spring 2014 April 07, 2014 3 / 13

Page 25: segre/phys406/14S/lecture_20.pdf · Generalized classical scattering problem z q b initial direction is conventionally along the z-axis b is the impact parameter, the per-pendicular

Differential cross-section

particles incident through the in-finitesmal area dσ will scatterthrough the solid angle dΩ

dσ = b dφ db

dΩ =r dθ R sin θ dφ

R2

= sin θ dθ dφ

D(θ) =dσ

dΩ=

b

sin θ

∣∣∣∣dbdθ∣∣∣∣

z

Rdθ

db

R

bdφ

Rsinθdφ

RsinθdΩ

the total cross section is

σ =

∫D(θ) dΩ

if the Luminosity, L, is defined as the number of incident particles per unitarea per unit time the number of particles incident through dσ is

dN = L dσ = LD(θ) dΩ −→ D(θ) =1

LdN

C. Segre (IIT) PHYS 406 - Spring 2014 April 07, 2014 3 / 13

Page 26: segre/phys406/14S/lecture_20.pdf · Generalized classical scattering problem z q b initial direction is conventionally along the z-axis b is the impact parameter, the per-pendicular

Differential cross-section

particles incident through the in-finitesmal area dσ will scatterthrough the solid angle dΩ

dσ = b dφ db

dΩ =r dθ R sin θ dφ

R2

= sin θ dθ dφ

D(θ) =dσ

dΩ=

b

sin θ

∣∣∣∣dbdθ∣∣∣∣

z

Rdθ

db

R

bdφ

Rsinθdφ

RsinθdΩ

the total cross section is

σ =

∫D(θ) dΩ

if the Luminosity, L, is defined as the number of incident particles per unitarea per unit time the number of particles incident through dσ is

dN = L dσ

= LD(θ) dΩ −→ D(θ) =1

LdN

C. Segre (IIT) PHYS 406 - Spring 2014 April 07, 2014 3 / 13

Page 27: segre/phys406/14S/lecture_20.pdf · Generalized classical scattering problem z q b initial direction is conventionally along the z-axis b is the impact parameter, the per-pendicular

Differential cross-section

particles incident through the in-finitesmal area dσ will scatterthrough the solid angle dΩ

dσ = b dφ db

dΩ =r dθ R sin θ dφ

R2

= sin θ dθ dφ

D(θ) =dσ

dΩ=

b

sin θ

∣∣∣∣dbdθ∣∣∣∣

z

Rdθ

db

R

bdφ

Rsinθdφ

RsinθdΩ

the total cross section is

σ =

∫D(θ) dΩ

if the Luminosity, L, is defined as the number of incident particles per unitarea per unit time the number of particles incident through dσ is

dN = L dσ = LD(θ) dΩ

−→ D(θ) =1

LdN

C. Segre (IIT) PHYS 406 - Spring 2014 April 07, 2014 3 / 13

Page 28: segre/phys406/14S/lecture_20.pdf · Generalized classical scattering problem z q b initial direction is conventionally along the z-axis b is the impact parameter, the per-pendicular

Differential cross-section

particles incident through the in-finitesmal area dσ will scatterthrough the solid angle dΩ

dσ = b dφ db

dΩ =r dθ R sin θ dφ

R2

= sin θ dθ dφ

D(θ) =dσ

dΩ=

b

sin θ

∣∣∣∣dbdθ∣∣∣∣

z

Rdθ

db

R

bdφ

Rsinθdφ

RsinθdΩ

the total cross section is

σ =

∫D(θ) dΩ

if the Luminosity, L, is defined as the number of incident particles per unitarea per unit time the number of particles incident through dσ is

dN = L dσ = LD(θ) dΩ −→ D(θ) =1

LdN

C. Segre (IIT) PHYS 406 - Spring 2014 April 07, 2014 3 / 13

Page 29: segre/phys406/14S/lecture_20.pdf · Generalized classical scattering problem z q b initial direction is conventionally along the z-axis b is the impact parameter, the per-pendicular

Hard sphere scattering

A small particle strikes a large hard sphere of radius R with an impactparameter b elastically

b = R sinα, θ = π − 2α

b = R sin

2− θ

2

)= R cos

2

)θ =

2 cos−1(b/R), b ≤ R

0, b ≥ R

db

dθ= −1

2R sin

2

)

z

θ

α

α

R

D(θ) =R cos

(θ2

)sin θ

(R sin

(θ2

)2

)=

R2

4−→ σ =

R2

4

∫dΩ = πR2

C. Segre (IIT) PHYS 406 - Spring 2014 April 07, 2014 4 / 13

Page 30: segre/phys406/14S/lecture_20.pdf · Generalized classical scattering problem z q b initial direction is conventionally along the z-axis b is the impact parameter, the per-pendicular

Hard sphere scattering

A small particle strikes a large hard sphere of radius R with an impactparameter b elastically

b = R sinα,

θ = π − 2α

b = R sin

2− θ

2

)= R cos

2

)θ =

2 cos−1(b/R), b ≤ R

0, b ≥ R

db

dθ= −1

2R sin

2

)

z

θ

α

α

R

D(θ) =R cos

(θ2

)sin θ

(R sin

(θ2

)2

)=

R2

4−→ σ =

R2

4

∫dΩ = πR2

C. Segre (IIT) PHYS 406 - Spring 2014 April 07, 2014 4 / 13

Page 31: segre/phys406/14S/lecture_20.pdf · Generalized classical scattering problem z q b initial direction is conventionally along the z-axis b is the impact parameter, the per-pendicular

Hard sphere scattering

A small particle strikes a large hard sphere of radius R with an impactparameter b elastically

b = R sinα, θ = π − 2α

b = R sin

2− θ

2

)= R cos

2

)θ =

2 cos−1(b/R), b ≤ R

0, b ≥ R

db

dθ= −1

2R sin

2

)

z

θ

α

α

R

D(θ) =R cos

(θ2

)sin θ

(R sin

(θ2

)2

)=

R2

4−→ σ =

R2

4

∫dΩ = πR2

C. Segre (IIT) PHYS 406 - Spring 2014 April 07, 2014 4 / 13

Page 32: segre/phys406/14S/lecture_20.pdf · Generalized classical scattering problem z q b initial direction is conventionally along the z-axis b is the impact parameter, the per-pendicular

Hard sphere scattering

A small particle strikes a large hard sphere of radius R with an impactparameter b elastically

b = R sinα, θ = π − 2α

b = R sin

2− θ

2

)

= R cos

2

)θ =

2 cos−1(b/R), b ≤ R

0, b ≥ R

db

dθ= −1

2R sin

2

)

z

θ

α

α

R

D(θ) =R cos

(θ2

)sin θ

(R sin

(θ2

)2

)=

R2

4−→ σ =

R2

4

∫dΩ = πR2

C. Segre (IIT) PHYS 406 - Spring 2014 April 07, 2014 4 / 13

Page 33: segre/phys406/14S/lecture_20.pdf · Generalized classical scattering problem z q b initial direction is conventionally along the z-axis b is the impact parameter, the per-pendicular

Hard sphere scattering

A small particle strikes a large hard sphere of radius R with an impactparameter b elastically

b = R sinα, θ = π − 2α

b = R sin

2− θ

2

)= R cos

2

)

θ =

2 cos−1(b/R), b ≤ R

0, b ≥ R

db

dθ= −1

2R sin

2

)

z

θ

α

α

R

D(θ) =R cos

(θ2

)sin θ

(R sin

(θ2

)2

)=

R2

4−→ σ =

R2

4

∫dΩ = πR2

C. Segre (IIT) PHYS 406 - Spring 2014 April 07, 2014 4 / 13

Page 34: segre/phys406/14S/lecture_20.pdf · Generalized classical scattering problem z q b initial direction is conventionally along the z-axis b is the impact parameter, the per-pendicular

Hard sphere scattering

A small particle strikes a large hard sphere of radius R with an impactparameter b elastically

b = R sinα, θ = π − 2α

b = R sin

2− θ

2

)= R cos

2

)θ =

2 cos−1(b/R), b ≤ R

0, b ≥ R

db

dθ= −1

2R sin

2

)

z

θ

α

α

R

D(θ) =R cos

(θ2

)sin θ

(R sin

(θ2

)2

)=

R2

4−→ σ =

R2

4

∫dΩ = πR2

C. Segre (IIT) PHYS 406 - Spring 2014 April 07, 2014 4 / 13

Page 35: segre/phys406/14S/lecture_20.pdf · Generalized classical scattering problem z q b initial direction is conventionally along the z-axis b is the impact parameter, the per-pendicular

Hard sphere scattering

A small particle strikes a large hard sphere of radius R with an impactparameter b elastically

b = R sinα, θ = π − 2α

b = R sin

2− θ

2

)= R cos

2

)θ =

2 cos−1(b/R), b ≤ R

0, b ≥ R

db

dθ= −1

2R sin

2

) z

θ

α

α

R

D(θ) =R cos

(θ2

)sin θ

(R sin

(θ2

)2

)=

R2

4−→ σ =

R2

4

∫dΩ = πR2

C. Segre (IIT) PHYS 406 - Spring 2014 April 07, 2014 4 / 13

Page 36: segre/phys406/14S/lecture_20.pdf · Generalized classical scattering problem z q b initial direction is conventionally along the z-axis b is the impact parameter, the per-pendicular

Hard sphere scattering

A small particle strikes a large hard sphere of radius R with an impactparameter b elastically

b = R sinα, θ = π − 2α

b = R sin

2− θ

2

)= R cos

2

)θ =

2 cos−1(b/R), b ≤ R

0, b ≥ R

db

dθ= −1

2R sin

2

) z

θ

α

α

R

D(θ) =R cos

(θ2

)sin θ

(R sin

(θ2

)2

)

=R2

4−→ σ =

R2

4

∫dΩ = πR2

C. Segre (IIT) PHYS 406 - Spring 2014 April 07, 2014 4 / 13

Page 37: segre/phys406/14S/lecture_20.pdf · Generalized classical scattering problem z q b initial direction is conventionally along the z-axis b is the impact parameter, the per-pendicular

Hard sphere scattering

A small particle strikes a large hard sphere of radius R with an impactparameter b elastically

b = R sinα, θ = π − 2α

b = R sin

2− θ

2

)= R cos

2

)θ =

2 cos−1(b/R), b ≤ R

0, b ≥ R

db

dθ= −1

2R sin

2

) z

θ

α

α

R

D(θ) =R cos

(θ2

)sin θ

(R sin

(θ2

)2

)=

R2

4

−→ σ =R2

4

∫dΩ = πR2

C. Segre (IIT) PHYS 406 - Spring 2014 April 07, 2014 4 / 13

Page 38: segre/phys406/14S/lecture_20.pdf · Generalized classical scattering problem z q b initial direction is conventionally along the z-axis b is the impact parameter, the per-pendicular

Hard sphere scattering

A small particle strikes a large hard sphere of radius R with an impactparameter b elastically

b = R sinα, θ = π − 2α

b = R sin

2− θ

2

)= R cos

2

)θ =

2 cos−1(b/R), b ≤ R

0, b ≥ R

db

dθ= −1

2R sin

2

) z

θ

α

α

R

D(θ) =R cos

(θ2

)sin θ

(R sin

(θ2

)2

)=

R2

4−→ σ =

R2

4

∫dΩ

= πR2

C. Segre (IIT) PHYS 406 - Spring 2014 April 07, 2014 4 / 13

Page 39: segre/phys406/14S/lecture_20.pdf · Generalized classical scattering problem z q b initial direction is conventionally along the z-axis b is the impact parameter, the per-pendicular

Hard sphere scattering

A small particle strikes a large hard sphere of radius R with an impactparameter b elastically

b = R sinα, θ = π − 2α

b = R sin

2− θ

2

)= R cos

2

)θ =

2 cos−1(b/R), b ≤ R

0, b ≥ R

db

dθ= −1

2R sin

2

) z

θ

α

α

R

D(θ) =R cos

(θ2

)sin θ

(R sin

(θ2

)2

)=

R2

4−→ σ =

R2

4

∫dΩ = πR2

C. Segre (IIT) PHYS 406 - Spring 2014 April 07, 2014 4 / 13

Page 40: segre/phys406/14S/lecture_20.pdf · Generalized classical scattering problem z q b initial direction is conventionally along the z-axis b is the impact parameter, the per-pendicular

Quantum scattering

z

θ

eikz

re

ikr

treat incident particles as planewaves and scattered particles asspherical waves, about scatteringcenter

at far points from the scatteringcenter, the solutions must be

ψi (z) = Ae ikz

ψs(r) = Be ikr

k =

√2mE

~

ψ(r , θ) ≈ A

e ikz + f (θ)

e ikr

r

a superposition of the incoming andscattered waves

the differential cross-section is

D(θ) =dσ

dΩ= |f (θ)|2

C. Segre (IIT) PHYS 406 - Spring 2014 April 07, 2014 5 / 13

Page 41: segre/phys406/14S/lecture_20.pdf · Generalized classical scattering problem z q b initial direction is conventionally along the z-axis b is the impact parameter, the per-pendicular

Quantum scattering

z

θ

eikz

re

ikr

treat incident particles as planewaves

and scattered particles asspherical waves, about scatteringcenter

at far points from the scatteringcenter, the solutions must be

ψi (z) = Ae ikz

ψs(r) = Be ikr

k =

√2mE

~

ψ(r , θ) ≈ A

e ikz + f (θ)

e ikr

r

a superposition of the incoming andscattered waves

the differential cross-section is

D(θ) =dσ

dΩ= |f (θ)|2

C. Segre (IIT) PHYS 406 - Spring 2014 April 07, 2014 5 / 13

Page 42: segre/phys406/14S/lecture_20.pdf · Generalized classical scattering problem z q b initial direction is conventionally along the z-axis b is the impact parameter, the per-pendicular

