122
1 Bipolar Junction Transistors (BJTs)

Sedra42021_ch05_DDV

Embed Size (px)

DESCRIPTION

Elettronica

Citation preview

  • 1

    Bipolar Junction Transistors (BJTs)

  • Copyright 2004 by Oxford University Press, Inc.

    BJT npn

    Microelectronic Circuits - Fifth Edition Sedra/Smith 2

    Figure 5.1 A simplified structure of the npn transistor.

    RelatoreNote di presentazionesedr42021_0501.jpg

  • Copyright 2004 by Oxford University Press, Inc.

    BJT pnp

    Microelectronic Circuits - Fifth Edition Sedra/Smith 3

    Figure 5.2 A simplified structure of the pnp transistor.

    RelatoreNote di presentazionesedr42021_0502.jpg

  • Copyright 2004 by Oxford University Press, Inc.

    Regione attiva diretta

    Microelectronic Circuits - Fifth Edition Sedra/Smith 4

    Figure 5.3 Current flow in an npn transistor biased to operate in the active mode. (Reverse current components due to drift of thermally generated minority carriers are not shown.)

    RelatoreNote di presentazionesedr42021_0503.jpg

  • Copyright 2004 by Oxford University Press, Inc. Microelectronic Circuits - Fifth Edition Sedra/Smith 5

    Figure 5.4 Profiles of minority-carrier concentrations in the base and in the emitter of an npn transistor operating in the active mode: vBE > 0 and vCB 0.

    Concentrazione alleq. termodinamico

    Corrente di diffusione degli elettroni

    RelatoreNote di presentazionesedr42021_0504.jpg

  • Copyright 2004 by Oxford University Press, Inc.

    Corrente di collettore

    Microelectronic Circuits - Fifth Edition Sedra/Smith 6

    Is dipende da ni2 e quindi fortemente dipendente dalla temperatura: Raddoppia ad ogni 5C di aumento di temperatura.

  • Copyright 2004 by Oxford University Press, Inc.

    Corrente di base

    Microelectronic Circuits - Fifth Edition Sedra/Smith 7

    Lifetime dei portatori minoritari

  • Copyright 2004 by Oxford University Press, Inc.

    Corrente di base

    Microelectronic Circuits - Fifth Edition Sedra/Smith 8

    ovvero

  • Copyright 2004 by Oxford University Press, Inc.

    Corrente di emettitore

    Microelectronic Circuits - Fifth Edition Sedra/Smith 9

  • Copyright 2004 by Oxford University Press, Inc.

    Modelli circuitali equivalenti per grandi segnali del BJT in zona attiva diretta

    Microelectronic Circuits - Fifth Edition Sedra/Smith 10

    Figure 5.5 Large-signal equivalent-circuit models of the npn BJT operating in the forward active mode.

    RelatoreNote di presentazionesedr42021_0505a.jpg