Quantum scattering

z

θ

eikz

re

ikr

treat incident particles as planewaves

and scattered particles asspherical waves, about scatteringcenter

at far points from the scatteringcenter, the solutions must be

ψi (z) = Ae ikz

ψs(r) = Be ikr

k =

√2mE

~

ψ(r , θ) ≈ A

e ikz + f (θ)

e ikr

r

a superposition of the incoming andscattered waves

the differential cross-section is

D(θ) =dσ

dΩ= |f (θ)|2

C. Segre (IIT) PHYS 406 - Spring 2014 April 07, 2014 5 / 13

Page 43: segre/phys406/14S/lecture_20.pdf · Generalized classical scattering problem z q b initial direction is conventionally along the z-axis b is the impact parameter, the per-pendicular

Quantum scattering

z

θ

eikz

re

ikr

treat incident particles as planewaves and scattered particles asspherical waves, about scatteringcenter

at far points from the scatteringcenter, the solutions must be

ψi (z) = Ae ikz

ψs(r) = Be ikr

k =

√2mE

~

ψ(r , θ) ≈ A

e ikz + f (θ)

e ikr

r

a superposition of the incoming andscattered waves

the differential cross-section is

D(θ) =dσ

dΩ= |f (θ)|2

C. Segre (IIT) PHYS 406 - Spring 2014 April 07, 2014 5 / 13

Page 44: segre/phys406/14S/lecture_20.pdf · Generalized classical scattering problem z q b initial direction is conventionally along the z-axis b is the impact parameter, the per-pendicular

Quantum scattering

z

θ

eikz

re

ikr

treat incident particles as planewaves and scattered particles asspherical waves, about scatteringcenter

at far points from the scatteringcenter, the solutions must be

ψi (z) = Ae ikz

ψs(r) = Be ikr

k =

√2mE

~

ψ(r , θ) ≈ A

e ikz + f (θ)

e ikr

r

a superposition of the incoming andscattered waves

the differential cross-section is

D(θ) =dσ

dΩ= |f (θ)|2

C. Segre (IIT) PHYS 406 - Spring 2014 April 07, 2014 5 / 13

Page 45: segre/phys406/14S/lecture_20.pdf · Generalized classical scattering problem z q b initial direction is conventionally along the z-axis b is the impact parameter, the per-pendicular

Quantum scattering

z

θ

eikz

re

ikr

treat incident particles as planewaves and scattered particles asspherical waves, about scatteringcenter

at far points from the scatteringcenter, the solutions must be

ψi (z) = Ae ikz

ψs(r) = Be ikr

k =

√2mE

~

ψ(r , θ) ≈ A

e ikz + f (θ)

e ikr

r

a superposition of the incoming andscattered waves

the differential cross-section is

D(θ) =dσ

dΩ= |f (θ)|2

C. Segre (IIT) PHYS 406 - Spring 2014 April 07, 2014 5 / 13

Page 46: segre/phys406/14S/lecture_20.pdf · Generalized classical scattering problem z q b initial direction is conventionally along the z-axis b is the impact parameter, the per-pendicular

Quantum scattering

z

θ

eikz

re

ikr

treat incident particles as planewaves and scattered particles asspherical waves, about scatteringcenter

at far points from the scatteringcenter, the solutions must be

ψi (z) = Ae ikz

ψs(r) = Be ikr

k =

√2mE

~

ψ(r , θ) ≈ A

e ikz + f (θ)

e ikr

r

a superposition of the incoming andscattered waves

the differential cross-section is

D(θ) =dσ

dΩ= |f (θ)|2

C. Segre (IIT) PHYS 406 - Spring 2014 April 07, 2014 5 / 13

Page 47: segre/phys406/14S/lecture_20.pdf · Generalized classical scattering problem z q b initial direction is conventionally along the z-axis b is the impact parameter, the per-pendicular

Quantum scattering

z

θ

eikz

re

ikr

treat incident particles as planewaves and scattered particles asspherical waves, about scatteringcenter

at far points from the scatteringcenter, the solutions must be

ψi (z) = Ae ikz

ψs(r) = Be ikr

k =

√2mE

~

ψ(r , θ) ≈ A

e ikz + f (θ)

e ikr

r

a superposition of the incoming andscattered waves

the differential cross-section is

D(θ) =dσ

dΩ= |f (θ)|2

C. Segre (IIT) PHYS 406 - Spring 2014 April 07, 2014 5 / 13

Page 48: segre/phys406/14S/lecture_20.pdf · Generalized classical scattering problem z q b initial direction is conventionally along the z-axis b is the impact parameter, the per-pendicular

Quantum scattering

z

θ

eikz

re

ikr

treat incident particles as planewaves and scattered particles asspherical waves, about scatteringcenter

at far points from the scatteringcenter, the solutions must be

ψi (z) = Ae ikz

ψs(r) = Be ikr

k =

√2mE

~

ψ(r , θ) ≈ A

e ikz + f (θ)

e ikr

r

a superposition of the incoming andscattered waves

the differential cross-section is

D(θ) =dσ

dΩ= |f (θ)|2

C. Segre (IIT) PHYS 406 - Spring 2014 April 07, 2014 5 / 13

Page 49: segre/phys406/14S/lecture_20.pdf · Generalized classical scattering problem z q b initial direction is conventionally along the z-axis b is the impact parameter, the per-pendicular

Quantum scattering

z

θ

eikz

re

ikr

treat incident particles as planewaves and scattered particles asspherical waves, about scatteringcenter

at far points from the scatteringcenter, the solutions must be

ψi (z) = Ae ikz

ψs(r) = Be ikr

k =

√2mE

~

ψ(r , θ) ≈ A

e ikz + f (θ)

e ikr

r

a superposition of the incoming andscattered waves

the differential cross-section is

D(θ) =dσ

dΩ= |f (θ)|2

C. Segre (IIT) PHYS 406 - Spring 2014 April 07, 2014 5 / 13

Page 50: segre/phys406/14S/lecture_20.pdf · Generalized classical scattering problem z q b initial direction is conventionally along the z-axis b is the impact parameter, the per-pendicular

Quantum scattering

z

θ

eikz

re

ikr

treat incident particles as planewaves and scattered particles asspherical waves, about scatteringcenter

at far points from the scatteringcenter, the solutions must be

ψi (z) = Ae ikz

ψs(r) = Be ikr

k =

√2mE

~

ψ(r , θ) ≈ A

e ikz + f (θ)

e ikr

r

a superposition of the incoming andscattered waves

the differential cross-section is

D(θ) =dσ

= |f (θ)|2

C. Segre (IIT) PHYS 406 - Spring 2014 April 07, 2014 5 / 13

Page 51: segre/phys406/14S/lecture_20.pdf · Generalized classical scattering problem z q b initial direction is conventionally along the z-axis b is the impact parameter, the per-pendicular

Quantum scattering

z

θ

eikz

re

ikr

treat incident particles as planewaves and scattered particles asspherical waves, about scatteringcenter

at far points from the scatteringcenter, the solutions must be

ψi (z) = Ae ikz

ψs(r) = Be ikr

k =

√2mE

~

ψ(r , θ) ≈ A

e ikz + f (θ)

e ikr

r

a superposition of the incoming andscattered waves

the differential cross-section is

D(θ) =dσ

dΩ= |f (θ)|2

C. Segre (IIT) PHYS 406 - Spring 2014 April 07, 2014 5 / 13

Page 52: segre/phys406/14S/lecture_20.pdf · Generalized classical scattering problem z q b initial direction is conventionally along the z-axis b is the impact parameter, the per-pendicular

Partial wave analysis

For a spherically symmetric potential, the scattered wave can be separatedinto a radial portion and spherical harmonics

the modified radial func-tion, u(r) = rR(r), mustsatisfy

for very large r , V (r)→ 0and we neglect the cen-trifugal term

the second term, the in-coming wave can be ig-nored (D = 0)

ψ(r , θ, φ) = R(r)Yml (θ, φ)

Eu = − ~2

2m

d2u

dr2+

[V (r) +

~2

2m

l(l + 1)

r2

]u

d2u

dr2= −k2u

u(r) = Ce ikr + De−ikr

R(r) ∼ e ikr

r

this is precisely the form expected from the physical argument in thekr 1 regime (the radiation zone)

C. Segre (IIT) PHYS 406 - Spring 2014 April 07, 2014 6 / 13

Page 53: segre/phys406/14S/lecture_20.pdf · Generalized classical scattering problem z q b initial direction is conventionally along the z-axis b is the impact parameter, the per-pendicular

Partial wave analysis

For a spherically symmetric potential, the scattered wave can be separatedinto a radial portion and spherical harmonics

the modified radial func-tion, u(r) = rR(r), mustsatisfy

for very large r , V (r)→ 0and we neglect the cen-trifugal term

the second term, the in-coming wave can be ig-nored (D = 0)

ψ(r , θ, φ) = R(r)Yml (θ, φ)

Eu = − ~2

2m

d2u

dr2+

[V (r) +

~2

2m

l(l + 1)

r2

]u

d2u

dr2= −k2u

u(r) = Ce ikr + De−ikr

R(r) ∼ e ikr

r

this is precisely the form expected from the physical argument in thekr 1 regime (the radiation zone)

C. Segre (IIT) PHYS 406 - Spring 2014 April 07, 2014 6 / 13

Page 54: segre/phys406/14S/lecture_20.pdf · Generalized classical scattering problem z q b initial direction is conventionally along the z-axis b is the impact parameter, the per-pendicular

Partial wave analysis

For a spherically symmetric potential, the scattered wave can be separatedinto a radial portion and spherical harmonics

the modified radial func-tion, u(r) = rR(r), mustsatisfy

for very large r , V (r)→ 0and we neglect the cen-trifugal term

the second term, the in-coming wave can be ig-nored (D = 0)

ψ(r , θ, φ) = R(r)Yml (θ, φ)

Eu = − ~2

2m

d2u

dr2+

[V (r) +

~2

2m

l(l + 1)

r2

]u

d2u

dr2= −k2u

u(r) = Ce ikr + De−ikr

R(r) ∼ e ikr

r

this is precisely the form expected from the physical argument in thekr 1 regime (the radiation zone)

C. Segre (IIT) PHYS 406 - Spring 2014 April 07, 2014 6 / 13

Page 55: segre/phys406/14S/lecture_20.pdf · Generalized classical scattering problem z q b initial direction is conventionally along the z-axis b is the impact parameter, the per-pendicular

Partial wave analysis

For a spherically symmetric potential, the scattered wave can be separatedinto a radial portion and spherical harmonics

the modified radial func-tion, u(r) = rR(r), mustsatisfy

for very large r , V (r)→ 0and we neglect the cen-trifugal term

the second term, the in-coming wave can be ig-nored (D = 0)

ψ(r , θ, φ) = R(r)Yml (θ, φ)

Eu = − ~2

2m

d2u

dr2+

[V (r) +

~2

2m

l(l + 1)

r2

]u

d2u

dr2= −k2u

u(r) = Ce ikr + De−ikr

R(r) ∼ e ikr

r

this is precisely the form expected from the physical argument in thekr 1 regime (the radiation zone)

C. Segre (IIT) PHYS 406 - Spring 2014 April 07, 2014 6 / 13

Page 56: segre/phys406/14S/lecture_20.pdf · Generalized classical scattering problem z q b initial direction is conventionally along the z-axis b is the impact parameter, the per-pendicular

Partial wave analysis

For a spherically symmetric potential, the scattered wave can be separatedinto a radial portion and spherical harmonics

the modified radial func-tion, u(r) = rR(r), mustsatisfy

for very large r , V (r)→ 0and we neglect the cen-trifugal term

the second term, the in-coming wave can be ig-nored (D = 0)

ψ(r , θ, φ) = R(r)Yml (θ, φ)

Eu = − ~2

2m

d2u

dr2+

[V (r) +

~2

2m

l(l + 1)

r2

]u

d2u

dr2= −k2u

u(r) = Ce ikr + De−ikr

R(r) ∼ e ikr

r

this is precisely the form expected from the physical argument in thekr 1 regime (the radiation zone)

C. Segre (IIT) PHYS 406 - Spring 2014 April 07, 2014 6 / 13

Page 57: segre/phys406/14S/lecture_20.pdf · Generalized classical scattering problem z q b initial direction is conventionally along the z-axis b is the impact parameter, the per-pendicular

Partial wave analysis

For a spherically symmetric potential, the scattered wave can be separatedinto a radial portion and spherical harmonics

the modified radial func-tion, u(r) = rR(r), mustsatisfy

for very large r , V (r)→ 0and we neglect the cen-trifugal term

the second term, the in-coming wave can be ig-nored (D = 0)

ψ(r , θ, φ) = R(r)Yml (θ, φ)

Eu = − ~2

2m

d2u

dr2+

[V (r) +

~2

2m

l(l + 1)

r2

]u

d2u

dr2= −k2u

u(r) = Ce ikr + De−ikr

R(r) ∼ e ikr

r

this is precisely the form expected from the physical argument in thekr 1 regime (the radiation zone)

C. Segre (IIT) PHYS 406 - Spring 2014 April 07, 2014 6 / 13

Page 58: segre/phys406/14S/lecture_20.pdf · Generalized classical scattering problem z q b initial direction is conventionally along the z-axis b is the impact parameter, the per-pendicular

Partial wave analysis

For a spherically symmetric potential, the scattered wave can be separatedinto a radial portion and spherical harmonics

the modified radial func-tion, u(r) = rR(r), mustsatisfy

for very large r , V (r)→ 0and we neglect the cen-trifugal term

the second term, the in-coming wave can be ig-nored (D = 0)

ψ(r , θ, φ) = R(r)Yml (θ, φ)

Eu = − ~2

2m

d2u

dr2+

[V (r) +

~2

2m

l(l + 1)

r2

]u

d2u

dr2= −k2u

u(r) = Ce ikr + De−ikr

R(r) ∼ e ikr

r

this is precisely the form expected from the physical argument in thekr 1 regime (the radiation zone)

C. Segre (IIT) PHYS 406 - Spring 2014 April 07, 2014 6 / 13

Page 59: segre/phys406/14S/lecture_20.pdf · Generalized classical scattering problem z q b initial direction is conventionally along the z-axis b is the impact parameter, the per-pendicular

Partial wave analysis

For a spherically symmetric potential, the scattered wave can be separatedinto a radial portion and spherical harmonics

the modified radial func-tion, u(r) = rR(r), mustsatisfy

for very large r , V (r)→ 0and we neglect the cen-trifugal term

the second term, the in-coming wave can be ig-nored (D = 0)

ψ(r , θ, φ) = R(r)Yml (θ, φ)

Eu = − ~2

2m

d2u

dr2+

[V (r) +

~2

2m

l(l + 1)

r2

]u

d2u

dr2= −k2u

u(r) = Ce ikr + De−ikr

R(r) ∼ e ikr

r

this is precisely the form expected from the physical argument in thekr 1 regime (the radiation zone)

C. Segre (IIT) PHYS 406 - Spring 2014 April 07, 2014 6 / 13

Page 60: segre/phys406/14S/lecture_20.pdf · Generalized classical scattering problem z q b initial direction is conventionally along the z-axis b is the impact parameter, the per-pendicular

Partial wave analysis

For a spherically symmetric potential, the scattered wave can be separatedinto a radial portion and spherical harmonics

the modified radial func-tion, u(r) = rR(r), mustsatisfy

for very large r , V (r)→ 0and we neglect the cen-trifugal term

the second term, the in-coming wave can be ig-nored (D = 0)

ψ(r , θ, φ) = R(r)Yml (θ, φ)

Eu = − ~2

2m

d2u

dr2+

[V (r) +

~2

2m

l(l + 1)

r2

]u

d2u

dr2= −k2u

u(r) = Ce ikr + De−ikr

R(r) ∼ e ikr

r

this is precisely the form expected from the physical argument in thekr 1 regime (the radiation zone)

C. Segre (IIT) PHYS 406 - Spring 2014 April 07, 2014 6 / 13

Page 61: segre/phys406/14S/lecture_20.pdf · Generalized classical scattering problem z q b initial direction is conventionally along the z-axis b is the impact parameter, the per-pendicular

Partial wave analysis

For a spherically symmetric potential, the scattered wave can be separatedinto a radial portion and spherical harmonics

the modified radial func-tion, u(r) = rR(r), mustsatisfy

for very large r , V (r)→ 0and we neglect the cen-trifugal term

the second term, the in-coming wave can be ig-nored (D = 0)

ψ(r , θ, φ) = R(r)Yml (θ, φ)

Eu = − ~2

2m

d2u

dr2+

[V (r) +

~2

2m

l(l + 1)

r2

]u

d2u

dr2= −k2u

u(r) = Ce ikr + De−ikr

R(r) ∼ e ikr

r

this is precisely the form expected from the physical argument in thekr 1 regime (the radiation zone)

C. Segre (IIT) PHYS 406 - Spring 2014 April 07, 2014 6 / 13

Page 62: segre/phys406/14S/lecture_20.pdf · Generalized classical scattering problem z q b initial direction is conventionally along the z-axis b is the impact parameter, the per-pendicular

Localized potential

V 0

V 0

kr 1

in the Intermediate zonethe Schrodinger equation be-comes

keep only the outgoing wave,

h(1)l

Radiation zone - simple spherical wave so-lution

Intermediate region - only include cen-trifugal term

Scattering region - no approximations ap-plied

d2u

dr2− l(l + 1)

r2u = −k2u

the solutions are linear combinations ofthe spherical Hankel functions

h(1)l (x) ≡ jl(x) + inl(x)

r→∞−−−→ e ikr

r

h(2)l (x) ≡ jl(x)− inl(x)

r→∞−−−→ e−ikr

r

C. Segre (IIT) PHYS 406 - Spring 2014 April 07, 2014 7 / 13

Page 63: segre/phys406/14S/lecture_20.pdf · Generalized classical scattering problem z q b initial direction is conventionally along the z-axis b is the impact parameter, the per-pendicular

Localized potential

V 0

V 0

kr 1

in the Intermediate zonethe Schrodinger equation be-comes

keep only the outgoing wave,

h(1)l

Radiation zone - simple spherical wave so-lution

Intermediate region - only include cen-trifugal term

Scattering region - no approximations ap-plied

d2u

dr2− l(l + 1)

r2u = −k2u

the solutions are linear combinations ofthe spherical Hankel functions

h(1)l (x) ≡ jl(x) + inl(x)

r→∞−−−→ e ikr

r

h(2)l (x) ≡ jl(x)− inl(x)

r→∞−−−→ e−ikr

r

C. Segre (IIT) PHYS 406 - Spring 2014 April 07, 2014 7 / 13

Page 64: segre/phys406/14S/lecture_20.pdf · Generalized classical scattering problem z q b initial direction is conventionally along the z-axis b is the impact parameter, the per-pendicular

Localized potential

V 0

V 0

kr 1

in the Intermediate zonethe Schrodinger equation be-comes

keep only the outgoing wave,

h(1)l

Radiation zone - simple spherical wave so-lution

Intermediate region - only include cen-trifugal term

Scattering region - no approximations ap-plied

d2u

dr2− l(l + 1)

r2u = −k2u

the solutions are linear combinations ofthe spherical Hankel functions

h(1)l (x) ≡ jl(x) + inl(x)

r→∞−−−→ e ikr

r

h(2)l (x) ≡ jl(x)− inl(x)

r→∞−−−→ e−ikr

r

C. Segre (IIT) PHYS 406 - Spring 2014 April 07, 2014 7 / 13

Page 65: segre/phys406/14S/lecture_20.pdf · Generalized classical scattering problem z q b initial direction is conventionally along the z-axis b is the impact parameter, the per-pendicular

Localized potential

V 0

V 0

kr 1

in the Intermediate zonethe Schrodinger equation be-comes

keep only the outgoing wave,

h(1)l

Radiation zone - simple spherical wave so-lution

Intermediate region - only include cen-trifugal term

Scattering region - no approximations ap-plied

d2u

dr2− l(l + 1)

r2u = −k2u

the solutions are linear combinations ofthe spherical Hankel functions

h(1)l (x) ≡ jl(x) + inl(x)

r→∞−−−→ e ikr

r

h(2)l (x) ≡ jl(x)− inl(x)

r→∞−−−→ e−ikr

r

C. Segre (IIT) PHYS 406 - Spring 2014 April 07, 2014 7 / 13

Page 66: segre/phys406/14S/lecture_20.pdf · Generalized classical scattering problem z q b initial direction is conventionally along the z-axis b is the impact parameter, the per-pendicular

Localized potential

V 0

V 0

kr 1

in the Intermediate zonethe Schrodinger equation be-comes

keep only the outgoing wave,

h(1)l

Radiation zone - simple spherical wave so-lution

Intermediate region - only include cen-trifugal term

Scattering region - no approximations ap-plied

d2u

dr2− l(l + 1)

r2u = −k2u

the solutions are linear combinations ofthe spherical Hankel functions

h(1)l (x) ≡ jl(x) + inl(x)

r→∞−−−→ e ikr

r

h(2)l (x) ≡ jl(x)− inl(x)

r→∞−−−→ e−ikr

r

C. Segre (IIT) PHYS 406 - Spring 2014 April 07, 2014 7 / 13

Page 67: segre/phys406/14S/lecture_20.pdf · Generalized classical scattering problem z q b initial direction is conventionally along the z-axis b is the impact parameter, the per-pendicular

Localized potential

V 0

V 0

kr 1

in the Intermediate zonethe Schrodinger equation be-comes

keep only the outgoing wave,

h(1)l

Radiation zone - simple spherical wave so-lution

Intermediate region - only include cen-trifugal term

Scattering region - no approximations ap-plied

d2u

dr2− l(l + 1)

r2u = −k2u

the solutions are linear combinations ofthe spherical Hankel functions

h(1)l (x) ≡ jl(x) + inl(x)

r→∞−−−→ e ikr

r

h(2)l (x) ≡ jl(x)− inl(x)

r→∞−−−→ e−ikr

r

C. Segre (IIT) PHYS 406 - Spring 2014 April 07, 2014 7 / 13

Page 68: segre/phys406/14S/lecture_20.pdf · Generalized classical scattering problem z q b initial direction is conventionally along the z-axis b is the impact parameter, the per-pendicular

Localized potential

V 0

V 0

kr 1

in the Intermediate zonethe Schrodinger equation be-comes

keep only the outgoing wave,

h(1)l

Radiation zone - simple spherical wave so-lution

Intermediate region - only include cen-trifugal term

Scattering region - no approximations ap-plied

d2u

dr2− l(l + 1)

r2u = −k2u

the solutions are linear combinations ofthe spherical Hankel functions

h(1)l (x) ≡ jl(x) + inl(x)

r→∞−−−→ e ikr

r

h(2)l (x) ≡ jl(x)− inl(x)

r→∞−−−→ e−ikr

r

C. Segre (IIT) PHYS 406 - Spring 2014 April 07, 2014 7 / 13

Page 69: segre/phys406/14S/lecture_20.pdf · Generalized classical scattering problem z q b initial direction is conventionally along the z-axis b is the impact parameter, the per-pendicular

Localized potential

V 0

V 0

kr 1

in the Intermediate zonethe Schrodinger equation be-comes

keep only the outgoing wave,

h(1)l

Radiation zone - simple spherical wave so-lution

Intermediate region - only include cen-trifugal term

Scattering region - no approximations ap-plied

d2u

dr2− l(l + 1)

r2u = −k2u

the solutions are linear combinations ofthe spherical Hankel functions

h(1)l (x) ≡ jl(x) + inl(x)

r→∞−−−→ e ikr

r

h(2)l (x) ≡ jl(x)− inl(x)

r→∞−−−→ e−ikr

r

C. Segre (IIT) PHYS 406 - Spring 2014 April 07, 2014 7 / 13

Page 70: segre/phys406/14S/lecture_20.pdf · Generalized classical scattering problem z q b initial direction is conventionally along the z-axis b is the impact parameter, the per-pendicular

Localized potential

V 0

V 0

kr 1

in the Intermediate zonethe Schrodinger equation be-comes

keep only the outgoing wave,

h(1)l

Radiation zone - simple spherical wave so-lution

Intermediate region - only include cen-trifugal term

Scattering region - no approximations ap-plied

d2u

dr2− l(l + 1)

r2u = −k2u

the solutions are linear combinations ofthe spherical Hankel functions

h(1)l (x) ≡ jl(x) + inl(x)

r→∞−−−→ e ikr

r

h(2)l (x) ≡ jl(x)− inl(x)

r→∞−−−→ e−ikr

r

C. Segre (IIT) PHYS 406 - Spring 2014 April 07, 2014 7 / 13

Page 71: segre/phys406/14S/lecture_20.pdf · Generalized classical scattering problem z q b initial direction is conventionally along the z-axis b is the impact parameter, the per-pendicular

Localized potential

V 0

V 0

kr 1

in the Intermediate zonethe Schrodinger equation be-comes

keep only the outgoing wave,

h(1)l

Radiation zone - simple spherical wave so-lution

Intermediate region - only include cen-trifugal term

Scattering region - no approximations ap-plied

d2u

dr2− l(l + 1)

r2u = −k2u

the solutions are linear combinations ofthe spherical Hankel functions

h(1)l (x) ≡ jl(x) + inl(x)

r→∞−−−→ e ikr

r

h(2)l (x) ≡ jl(x)− inl(x)

r→∞−−−→ e−ikr

r

C. Segre (IIT) PHYS 406 - Spring 2014 April 07, 2014 7 / 13

Page 72: segre/phys406/14S/lecture_20.pdf · Generalized classical scattering problem z q b initial direction is conventionally along the z-axis b is the impact parameter, the per-pendicular

Localized potential

V 0

V 0

kr 1

in the Intermediate zonethe Schrodinger equation be-comes

keep only the outgoing wave,

h(1)l

Radiation zone - simple spherical wave so-lution

Intermediate region - only include cen-trifugal term

Scattering region - no approximations ap-plied

d2u

dr2− l(l + 1)

r2u = −k2u

the solutions are linear combinations ofthe spherical Hankel functions

h(1)l (x) ≡ jl(x) + inl(x)

r→∞−−−→ e ikr

r

h(2)l (x) ≡ jl(x)− inl(x)

r→∞−−−→ e−ikr

rC. Segre (IIT) PHYS 406 - Spring 2014 April 07, 2014 7 / 13

Page 73: segre/phys406/14S/lecture_20.pdf · Generalized classical scattering problem z q b initial direction is conventionally along the z-axis b is the impact parameter, the per-pendicular

Localized potential

V 0

V 0

kr 1

in the Intermediate zonethe Schrodinger equation be-comes

keep only the outgoing wave,

h(1)l

Radiation zone - simple spherical wave so-lution

Intermediate region - only include cen-trifugal term

Scattering region - no approximations ap-plied

d2u

dr2− l(l + 1)

r2u = −k2u

the solutions are linear combinations ofthe spherical Hankel functions

h(1)l (x) ≡ jl(x) + inl(x)

r→∞−−−→ e ikr

r

h(2)l (x) ≡ jl(x)− inl(x)

r→∞−−−→ e−ikr

rC. Segre (IIT) PHYS 406 - Spring 2014 April 07, 2014 7 / 13

Page 74: segre/phys406/14S/lecture_20.pdf · Generalized classical scattering problem z q b initial direction is conventionally along the z-axis b is the impact parameter, the per-pendicular

Hankel function of the first kind

Hankel functions are combi-nations of Bessel functionsand the Hankel function ofthe first kind is

h(1)0 = −i e

ix

x

h(1)1 =

(− i

x2− 1

x

)e ix

h(1)2 =

(− 3i

x3− 3

x2+

i

x

)e ix

h(1)l

x1−−−→ (−i)l+1 eix

x

the real and imaginary partsof the Hankel functions are

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0 π 2π 3π

Im[h

l(1) ]

x

l=0l=1

l=2

C. Segre (IIT) PHYS 406 - Spring 2014 April 07, 2014 8 / 13

Page 75: segre/phys406/14S/lecture_20.pdf · Generalized classical scattering problem z q b initial direction is conventionally along the z-axis b is the impact parameter, the per-pendicular

Hankel function of the first kind

Hankel functions are combi-nations of Bessel functionsand the Hankel function ofthe first kind is

h(1)0 = −i e

ix

x

h(1)1 =

(− i

x2− 1

x

)e ix

h(1)2 =

(− 3i

x3− 3

x2+

i

x

)e ix

h(1)l

x1−−−→ (−i)l+1 eix

x

the real and imaginary partsof the Hankel functions are

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0 π 2π 3π

Im[h

l(1) ]

x

l=0l=1

l=2

C. Segre (IIT) PHYS 406 - Spring 2014 April 07, 2014 8 / 13

Page 76: segre/phys406/14S/lecture_20.pdf · Generalized classical scattering problem z q b initial direction is conventionally along the z-axis b is the impact parameter, the per-pendicular

Hankel function of the first kind

Hankel functions are combi-nations of Bessel functionsand the Hankel function ofthe first kind is

h(1)0 = −i e

ix

x

h(1)1 =

(− i

x2− 1

x

)e ix

h(1)2 =

(− 3i

x3− 3

x2+

i

x

)e ix

h(1)l

x1−−−→ (−i)l+1 eix

x

the real and imaginary partsof the Hankel functions are

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0 π 2π 3π

Im[h

l(1) ]

x

l=0l=1

l=2

C. Segre (IIT) PHYS 406 - Spring 2014 April 07, 2014 8 / 13

Page 77: segre/phys406/14S/lecture_20.pdf · Generalized classical scattering problem z q b initial direction is conventionally along the z-axis b is the impact parameter, the per-pendicular

Hankel function of the first kind

Hankel functions are combi-nations of Bessel functionsand the Hankel function ofthe first kind is

h(1)0 = −i e

ix

x

h(1)1 =

(− i

x2− 1

x

)e ix

h(1)2 =

(− 3i

x3− 3

x2+

i

x

)e ix

h(1)l

x1−−−→ (−i)l+1 eix

x

the real and imaginary partsof the Hankel functions are

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0 π 2π 3π

Im[h

l(1) ]

x

l=0l=1

l=2

C. Segre (IIT) PHYS 406 - Spring 2014 April 07, 2014 8 / 13

Page 78: segre/phys406/14S/lecture_20.pdf · Generalized classical scattering problem z q b initial direction is conventionally along the z-axis b is the impact parameter, the per-pendicular

Hankel function of the first kind

Hankel functions are combi-nations of Bessel functionsand the Hankel function ofthe first kind is

h(1)0 = −i e

ix

x

h(1)1 =

(− i

x2− 1

x

)e ix

h(1)2 =

(− 3i

x3− 3

x2+

i

x

)e ix

h(1)l

x1−−−→ (−i)l+1 eix

x

the real and imaginary partsof the Hankel functions are

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0 π 2π 3π

Im[h

l(1) ]

x

l=0l=1

l=2

C. Segre (IIT) PHYS 406 - Spring 2014 April 07, 2014 8 / 13

Page 79: segre/phys406/14S/lecture_20.pdf · Generalized classical scattering problem z q b initial direction is conventionally along the z-axis b is the impact parameter, the per-pendicular

Hankel function of the first kind

Hankel functions are combi-nations of Bessel functionsand the Hankel function ofthe first kind is

h(1)0 = −i e

ix

x

h(1)1 =

(− i

x2− 1

x

)e ix

h(1)2 =

(− 3i

x3− 3

x2+

i

x

)e ix

h(1)l

x1−−−→ (−i)l+1 eix

x

the real and imaginary partsof the Hankel functions are

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0 π 2π 3π

Im[h

l(1) ]

x

l=0l=1

l=2

C. Segre (IIT) PHYS 406 - Spring 2014 April 07, 2014 8 / 13

Page 80: segre/phys406/14S/lecture_20.pdf · Generalized classical scattering problem z q b initial direction is conventionally along the z-axis b is the impact parameter, the per-pendicular

Hankel function of the first kind

Hankel functions are combi-nations of Bessel functionsand the Hankel function ofthe first kind is

h(1)0 = −i e

ix

x

h(1)1 =

(− i

x2− 1

x

)e ix

h(1)2 =

(− 3i

x3− 3

x2+

i

x

)e ix

h(1)l

x1−−−→ (−i)l+1 eix

x

the real and imaginary partsof the Hankel functions are

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 π 2π 3π

Re

[hl(1

) ]

x

l=0

l=1

l=2

C. Segre (IIT) PHYS 406 - Spring 2014 April 07, 2014 8 / 13

Page 81: segre/phys406/14S/lecture_20.pdf · Generalized classical scattering problem z q b initial direction is conventionally along the z-axis b is the impact parameter, the per-pendicular

Hankel function of the first kind

Hankel functions are combi-nations of Bessel functionsand the Hankel function ofthe first kind is

h(1)0 = −i e

ix

x

h(1)1 =

(− i

x2− 1

x

)e ix

h(1)2 =

(− 3i

x3− 3

x2+

i

x

)e ix

h(1)l

x1−−−→ (−i)l+1 eix

x

the real and imaginary partsof the Hankel functions are

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0 π 2π 3π

Im[h

l(1) ]

x

l=0l=1

l=2

C. Segre (IIT) PHYS 406 - Spring 2014 April 07, 2014 8 / 13

Page 82: segre/phys406/14S/lecture_20.pdf · Generalized classical scattering problem z q b initial direction is conventionally along the z-axis b is the impact parameter, the per-pendicular

Solution in intermediate region

since u(r) ∼ h(1)l (kr), then

R(kr) ∼ h(1)l (kr) and

because the potential isspherically symmetric, therecan be no φ dependence andonly the m = 0 terms are al-lowed

the spherical harmonics arethen and redefining the co-efficients giving

ψ = A

e ikz +∑l ,m

Cl ,mh(1)l (kr)Ym

l (θ, φ)

= A

e ikz +

∑l

Cl ,0h(1)l (kr)Y 0

l (θ, φ)

Y 0l =

√2l + 1

4/πPl(cos θ)

Cl ,0 ≡ i l+1k√

4π(2l + 1)al

ψ = A

e ikz + k

∞∑l=0

i l+1(2l + 1)alh(1)l (kr)Pl(cos θ)

C. Segre (IIT) PHYS 406 - Spring 2014 April 07, 2014 9 / 13

Page 83: segre/phys406/14S/lecture_20.pdf · Generalized classical scattering problem z q b initial direction is conventionally along the z-axis b is the impact parameter, the per-pendicular

Solution in intermediate region

since u(r) ∼ h(1)l (kr), then

R(kr) ∼ h(1)l (kr) and

because the potential isspherically symmetric, therecan be no φ dependence andonly the m = 0 terms are al-lowed

the spherical harmonics arethen and redefining the co-efficients giving

ψ = A

e ikz +∑l ,m

Cl ,mh(1)l (kr)Ym

l (θ, φ)

= A

e ikz +

∑l

Cl ,0h(1)l (kr)Y 0

l (θ, φ)

Y 0l =

√2l + 1

4/πPl(cos θ)

Cl ,0 ≡ i l+1k√

4π(2l + 1)al

ψ = A

e ikz + k

∞∑l=0

i l+1(2l + 1)alh(1)l (kr)Pl(cos θ)

C. Segre (IIT) PHYS 406 - Spring 2014 April 07, 2014 9 / 13

Page 84: segre/phys406/14S/lecture_20.pdf · Generalized classical scattering problem z q b initial direction is conventionally along the z-axis b is the impact parameter, the per-pendicular

Solution in intermediate region

since u(r) ∼ h(1)l (kr), then

R(kr) ∼ h(1)l (kr) and

because the potential isspherically symmetric, therecan be no φ dependence andonly the m = 0 terms are al-lowed

the spherical harmonics arethen and redefining the co-efficients giving

ψ = A

e ikz +∑l ,m

Cl ,mh(1)l (kr)Ym

l (θ, φ)

= A

e ikz +

∑l

Cl ,0h(1)l (kr)Y 0

l (θ, φ)

Y 0l =

√2l + 1

4/πPl(cos θ)

Cl ,0 ≡ i l+1k√

4π(2l + 1)al

ψ = A

e ikz + k

∞∑l=0

i l+1(2l + 1)alh(1)l (kr)Pl(cos θ)

C. Segre (IIT) PHYS 406 - Spring 2014 April 07, 2014 9 / 13

Page 85: segre/phys406/14S/lecture_20.pdf · Generalized classical scattering problem z q b initial direction is conventionally along the z-axis b is the impact parameter, the per-pendicular

Solution in intermediate region

since u(r) ∼ h(1)l (kr), then

R(kr) ∼ h(1)l (kr) and

because the potential isspherically symmetric, therecan be no φ dependence andonly the m = 0 terms are al-lowed

the spherical harmonics arethen and redefining the co-efficients giving

ψ = A

e ikz +∑l ,m

Cl ,mh(1)l (kr)Ym

l (θ, φ)

= A

e ikz +

∑l

Cl ,0h(1)l (kr)Y 0

l (θ, φ)

Y 0l =

√2l + 1

4/πPl(cos θ)

Cl ,0 ≡ i l+1k√

4π(2l + 1)al

ψ = A

e ikz + k

∞∑l=0

i l+1(2l + 1)alh(1)l (kr)Pl(cos θ)

C. Segre (IIT) PHYS 406 - Spring 2014 April 07, 2014 9 / 13

Page 86: segre/phys406/14S/lecture_20.pdf · Generalized classical scattering problem z q b initial direction is conventionally along the z-axis b is the impact parameter, the per-pendicular

Solution in intermediate region

since u(r) ∼ h(1)l (kr), then

R(kr) ∼ h(1)l (kr) and

because the potential isspherically symmetric, therecan be no φ dependence andonly the m = 0 terms are al-lowed

the spherical harmonics arethen

and redefining the co-efficients giving

ψ = A

e ikz +∑l ,m

Cl ,mh(1)l (kr)Ym

l (θ, φ)

= A

e ikz +

∑l

Cl ,0h(1)l (kr)Y 0

l (θ, φ)

Y 0l =

√2l + 1

4/πPl(cos θ)

Cl ,0 ≡ i l+1k√

4π(2l + 1)al

ψ = A

e ikz + k

∞∑l=0

i l+1(2l + 1)alh(1)l (kr)Pl(cos θ)

C. Segre (IIT) PHYS 406 - Spring 2014 April 07, 2014 9 / 13

Page 87: segre/phys406/14S/lecture_20.pdf · Generalized classical scattering problem z q b initial direction is conventionally along the z-axis b is the impact parameter, the per-pendicular

Solution in intermediate region

since u(r) ∼ h(1)l (kr), then

R(kr) ∼ h(1)l (kr) and

because the potential isspherically symmetric, therecan be no φ dependence andonly the m = 0 terms are al-lowed

the spherical harmonics arethen

and redefining the co-efficients giving

ψ = A

e ikz +∑l ,m

Cl ,mh(1)l (kr)Ym

l (θ, φ)

= A

e ikz +

∑l

Cl ,0h(1)l (kr)Y 0

l (θ, φ)

Y 0l =

√2l + 1

4/πPl(cos θ)

Cl ,0 ≡ i l+1k√

4π(2l + 1)al

ψ = A

e ikz + k

∞∑l=0

i l+1(2l + 1)alh(1)l (kr)Pl(cos θ)

C. Segre (IIT) PHYS 406 - Spring 2014 April 07, 2014 9 / 13

Page 88: segre/phys406/14S/lecture_20.pdf · Generalized classical scattering problem z q b initial direction is conventionally along the z-axis b is the impact parameter, the per-pendicular

Solution in intermediate region

since u(r) ∼ h(1)l (kr), then

R(kr) ∼ h(1)l (kr) and

because the potential isspherically symmetric, therecan be no φ dependence andonly the m = 0 terms are al-lowed

the spherical harmonics arethen and redefining the co-efficients

giving

ψ = A

e ikz +∑l ,m

Cl ,mh(1)l (kr)Ym

l (θ, φ)

= A

e ikz +

∑l

Cl ,0h(1)l (kr)Y 0

l (θ, φ)

Y 0l =

√2l + 1

4/πPl(cos θ)

Cl ,0 ≡ i l+1k√

4π(2l + 1)al

ψ = A

e ikz + k

∞∑l=0

i l+1(2l + 1)alh(1)l (kr)Pl(cos θ)

C. Segre (IIT) PHYS 406 - Spring 2014 April 07, 2014 9 / 13

Page 89: segre/phys406/14S/lecture_20.pdf · Generalized classical scattering problem z q b initial direction is conventionally along the z-axis b is the impact parameter, the per-pendicular

Solution in intermediate region

since u(r) ∼ h(1)l (kr), then

R(kr) ∼ h(1)l (kr) and

because the potential isspherically symmetric, therecan be no φ dependence andonly the m = 0 terms are al-lowed

the spherical harmonics arethen and redefining the co-efficients

giving

ψ = A

e ikz +∑l ,m

Cl ,mh(1)l (kr)Ym

l (θ, φ)

= A

e ikz +

∑l

Cl ,0h(1)l (kr)Y 0

l (θ, φ)

Y 0l =

√2l + 1

4/πPl(cos θ)

Cl ,0 ≡ i l+1k√

4π(2l + 1)al

ψ = A

e ikz + k

∞∑l=0

i l+1(2l + 1)alh(1)l (kr)Pl(cos θ)

C. Segre (IIT) PHYS 406 - Spring 2014 April 07, 2014 9 / 13

Page 90: segre/phys406/14S/lecture_20.pdf · Generalized classical scattering problem z q b initial direction is conventionally along the z-axis b is the impact parameter, the per-pendicular

Solution in intermediate region

since u(r) ∼ h(1)l (kr), then

R(kr) ∼ h(1)l (kr) and

because the potential isspherically symmetric, therecan be no φ dependence andonly the m = 0 terms are al-lowed

the spherical harmonics arethen and redefining the co-efficients giving

ψ = A

e ikz +∑l ,m

Cl ,mh(1)l (kr)Ym

l (θ, φ)

= A

e ikz +

∑l

Cl ,0h(1)l (kr)Y 0

l (θ, φ)

Y 0l =

√2l + 1

4/πPl(cos θ)

Cl ,0 ≡ i l+1k√

4π(2l + 1)al

ψ = A

e ikz + k

∞∑l=0

i l+1(2l + 1)alh(1)l (kr)Pl(cos θ)

C. Segre (IIT) PHYS 406 - Spring 2014 April 07, 2014 9 / 13

Page 91: segre/phys406/14S/lecture_20.pdf · Generalized classical scattering problem z q b initial direction is conventionally along the z-axis b is the impact parameter, the per-pendicular

Solution in intermediate region

since u(r) ∼ h(1)l (kr), then

R(kr) ∼ h(1)l (kr) and

because the potential isspherically symmetric, therecan be no φ dependence andonly the m = 0 terms are al-lowed

the spherical harmonics arethen and redefining the co-efficients giving

ψ = A

e ikz +∑l ,m

Cl ,mh(1)l (kr)Ym

l (θ, φ)

= A

e ikz +

∑l

Cl ,0h(1)l (kr)Y 0

l (θ, φ)

Y 0l =

√2l + 1

4/πPl(cos θ)

Cl ,0 ≡ i l+1k√

4π(2l + 1)al

ψ = A

e ikz + k

∞∑l=0

i l+1(2l + 1)alh(1)l (kr)Pl(cos θ)

C. Segre (IIT) PHYS 406 - Spring 2014 April 07, 2014 9 / 13

Page 92: segre/phys406/14S/lecture_20.pdf · Generalized classical scattering problem z q b initial direction is conventionally along the z-axis b is the impact parameter, the per-pendicular

Connection to the radiation zone

ψ = A

e ikz + k

∞∑l=0

i l+1(2l + 1)alh(1)l (kr)Pl(cos θ)

≈ A

e ikz +

∞∑l=0

(2l + 1)alPl(cos θ)e ikr

r

at large r , h(1)l → (−i)l+1e ikr/kr

and we obtain the radiation zoneform with scattering factor

the differential and total cross-sections then become

ψ ≈ A

e ikz + f (θ)

e ikr

r

f (θ) =

∞∑l=0

(2l + 1)alPl(cos θ)

D(θ) = |f (θ)|2 =∑l

∑l ′

(2l + 1)(2l ′ + 1)a∗l al ′Pl(cos θ)Pl ′(cos θ)

σ =

∫D(θ) dΩ

= 4π∞∑l=0

(2l + 1)|al |2

∫ 1

−1Pl(x)Pl ′(x) dx =

2

2l + 1δll ′

C. Segre (IIT) PHYS 406 - Spring 2014 April 07, 2014 10 / 13

Page 93: segre/phys406/14S/lecture_20.pdf · Generalized classical scattering problem z q b initial direction is conventionally along the z-axis b is the impact parameter, the per-pendicular

Connection to the radiation zone

ψ = A

e ikz + k

∞∑l=0

i l+1(2l + 1)alh(1)l (kr)Pl(cos θ)

≈ A

e ikz +

∞∑l=0

(2l + 1)alPl(cos θ)e ikr

r

at large r , h(1)l → (−i)l+1e ikr/kr

and we obtain the radiation zoneform with scattering factor

the differential and total cross-sections then become

ψ ≈ A

e ikz + f (θ)

e ikr

r

f (θ) =

∞∑l=0

(2l + 1)alPl(cos θ)

D(θ) = |f (θ)|2 =∑l

∑l ′

(2l + 1)(2l ′ + 1)a∗l al ′Pl(cos θ)Pl ′(cos θ)

σ =

∫D(θ) dΩ

= 4π∞∑l=0

(2l + 1)|al |2

∫ 1

−1Pl(x)Pl ′(x) dx =

2

2l + 1δll ′

C. Segre (IIT) PHYS 406 - Spring 2014 April 07, 2014 10 / 13

Page 94: segre/phys406/14S/lecture_20.pdf · Generalized classical scattering problem z q b initial direction is conventionally along the z-axis b is the impact parameter, the per-pendicular

Connection to the radiation zone

ψ = A

e ikz + k

∞∑l=0

i l+1(2l + 1)alh(1)l (kr)Pl(cos θ)

≈ A

e ikz +

∞∑l=0

(2l + 1)alPl(cos θ)e ikr

r

at large r , h(1)l → (−i)l+1e ikr/kr

and we obtain the radiation zoneform with scattering factor

the differential and total cross-sections then become

ψ ≈ A

e ikz + f (θ)

e ikr

r

f (θ) =

∞∑l=0

(2l + 1)alPl(cos θ)

D(θ) = |f (θ)|2 =∑l

∑l ′

(2l + 1)(2l ′ + 1)a∗l al ′Pl(cos θ)Pl ′(cos θ)

σ =

∫D(θ) dΩ

= 4π∞∑l=0

(2l + 1)|al |2

∫ 1

−1Pl(x)Pl ′(x) dx =

2

2l + 1δll ′

C. Segre (IIT) PHYS 406 - Spring 2014 April 07, 2014 10 / 13

Page 95: segre/phys406/14S/lecture_20.pdf · Generalized classical scattering problem z q b initial direction is conventionally along the z-axis b is the impact parameter, the per-pendicular

Connection to the radiation zone

ψ = A

e ikz + k

∞∑l=0

i l+1(2l + 1)alh(1)l (kr)Pl(cos θ)

≈ A

e ikz +

∞∑l=0

(2l + 1)alPl(cos θ)e ikr

r

at large r , h(1)l → (−i)l+1e ikr/kr

and we obtain the radiation zoneform

with scattering factor

the differential and total cross-sections then become

ψ ≈ A

e ikz + f (θ)

e ikr

r

f (θ) =

∞∑l=0

(2l + 1)alPl(cos θ)

D(θ) = |f (θ)|2 =∑l

∑l ′

(2l + 1)(2l ′ + 1)a∗l al ′Pl(cos θ)Pl ′(cos θ)

σ =

∫D(θ) dΩ

= 4π∞∑l=0

(2l + 1)|al |2

∫ 1

−1Pl(x)Pl ′(x) dx =

2

2l + 1δll ′

C. Segre (IIT) PHYS 406 - Spring 2014 April 07, 2014 10 / 13

Page 96: segre/phys406/14S/lecture_20.pdf · Generalized classical scattering problem z q b initial direction is conventionally along the z-axis b is the impact parameter, the per-pendicular

Connection to the radiation zone

ψ = A

e ikz + k

∞∑l=0

i l+1(2l + 1)alh(1)l (kr)Pl(cos θ)

≈ A

e ikz +

∞∑l=0

(2l + 1)alPl(cos θ)e ikr

r

at large r , h(1)l → (−i)l+1e ikr/kr

and we obtain the radiation zoneform

with scattering factor

the differential and total cross-sections then become

ψ ≈ A

e ikz + f (θ)

e ikr

r

f (θ) =∞∑l=0

(2l + 1)alPl(cos θ)

D(θ) = |f (θ)|2 =∑l

∑l ′

(2l + 1)(2l ′ + 1)a∗l al ′Pl(cos θ)Pl ′(cos θ)

σ =

∫D(θ) dΩ

= 4π∞∑l=0

(2l + 1)|al |2

∫ 1

−1Pl(x)Pl ′(x) dx =

2

2l + 1δll ′

C. Segre (IIT) PHYS 406 - Spring 2014 April 07, 2014 10 / 13

Page 97: segre/phys406/14S/lecture_20.pdf · Generalized classical scattering problem z q b initial direction is conventionally along the z-axis b is the impact parameter, the per-pendicular

Connection to the radiation zone

ψ = A

e ikz + k

∞∑l=0

i l+1(2l + 1)alh(1)l (kr)Pl(cos θ)

≈ A

e ikz +

∞∑l=0

(2l + 1)alPl(cos θ)e ikr

r

at large r , h(1)l → (−i)l+1e ikr/kr

and we obtain the radiation zoneform with scattering factor

the differential and total cross-sections then become

ψ ≈ A

e ikz + f (θ)

e ikr

r

f (θ) =∞∑l=0

(2l + 1)alPl(cos θ)

D(θ) = |f (θ)|2 =∑l

∑l ′

(2l + 1)(2l ′ + 1)a∗l al ′Pl(cos θ)Pl ′(cos θ)

σ =

∫D(θ) dΩ

= 4π∞∑l=0

(2l + 1)|al |2

∫ 1

−1Pl(x)Pl ′(x) dx =

2

2l + 1δll ′

C. Segre (IIT) PHYS 406 - Spring 2014 April 07, 2014 10 / 13

Page 98: segre/phys406/14S/lecture_20.pdf · Generalized classical scattering problem z q b initial direction is conventionally along the z-axis b is the impact parameter, the per-pendicular

Connection to the radiation zone

ψ = A

e ikz + k

∞∑l=0

i l+1(2l + 1)alh(1)l (kr)Pl(cos θ)

≈ A

e ikz +

∞∑l=0

(2l + 1)alPl(cos θ)e ikr

r

at large r , h(1)l → (−i)l+1e ikr/kr

and we obtain the radiation zoneform with scattering factor

the differential and total cross-sections then become

ψ ≈ A

e ikz + f (θ)

e ikr

r

f (θ) =

∞∑l=0

(2l + 1)alPl(cos θ)

D(θ) = |f (θ)|2 =∑l

∑l ′

(2l + 1)(2l ′ + 1)a∗l al ′Pl(cos θ)Pl ′(cos θ)

σ =

∫D(θ) dΩ

= 4π∞∑l=0

(2l + 1)|al |2

∫ 1

−1Pl(x)Pl ′(x) dx =

2

2l + 1δll ′

C. Segre (IIT) PHYS 406 - Spring 2014 April 07, 2014 10 / 13

Page 99: segre/phys406/14S/lecture_20.pdf · Generalized classical scattering problem z q b initial direction is conventionally along the z-axis b is the impact parameter, the per-pendicular

Connection to the radiation zone

ψ = A

e ikz + k

∞∑l=0

i l+1(2l + 1)alh(1)l (kr)Pl(cos θ)

≈ A

e ikz +

∞∑l=0

(2l + 1)alPl(cos θ)e ikr

r

at large r , h(1)l → (−i)l+1e ikr/kr

and we obtain the radiation zoneform with scattering factor

the differential and total cross-sections then become

ψ ≈ A

e ikz + f (θ)

e ikr

r

f (θ) =

∞∑l=0

(2l + 1)alPl(cos θ)

D(θ) = |f (θ)|2 =∑l

∑l ′

(2l + 1)(2l ′ + 1)a∗l al ′Pl(cos θ)Pl ′(cos θ)

σ =

∫D(θ) dΩ

= 4π∞∑l=0

(2l + 1)|al |2

∫ 1

−1Pl(x)Pl ′(x) dx =

2

2l + 1δll ′

C. Segre (IIT) PHYS 406 - Spring 2014 April 07, 2014 10 / 13

Page 100: segre/phys406/14S/lecture_20.pdf · Generalized classical scattering problem z q b initial direction is conventionally along the z-axis b is the impact parameter, the per-pendicular

Connection to the radiation zone

ψ = A

e ikz + k

∞∑l=0

i l+1(2l + 1)alh(1)l (kr)Pl(cos θ)

≈ A

e ikz +

∞∑l=0

(2l + 1)alPl(cos θ)e ikr

r

at large r , h(1)l → (−i)l+1e ikr/kr

and we obtain the radiation zoneform with scattering factor

the differential and total cross-sections then become

ψ ≈ A

e ikz + f (θ)

e ikr

r

f (θ) =

∞∑l=0

(2l + 1)alPl(cos θ)

D(θ) = |f (θ)|2 =∑l

∑l ′

(2l + 1)(2l ′ + 1)a∗l al ′Pl(cos θ)Pl ′(cos θ)

σ =

∫D(θ) dΩ

= 4π∞∑l=0

(2l + 1)|al |2

∫ 1

−1Pl(x)Pl ′(x) dx =

2

2l + 1δll ′

C. Segre (IIT) PHYS 406 - Spring 2014 April 07, 2014 10 / 13

Page 101: segre/phys406/14S/lecture_20.pdf · Generalized classical scattering problem z q b initial direction is conventionally along the z-axis b is the impact parameter, the per-pendicular

Connection to the radiation zone

ψ = A

e ikz + k

∞∑l=0

i l+1(2l + 1)alh(1)l (kr)Pl(cos θ)

≈ A

e ikz +

∞∑l=0

(2l + 1)alPl(cos θ)e ikr

r

at large r , h(1)l → (−i)l+1e ikr/kr

and we obtain the radiation zoneform with scattering factor

the differential and total cross-sections then become

ψ ≈ A

e ikz + f (θ)

e ikr

r

f (θ) =

∞∑l=0

(2l + 1)alPl(cos θ)

D(θ) = |f (θ)|2 =∑l

∑l ′

(2l + 1)(2l ′ + 1)a∗l al ′Pl(cos θ)Pl ′(cos θ)

σ =

∫D(θ) dΩ

= 4π∞∑l=0

(2l + 1)|al |2∫ 1

−1Pl(x)Pl ′(x) dx =

2

2l + 1δll ′

C. Segre (IIT) PHYS 406 - Spring 2014 April 07, 2014 10 / 13

Page 102: segre/phys406/14S/lecture_20.pdf · Generalized classical scattering problem z q b initial direction is conventionally along the z-axis b is the impact parameter, the per-pendicular

Connection to the radiation zone

ψ = A

e ikz + k

∞∑l=0

i l+1(2l + 1)alh(1)l (kr)Pl(cos θ)

≈ A

e ikz +

∞∑l=0

(2l + 1)alPl(cos θ)e ikr

r

at large r , h(1)l → (−i)l+1e ikr/kr

and we obtain the radiation zoneform with scattering factor

the differential and total cross-sections then become

ψ ≈ A

e ikz + f (θ)

e ikr

r

f (θ) =

∞∑l=0

(2l + 1)alPl(cos θ)

D(θ) = |f (θ)|2 =∑l

∑l ′

(2l + 1)(2l ′ + 1)a∗l al ′Pl(cos θ)Pl ′(cos θ)

σ =

∫D(θ) dΩ

= 4π∞∑l=0

(2l + 1)|al |2

∫ 1

−1Pl(x)Pl ′(x) dx =

2

2l + 1δll ′

C. Segre (IIT) PHYS 406 - Spring 2014 April 07, 2014 10 / 13

Page 103: segre/phys406/14S/lecture_20.pdf · Generalized classical scattering problem z q b initial direction is conventionally along the z-axis b is the impact parameter, the per-pendicular

Connection to the radiation zone

ψ = A

e ikz + k

∞∑l=0

i l+1(2l + 1)alh(1)l (kr)Pl(cos θ)

≈ A

e ikz +

∞∑l=0

(2l + 1)alPl(cos θ)e ikr

r

at large r , h(1)l → (−i)l+1e ikr/kr

and we obtain the radiation zoneform with scattering factor

the differential and total cross-sections then become

ψ ≈ A

e ikz + f (θ)

e ikr

r

f (θ) =

∞∑l=0

(2l + 1)alPl(cos θ)

D(θ) = |f (θ)|2 =∑l

∑l ′

(2l + 1)(2l ′ + 1)a∗l al ′Pl(cos θ)Pl ′(cos θ)

σ =

∫D(θ) dΩ = 4π

∞∑l=0

(2l + 1)|al |2∫ 1

−1Pl(x)Pl ′(x) dx =

2

2l + 1δll ′

C. Segre (IIT) PHYS 406 - Spring 2014 April 07, 2014 10 / 13

Page 104: segre/phys406/14S/lecture_20.pdf · Generalized classical scattering problem z q b initial direction is conventionally along the z-axis b is the impact parameter, the per-pendicular

Solving the interaction zone

The partial wave amplitudes are obtained by solving the Schrodingerequation in the scattering region, where V 6= 0

we know that for V = 0 the general solution is

ψ =∑l ,m

[Al ,mjl(kr) + Bl ,mnl(kr)]Yml (θ, φ)

The incident particle is expressedin Cartesian coordinate and mustbe changed to spherical usingRayleigh’s formula

the full solution can now be written

e ikz =∞∑l=0

i l(2l + 1)jl(kr)Pl(cos θ)

noting that the Neumann functionscannot be used and m ≡ 0 for ourgeometry

ψ(θ, φ) = A∞∑l=0

i l(2l + 1)[jl(kr) + ikalh

(1)l (kr)

]Pl(cos θ)

C. Segre (IIT) PHYS 406 - Spring 2014 April 07, 2014 11 / 13

Page 105: segre/phys406/14S/lecture_20.pdf · Generalized classical scattering problem z q b initial direction is conventionally along the z-axis b is the impact parameter, the per-pendicular

Solving the interaction zone

The partial wave amplitudes are obtained by solving the Schrodingerequation in the scattering region, where V 6= 0

we know that for V = 0 the general solution is

ψ =∑l ,m

[Al ,mjl(kr) + Bl ,mnl(kr)]Yml (θ, φ)

The incident particle is expressedin Cartesian coordinate and mustbe changed to spherical usingRayleigh’s formula

the full solution can now be written

e ikz =∞∑l=0

i l(2l + 1)jl(kr)Pl(cos θ)

noting that the Neumann functionscannot be used and m ≡ 0 for ourgeometry

ψ(θ, φ) = A∞∑l=0

i l(2l + 1)[jl(kr) + ikalh

(1)l (kr)

]Pl(cos θ)

C. Segre (IIT) PHYS 406 - Spring 2014 April 07, 2014 11 / 13

Page 106: segre/phys406/14S/lecture_20.pdf · Generalized classical scattering problem z q b initial direction is conventionally along the z-axis b is the impact parameter, the per-pendicular

Solving the interaction zone

The partial wave amplitudes are obtained by solving the Schrodingerequation in the scattering region, where V 6= 0

we know that for V = 0 the general solution is

ψ =∑l ,m

[Al ,mjl(kr) + Bl ,mnl(kr)]Yml (θ, φ)

The incident particle is expressedin Cartesian coordinate and mustbe changed to spherical usingRayleigh’s formula

the full solution can now be written

e ikz =∞∑l=0

i l(2l + 1)jl(kr)Pl(cos θ)

noting that the Neumann functionscannot be used and m ≡ 0 for ourgeometry

ψ(θ, φ) = A∞∑l=0

i l(2l + 1)[jl(kr) + ikalh

(1)l (kr)

]Pl(cos θ)

C. Segre (IIT) PHYS 406 - Spring 2014 April 07, 2014 11 / 13

Page 107: segre/phys406/14S/lecture_20.pdf · Generalized classical scattering problem z q b initial direction is conventionally along the z-axis b is the impact parameter, the per-pendicular

Solving the interaction zone

The partial wave amplitudes are obtained by solving the Schrodingerequation in the scattering region, where V 6= 0

we know that for V = 0 the general solution is

ψ =∑l ,m

[Al ,mjl(kr) + Bl ,mnl(kr)]Yml (θ, φ)

The incident particle is expressedin Cartesian coordinate and mustbe changed to spherical usingRayleigh’s formula

the full solution can now be written

e ikz =∞∑l=0

i l(2l + 1)jl(kr)Pl(cos θ)

noting that the Neumann functionscannot be used and m ≡ 0 for ourgeometry

ψ(θ, φ) = A∞∑l=0

i l(2l + 1)[jl(kr) + ikalh

(1)l (kr)

]Pl(cos θ)

C. Segre (IIT) PHYS 406 - Spring 2014 April 07, 2014 11 / 13

Page 108: segre/phys406/14S/lecture_20.pdf · Generalized classical scattering problem z q b initial direction is conventionally along the z-axis b is the impact parameter, the per-pendicular

Solving the interaction zone

The partial wave amplitudes are obtained by solving the Schrodingerequation in the scattering region, where V 6= 0

we know that for V = 0 the general solution is

ψ =∑l ,m

[Al ,mjl(kr) + Bl ,mnl(kr)]Yml (θ, φ)

The incident particle is expressedin Cartesian coordinate and mustbe changed to spherical usingRayleigh’s formula

the full solution can now be written

e ikz =∞∑l=0

i l(2l + 1)jl(kr)Pl(cos θ)

noting that the Neumann functionscannot be used and m ≡ 0 for ourgeometry

ψ(θ, φ) = A∞∑l=0

i l(2l + 1)[jl(kr) + ikalh

(1)l (kr)

]Pl(cos θ)

C. Segre (IIT) PHYS 406 - Spring 2014 April 07, 2014 11 / 13

Page 109: segre/phys406/14S/lecture_20.pdf · Generalized classical scattering problem z q b initial direction is conventionally along the z-axis b is the impact parameter, the per-pendicular

Solving the interaction zone

The partial wave amplitudes are obtained by solving the Schrodingerequation in the scattering region, where V 6= 0

we know that for V = 0 the general solution is

ψ =∑l ,m

[Al ,mjl(kr) + Bl ,mnl(kr)]Yml (θ, φ)

The incident particle is expressedin Cartesian coordinate and mustbe changed to spherical usingRayleigh’s formula

the full solution can now be written

e ikz =∞∑l=0

i l(2l + 1)jl(kr)Pl(cos θ)

noting that the Neumann functionscannot be used and m ≡ 0 for ourgeometry

ψ(θ, φ) = A∞∑l=0

i l(2l + 1)[jl(kr) + ikalh

(1)l (kr)

]Pl(cos θ)

C. Segre (IIT) PHYS 406 - Spring 2014 April 07, 2014 11 / 13

Page 110: segre/phys406/14S/lecture_20.pdf · Generalized classical scattering problem z q b initial direction is conventionally along the z-axis b is the impact parameter, the per-pendicular

Solving the interaction zone

The partial wave amplitudes are obtained by solving the Schrodingerequation in the scattering region, where V 6= 0

we know that for V = 0 the general solution is

ψ =∑l ,m

[Al ,mjl(kr) + Bl ,mnl(kr)]Yml (θ, φ)

The incident particle is expressedin Cartesian coordinate and mustbe changed to spherical usingRayleigh’s formula

the full solution can now be written

e ikz =∞∑l=0

i l(2l + 1)jl(kr)Pl(cos θ)

noting that the Neumann functionscannot be used and m ≡ 0 for ourgeometry

ψ(θ, φ) = A∞∑l=0

i l(2l + 1)[jl(kr) + ikalh

(1)l (kr)

]Pl(cos θ)

C. Segre (IIT) PHYS 406 - Spring 2014 April 07, 2014 11 / 13

Page 111: segre/phys406/14S/lecture_20.pdf · Generalized classical scattering problem z q b initial direction is conventionally along the z-axis b is the impact parameter, the per-pendicular

Solving the interaction zone

The partial wave amplitudes are obtained by solving the Schrodingerequation in the scattering region, where V 6= 0

we know that for V = 0 the general solution is

ψ =∑l ,m

[Al ,mjl(kr) + Bl ,mnl(kr)]Yml (θ, φ)

The incident particle is expressedin Cartesian coordinate and mustbe changed to spherical usingRayleigh’s formula

the full solution can now be written

e ikz =∞∑l=0

i l(2l + 1)jl(kr)Pl(cos θ)

noting that the Neumann functionscannot be used and m ≡ 0 for ourgeometry

ψ(θ, φ) = A∞∑l=0

i l(2l + 1)[jl(kr) + ikalh

(1)l (kr)

]Pl(cos θ)

C. Segre (IIT) PHYS 406 - Spring 2014 April 07, 2014 11 / 13

Page 112: segre/phys406/14S/lecture_20.pdf · Generalized classical scattering problem z q b initial direction is conventionally along the z-axis b is the impact parameter, the per-pendicular

Example 11.3

The potential for quantum hardsphere scattering is

, with boundarycondition

applying the boundary condition

V (r) =

∞, r ≤ a

0, r > a

ψ(a, θ) = 0

0 =∞∑l=0

i l(2l + 1)[jl(ka) + ikalh

(1)l (ka)

]Pl(cos θ)

multiplying by Pl ′(cos θ) sin θ dθ and integrating from 0→ π

0 =∞∑l=0

i l(2l + 1)[jl(ka) + ikalh

(1)l (ka)

] ∫ π

0Pl(cos θ)Pl ′(cos θ) sin θ dθ

=∞∑l=0

i l(2l + 1)[jl(ka) + ikalh

(1)l (ka)

] 2

2l + 1δll ′

= 2i l[jl (ka) + ikal h

(1)l (ka)

]−→ al = − jl(ka)

ikh(1)l (ka)

C. Segre (IIT) PHYS 406 - Spring 2014 April 07, 2014 12 / 13

Page 113: segre/phys406/14S/lecture_20.pdf · Generalized classical scattering problem z q b initial direction is conventionally along the z-axis b is the impact parameter, the per-pendicular

Example 11.3

The potential for quantum hardsphere scattering is

, with boundarycondition

applying the boundary condition

V (r) =

∞, r ≤ a

0, r > a

ψ(a, θ) = 0

0 =∞∑l=0

i l(2l + 1)[jl(ka) + ikalh

(1)l (ka)

]Pl(cos θ)

multiplying by Pl ′(cos θ) sin θ dθ and integrating from 0→ π

0 =∞∑l=0

i l(2l + 1)[jl(ka) + ikalh

(1)l (ka)

] ∫ π

0Pl(cos θ)Pl ′(cos θ) sin θ dθ

=∞∑l=0

i l(2l + 1)[jl(ka) + ikalh

(1)l (ka)

] 2

2l + 1δll ′

= 2i l[jl (ka) + ikal h

(1)l (ka)

]−→ al = − jl(ka)

ikh(1)l (ka)

C. Segre (IIT) PHYS 406 - Spring 2014 April 07, 2014 12 / 13

Page 114: segre/phys406/14S/lecture_20.pdf · Generalized classical scattering problem z q b initial direction is conventionally along the z-axis b is the impact parameter, the per-pendicular

Example 11.3

The potential for quantum hardsphere scattering is , with boundarycondition

applying the boundary condition

V (r) =

∞, r ≤ a

0, r > a

ψ(a, θ) = 0

0 =∞∑l=0

i l(2l + 1)[jl(ka) + ikalh

(1)l (ka)

]Pl(cos θ)

multiplying by Pl ′(cos θ) sin θ dθ and integrating from 0→ π

0 =∞∑l=0

i l(2l + 1)[jl(ka) + ikalh

(1)l (ka)

] ∫ π

0Pl(cos θ)Pl ′(cos θ) sin θ dθ

=∞∑l=0

i l(2l + 1)[jl(ka) + ikalh

(1)l (ka)

] 2

2l + 1δll ′

= 2i l[jl (ka) + ikal h

(1)l (ka)

]−→ al = − jl(ka)

ikh(1)l (ka)

C. Segre (IIT) PHYS 406 - Spring 2014 April 07, 2014 12 / 13

Page 115: segre/phys406/14S/lecture_20.pdf · Generalized classical scattering problem z q b initial direction is conventionally along the z-axis b is the impact parameter, the per-pendicular

Example 11.3

The potential for quantum hardsphere scattering is , with boundarycondition

applying the boundary condition

V (r) =

∞, r ≤ a

0, r > a

ψ(a, θ) = 0

0 =∞∑l=0

i l(2l + 1)[jl(ka) + ikalh

(1)l (ka)

]Pl(cos θ)

multiplying by Pl ′(cos θ) sin θ dθ and integrating from 0→ π

0 =∞∑l=0

i l(2l + 1)[jl(ka) + ikalh

(1)l (ka)

] ∫ π

0Pl(cos θ)Pl ′(cos θ) sin θ dθ

=∞∑l=0

i l(2l + 1)[jl(ka) + ikalh

(1)l (ka)

] 2

2l + 1δll ′

= 2i l[jl (ka) + ikal h

(1)l (ka)

]−→ al = − jl(ka)

ikh(1)l (ka)

C. Segre (IIT) PHYS 406 - Spring 2014 April 07, 2014 12 / 13

Page 116: segre/phys406/14S/lecture_20.pdf · Generalized classical scattering problem z q b initial direction is conventionally along the z-axis b is the impact parameter, the per-pendicular

Example 11.3

The potential for quantum hardsphere scattering is , with boundarycondition

applying the boundary condition

V (r) =

∞, r ≤ a

0, r > a

ψ(a, θ) = 0

0 =∞∑l=0

i l(2l + 1)[jl(ka) + ikalh

(1)l (ka)

]Pl(cos θ)

multiplying by Pl ′(cos θ) sin θ dθ and integrating from 0→ π

0 =∞∑l=0

i l(2l + 1)[jl(ka) + ikalh

(1)l (ka)

] ∫ π

0Pl(cos θ)Pl ′(cos θ) sin θ dθ

=∞∑l=0

i l(2l + 1)[jl(ka) + ikalh

(1)l (ka)

] 2

2l + 1δll ′

= 2i l[jl (ka) + ikal h

(1)l (ka)

]−→ al = − jl(ka)

ikh(1)l (ka)

C. Segre (IIT) PHYS 406 - Spring 2014 April 07, 2014 12 / 13

Page 117: segre/phys406/14S/lecture_20.pdf · Generalized classical scattering problem z q b initial direction is conventionally along the z-axis b is the impact parameter, the per-pendicular

Example 11.3

The potential for quantum hardsphere scattering is , with boundarycondition

applying the boundary condition

V (r) =

∞, r ≤ a

0, r > a

ψ(a, θ) = 0

0 =∞∑l=0

i l(2l + 1)[jl(ka) + ikalh

(1)l (ka)

]Pl(cos θ)

multiplying by Pl ′(cos θ) sin θ dθ and integrating from 0→ π

0 =∞∑l=0

i l(2l + 1)[jl(ka) + ikalh

(1)l (ka)

] ∫ π

0Pl(cos θ)Pl ′(cos θ) sin θ dθ

=∞∑l=0

i l(2l + 1)[jl(ka) + ikalh

(1)l (ka)

] 2

2l + 1δll ′

= 2i l[jl (ka) + ikal h

(1)l (ka)

]−→ al = − jl(ka)

ikh(1)l (ka)

C. Segre (IIT) PHYS 406 - Spring 2014 April 07, 2014 12 / 13

Page 118: segre/phys406/14S/lecture_20.pdf · Generalized classical scattering problem z q b initial direction is conventionally along the z-axis b is the impact parameter, the per-pendicular

Example 11.3

The potential for quantum hardsphere scattering is , with boundarycondition

applying the boundary condition

V (r) =

∞, r ≤ a

0, r > a

ψ(a, θ) = 0

0 =∞∑l=0

i l(2l + 1)[jl(ka) + ikalh

(1)l (ka)

]Pl(cos θ)

multiplying by Pl ′(cos θ) sin θ dθ and integrating from 0→ π

0 =∞∑l=0

i l(2l + 1)[jl(ka) + ikalh

(1)l (ka)

] ∫ π

0Pl(cos θ)Pl ′(cos θ) sin θ dθ

=∞∑l=0

i l(2l + 1)[jl(ka) + ikalh

(1)l (ka)

] 2

2l + 1δll ′

= 2i l[jl (ka) + ikal h

(1)l (ka)

]−→ al = − jl(ka)

ikh(1)l (ka)

C. Segre (IIT) PHYS 406 - Spring 2014 April 07, 2014 12 / 13

Page 119: segre/phys406/14S/lecture_20.pdf · Generalized classical scattering problem z q b initial direction is conventionally along the z-axis b is the impact parameter, the per-pendicular

Example 11.3

The potential for quantum hardsphere scattering is , with boundarycondition

applying the boundary condition

V (r) =

∞, r ≤ a

0, r > a

ψ(a, θ) = 0

0 =∞∑l=0

i l(2l + 1)[jl(ka) + ikalh

(1)l (ka)

]Pl(cos θ)

multiplying by Pl ′(cos θ) sin θ dθ and integrating from 0→ π

0 =∞∑l=0

i l(2l + 1)[jl(ka) + ikalh

(1)l (ka)

] ∫ π

0Pl(cos θ)Pl ′(cos θ) sin θ dθ

=∞∑l=0

i l(2l + 1)[jl(ka) + ikalh

(1)l (ka)

] 2

2l + 1δll ′

= 2i l[jl (ka) + ikal h

(1)l (ka)

]−→ al = − jl(ka)

ikh(1)l (ka)

C. Segre (IIT) PHYS 406 - Spring 2014 April 07, 2014 12 / 13

Page 120: segre/phys406/14S/lecture_20.pdf · Generalized classical scattering problem z q b initial direction is conventionally along the z-axis b is the impact parameter, the per-pendicular

Example 11.3

The potential for quantum hardsphere scattering is , with boundarycondition

applying the boundary condition

V (r) =

∞, r ≤ a

0, r > a

ψ(a, θ) = 0

0 =∞∑l=0

i l(2l + 1)[jl(ka) + ikalh

(1)l (ka)

]Pl(cos θ)

multiplying by Pl ′(cos θ) sin θ dθ and integrating from 0→ π

0 =∞∑l=0

i l(2l + 1)[jl(ka) + ikalh

(1)l (ka)

] ∫ π

0Pl(cos θ)Pl ′(cos θ) sin θ dθ

=∞∑l=0

i l(2l + 1)[jl(ka) + ikalh

(1)l (ka)

] ∫ 1

−1Pl(x)Pl ′(x) dx

= 2i l[jl (ka) + ikal h

(1)l (ka)

]−→ al = − jl(ka)

ikh(1)l (ka)

C. Segre (IIT) PHYS 406 - Spring 2014 April 07, 2014 12 / 13

Page 121: segre/phys406/14S/lecture_20.pdf · Generalized classical scattering problem z q b initial direction is conventionally along the z-axis b is the impact parameter, the per-pendicular

Example 11.3

The potential for quantum hardsphere scattering is , with boundarycondition

applying the boundary condition

V (r) =

∞, r ≤ a

0, r > a

ψ(a, θ) = 0

0 =∞∑l=0

i l(2l + 1)[jl(ka) + ikalh

(1)l (ka)

]Pl(cos θ)

multiplying by Pl ′(cos θ) sin θ dθ and integrating from 0→ π

0 =∞∑l=0

i l(2l + 1)[jl(ka) + ikalh

(1)l (ka)

] ∫ π

0Pl(cos θ)Pl ′(cos θ) sin θ dθ

=∞∑l=0

i l(2l + 1)[jl(ka) + ikalh

(1)l (ka)

] 2

2l + 1δll ′

= 2i l[jl (ka) + ikal h

(1)l (ka)

]−→ al = − jl(ka)

ikh(1)l (ka)

C. Segre (IIT) PHYS 406 - Spring 2014 April 07, 2014 12 / 13

Page 122: segre/phys406/14S/lecture_20.pdf · Generalized classical scattering problem z q b initial direction is conventionally along the z-axis b is the impact parameter, the per-pendicular

Example 11.3

The potential for quantum hardsphere scattering is , with boundarycondition

applying the boundary condition

V (r) =

∞, r ≤ a

0, r > a

ψ(a, θ) = 0

0 =∞∑l=0

i l(2l + 1)[jl(ka) + ikalh

(1)l (ka)

]Pl(cos θ)

multiplying by Pl ′(cos θ) sin θ dθ and integrating from 0→ π

0 =∞∑l=0

i l(2l + 1)[jl(ka) + ikalh

(1)l (ka)

] ∫ π

0Pl(cos θ)Pl ′(cos θ) sin θ dθ

=∞∑l=0

i l(2l + 1)[jl(ka) + ikalh

(1)l (ka)

] 2

2l + 1δll ′

= 2i l′[jl ′(ka) + ikal ′h

(1)l ′ (ka)

]

−→ al = − jl(ka)

ikh(1)l (ka)

C. Segre (IIT) PHYS 406 - Spring 2014 April 07, 2014 12 / 13

Page 123: segre/phys406/14S/lecture_20.pdf · Generalized classical scattering problem z q b initial direction is conventionally along the z-axis b is the impact parameter, the per-pendicular

Example 11.3

The potential for quantum hardsphere scattering is , with boundarycondition

applying the boundary condition

V (r) =

∞, r ≤ a

0, r > a

ψ(a, θ) = 0

0 =∞∑l=0

i l(2l + 1)[jl(ka) + ikalh

(1)l (ka)

]Pl(cos θ)

multiplying by Pl ′(cos θ) sin θ dθ and integrating from 0→ π

0 =∞∑l=0

i l(2l + 1)[jl(ka) + ikalh

(1)l (ka)

] ∫ π

0Pl(cos θ)Pl ′(cos θ) sin θ dθ

=∞∑l=0

i l(2l + 1)[jl(ka) + ikalh

(1)l (ka)

] 2

2l + 1δll ′

= 2i l[jl (ka) + ikal h

(1)l (ka)

]

−→ al = − jl(ka)

ikh(1)l (ka)

C. Segre (IIT) PHYS 406 - Spring 2014 April 07, 2014 12 / 13

Page 124: segre/phys406/14S/lecture_20.pdf · Generalized classical scattering problem z q b initial direction is conventionally along the z-axis b is the impact parameter, the per-pendicular

Example 11.3

The potential for quantum hardsphere scattering is , with boundarycondition

applying the boundary condition

V (r) =

∞, r ≤ a

0, r > a

ψ(a, θ) = 0

0 =∞∑l=0

i l(2l + 1)[jl(ka) + ikalh

(1)l (ka)

]Pl(cos θ)

multiplying by Pl ′(cos θ) sin θ dθ and integrating from 0→ π

0 =∞∑l=0

i l(2l + 1)[jl(ka) + ikalh

(1)l (ka)

] ∫ π

0Pl(cos θ)Pl ′(cos θ) sin θ dθ

=∞∑l=0

i l(2l + 1)[jl(ka) + ikalh

(1)l (ka)

] 2

2l + 1δll ′

= 2i l[jl (ka) + ikal h

(1)l (ka)

]−→ al = − jl(ka)

ikh(1)l (ka)

C. Segre (IIT) PHYS 406 - Spring 2014 April 07, 2014 12 / 13

Page 125: segre/phys406/14S/lecture_20.pdf · Generalized classical scattering problem z q b initial direction is conventionally along the z-axis b is the impact parameter, the per-pendicular

Example 11.3

The total cross-section isthus

σ =4π

k2

∞∑l=0

(2l + 1)

∣∣∣∣∣ jl(ka)

h(1)l (ka)

∣∣∣∣∣2

the limiting case is more instructive, take low energy scattering(z = ka 1), that is long wavelength

jl(z)

h(1)l (z)

=jl(z)

jl(z) + inl(z)≈ −i jl(z)

nl(z)≈ −i

(2l l!z l

(2l + 1)!

) (−2l l!z l+1

(2l)!

)

=i

2l + 1

[2l l!

(2l)!

]2z2l+1

−→ σ ≈ 4π

k2

∞∑l=0

1

(2l + 1)

[2l l!

(2l)!

]4(ka)4l+2

thus the cross-section becomes a sum dominated by the l = 0 term andconsequently independent of θ: σ ≈ 4πa2

this is 4 times the geometrical cross-section and equal to the total surfacearea of the sphere so the particles “see” the entire sphere when scattering

C. Segre (IIT) PHYS 406 - Spring 2014 April 07, 2014 13 / 13

Page 126: segre/phys406/14S/lecture_20.pdf · Generalized classical scattering problem z q b initial direction is conventionally along the z-axis b is the impact parameter, the per-pendicular

Example 11.3

The total cross-section isthus

σ =4π

k2

∞∑l=0

(2l + 1)

∣∣∣∣∣ jl(ka)

h(1)l (ka)

∣∣∣∣∣2

the limiting case is more instructive, take low energy scattering(z = ka 1), that is long wavelength

jl(z)

h(1)l (z)

=jl(z)

jl(z) + inl(z)≈ −i jl(z)

nl(z)≈ −i

(2l l!z l

(2l + 1)!

) (−2l l!z l+1

(2l)!

)

=i

2l + 1

[2l l!

(2l)!

]2z2l+1

−→ σ ≈ 4π

k2

∞∑l=0

1

(2l + 1)

[2l l!

(2l)!

]4(ka)4l+2

thus the cross-section becomes a sum dominated by the l = 0 term andconsequently independent of θ: σ ≈ 4πa2

this is 4 times the geometrical cross-section and equal to the total surfacearea of the sphere so the particles “see” the entire sphere when scattering

C. Segre (IIT) PHYS 406 - Spring 2014 April 07, 2014 13 / 13

Page 127: segre/phys406/14S/lecture_20.pdf · Generalized classical scattering problem z q b initial direction is conventionally along the z-axis b is the impact parameter, the per-pendicular

Example 11.3

The total cross-section isthus

σ =4π

k2

∞∑l=0

(2l + 1)

∣∣∣∣∣ jl(ka)

h(1)l (ka)

∣∣∣∣∣2

the limiting case is more instructive, take low energy scattering(z = ka 1), that is long wavelength

jl(z)

h(1)l (z)

=jl(z)

jl(z) + inl(z)≈ −i jl(z)

nl(z)≈ −i

(2l l!z l

(2l + 1)!

) (−2l l!z l+1

(2l)!

)

=i

2l + 1

[2l l!

(2l)!

]2z2l+1

−→ σ ≈ 4π

k2

∞∑l=0

1

(2l + 1)

[2l l!

(2l)!

]4(ka)4l+2

thus the cross-section becomes a sum dominated by the l = 0 term andconsequently independent of θ: σ ≈ 4πa2

this is 4 times the geometrical cross-section and equal to the total surfacearea of the sphere so the particles “see” the entire sphere when scattering

C. Segre (IIT) PHYS 406 - Spring 2014 April 07, 2014 13 / 13

Page 128: segre/phys406/14S/lecture_20.pdf · Generalized classical scattering problem z q b initial direction is conventionally along the z-axis b is the impact parameter, the per-pendicular

Example 11.3

The total cross-section isthus

σ =4π

k2

∞∑l=0

(2l + 1)

∣∣∣∣∣ jl(ka)

h(1)l (ka)

∣∣∣∣∣2

the limiting case is more instructive, take low energy scattering(z = ka 1), that is long wavelength

jl(z)

h(1)l (z)

=jl(z)

jl(z) + inl(z)≈ −i jl(z)

nl(z)≈ −i

(2l l!z l

(2l + 1)!

) (−2l l!z l+1

(2l)!

)

=i

2l + 1

[2l l!

(2l)!

]2z2l+1

−→ σ ≈ 4π

k2

∞∑l=0

1

(2l + 1)

[2l l!

(2l)!

]4(ka)4l+2

thus the cross-section becomes a sum dominated by the l = 0 term andconsequently independent of θ: σ ≈ 4πa2

this is 4 times the geometrical cross-section and equal to the total surfacearea of the sphere so the particles “see” the entire sphere when scattering

C. Segre (IIT) PHYS 406 - Spring 2014 April 07, 2014 13 / 13

Page 129: segre/phys406/14S/lecture_20.pdf · Generalized classical scattering problem z q b initial direction is conventionally along the z-axis b is the impact parameter, the per-pendicular

Example 11.3

The total cross-section isthus

σ =4π

k2

∞∑l=0

(2l + 1)

∣∣∣∣∣ jl(ka)

h(1)l (ka)

∣∣∣∣∣2

the limiting case is more instructive, take low energy scattering(z = ka 1), that is long wavelength

jl(z)

h(1)l (z)

=jl(z)

jl(z) + inl(z)

≈ −i jl(z)

nl(z)≈ −i

(2l l!z l

(2l + 1)!

) (−2l l!z l+1

(2l)!

)

=i

2l + 1

[2l l!

(2l)!

]2z2l+1

−→ σ ≈ 4π

k2

∞∑l=0

1

(2l + 1)

[2l l!

(2l)!

]4(ka)4l+2

thus the cross-section becomes a sum dominated by the l = 0 term andconsequently independent of θ: σ ≈ 4πa2

this is 4 times the geometrical cross-section and equal to the total surfacearea of the sphere so the particles “see” the entire sphere when scattering

C. Segre (IIT) PHYS 406 - Spring 2014 April 07, 2014 13 / 13

Page 130: segre/phys406/14S/lecture_20.pdf · Generalized classical scattering problem z q b initial direction is conventionally along the z-axis b is the impact parameter, the per-pendicular

Example 11.3

The total cross-section isthus

σ =4π

k2

∞∑l=0

(2l + 1)

∣∣∣∣∣ jl(ka)

h(1)l (ka)

∣∣∣∣∣2

the limiting case is more instructive, take low energy scattering(z = ka 1), that is long wavelength

jl(z)

h(1)l (z)

=jl(z)

jl(z) + inl(z)≈ −i jl(z)

nl(z)

≈ −i(

2l l!z l

(2l + 1)!

) (−2l l!z l+1

(2l)!

)

=i

2l + 1

[2l l!

(2l)!

]2z2l+1

−→ σ ≈ 4π

k2

∞∑l=0

1

(2l + 1)

[2l l!

(2l)!

]4(ka)4l+2

thus the cross-section becomes a sum dominated by the l = 0 term andconsequently independent of θ: σ ≈ 4πa2

this is 4 times the geometrical cross-section and equal to the total surfacearea of the sphere so the particles “see” the entire sphere when scattering

C. Segre (IIT) PHYS 406 - Spring 2014 April 07, 2014 13 / 13

Page 131: segre/phys406/14S/lecture_20.pdf · Generalized classical scattering problem z q b initial direction is conventionally along the z-axis b is the impact parameter, the per-pendicular

Example 11.3

The total cross-section isthus

σ =4π

k2

∞∑l=0

(2l + 1)

∣∣∣∣∣ jl(ka)

h(1)l (ka)

∣∣∣∣∣2

the limiting case is more instructive, take low energy scattering(z = ka 1), that is long wavelength

jl(z)

h(1)l (z)

=jl(z)

jl(z) + inl(z)≈ −i jl(z)

nl(z)≈ −i

(2l l!z l

(2l + 1)!

)

(−2l l!z l+1

(2l)!

)

=i

2l + 1

[2l l!

(2l)!

]2z2l+1

−→ σ ≈ 4π

k2

∞∑l=0

1

(2l + 1)

[2l l!

(2l)!

]4(ka)4l+2

thus the cross-section becomes a sum dominated by the l = 0 term andconsequently independent of θ: σ ≈ 4πa2

this is 4 times the geometrical cross-section and equal to the total surfacearea of the sphere so the particles “see” the entire sphere when scattering

C. Segre (IIT) PHYS 406 - Spring 2014 April 07, 2014 13 / 13

Page 132: segre/phys406/14S/lecture_20.pdf · Generalized classical scattering problem z q b initial direction is conventionally along the z-axis b is the impact parameter, the per-pendicular

Example 11.3

The total cross-section isthus

σ =4π

k2

∞∑l=0

(2l + 1)

∣∣∣∣∣ jl(ka)

h(1)l (ka)

∣∣∣∣∣2

the limiting case is more instructive, take low energy scattering(z = ka 1), that is long wavelength

jl(z)

h(1)l (z)

=jl(z)

jl(z) + inl(z)≈ −i jl(z)

nl(z)≈ −i

(2l l!z l

(2l + 1)!

) (−2l l!z l+1

(2l)!

)

=i

2l + 1

[2l l!

(2l)!

]2z2l+1

−→ σ ≈ 4π

k2

∞∑l=0

1

(2l + 1)

[2l l!

(2l)!

]4(ka)4l+2

thus the cross-section becomes a sum dominated by the l = 0 term andconsequently independent of θ: σ ≈ 4πa2

this is 4 times the geometrical cross-section and equal to the total surfacearea of the sphere so the particles “see” the entire sphere when scattering

C. Segre (IIT) PHYS 406 - Spring 2014 April 07, 2014 13 / 13

Page 133: segre/phys406/14S/lecture_20.pdf · Generalized classical scattering problem z q b initial direction is conventionally along the z-axis b is the impact parameter, the per-pendicular

Example 11.3

The total cross-section isthus

σ =4π

k2

∞∑l=0

(2l + 1)

∣∣∣∣∣ jl(ka)

h(1)l (ka)

∣∣∣∣∣2

the limiting case is more instructive, take low energy scattering(z = ka 1), that is long wavelength

jl(z)

h(1)l (z)

=jl(z)

jl(z) + inl(z)≈ −i jl(z)

nl(z)≈ −i

(2l l!z l

(2l + 1)!

) (−2l l!z l+1

(2l)!

)

=i

2l + 1

[2l l!

(2l)!

]2z2l+1

−→ σ ≈ 4π

k2

∞∑l=0

1

(2l + 1)

[2l l!

(2l)!

]4(ka)4l+2

thus the cross-section becomes a sum dominated by the l = 0 term andconsequently independent of θ: σ ≈ 4πa2

this is 4 times the geometrical cross-section and equal to the total surfacearea of the sphere so the particles “see” the entire sphere when scattering

C. Segre (IIT) PHYS 406 - Spring 2014 April 07, 2014 13 / 13

Page 134: segre/phys406/14S/lecture_20.pdf · Generalized classical scattering problem z q b initial direction is conventionally along the z-axis b is the impact parameter, the per-pendicular

Example 11.3

The total cross-section isthus

σ =4π

k2

∞∑l=0

(2l + 1)

∣∣∣∣∣ jl(ka)

h(1)l (ka)

∣∣∣∣∣2

the limiting case is more instructive, take low energy scattering(z = ka 1), that is long wavelength

jl(z)

h(1)l (z)

=jl(z)

jl(z) + inl(z)≈ −i jl(z)

nl(z)≈ −i

(2l l!z l

(2l + 1)!

) (−2l l!z l+1

(2l)!

)

=i

2l + 1

[2l l!

(2l)!

]2z2l+1 −→ σ ≈ 4π

k2

∞∑l=0

1

(2l + 1)

[2l l!

(2l)!

]4(ka)4l+2

thus the cross-section becomes a sum dominated by the l = 0 term andconsequently independent of θ: σ ≈ 4πa2

this is 4 times the geometrical cross-section and equal to the total surfacearea of the sphere so the particles “see” the entire sphere when scattering

C. Segre (IIT) PHYS 406 - Spring 2014 April 07, 2014 13 / 13

Page 135: segre/phys406/14S/lecture_20.pdf · Generalized classical scattering problem z q b initial direction is conventionally along the z-axis b is the impact parameter, the per-pendicular

Example 11.3

The total cross-section isthus

σ =4π

k2

∞∑l=0

(2l + 1)

∣∣∣∣∣ jl(ka)

h(1)l (ka)

∣∣∣∣∣2

the limiting case is more instructive, take low energy scattering(z = ka 1), that is long wavelength

jl(z)

h(1)l (z)

=jl(z)

jl(z) + inl(z)≈ −i jl(z)

nl(z)≈ −i

(2l l!z l

(2l + 1)!

) (−2l l!z l+1

(2l)!

)

=i

2l + 1

[2l l!

(2l)!

]2z2l+1 −→ σ ≈ 4π

k2

∞∑l=0

1

(2l + 1)

[2l l!

(2l)!

]4(ka)4l+2

thus the cross-section becomes a sum dominated by the l = 0 term andconsequently independent of θ: σ ≈ 4πa2

this is 4 times the geometrical cross-section and equal to the total surfacearea of the sphere so the particles “see” the entire sphere when scattering

C. Segre (IIT) PHYS 406 - Spring 2014 April 07, 2014 13 / 13

Page 136: segre/phys406/14S/lecture_20.pdf · Generalized classical scattering problem z q b initial direction is conventionally along the z-axis b is the impact parameter, the per-pendicular

Example 11.3

The total cross-section isthus

σ =4π

k2

∞∑l=0

(2l + 1)

∣∣∣∣∣ jl(ka)

h(1)l (ka)

∣∣∣∣∣2

the limiting case is more instructive, take low energy scattering(z = ka 1), that is long wavelength

jl(z)

h(1)l (z)

=jl(z)

jl(z) + inl(z)≈ −i jl(z)

nl(z)≈ −i

(2l l!z l

(2l + 1)!

) (−2l l!z l+1

(2l)!

)

=i

2l + 1

[2l l!

(2l)!

]2z2l+1 −→ σ ≈ 4π

k2

∞∑l=0

1

(2l + 1)

[2l l!

(2l)!

]4(ka)4l+2

thus the cross-section becomes a sum dominated by the l = 0 term andconsequently independent of θ: σ ≈ 4πa2

this is 4 times the geometrical cross-section and equal to the total surfacearea of the sphere so the particles “see” the entire sphere when scattering

C. Segre (IIT) PHYS 406 - Spring 2014 April 07, 2014 13 / 13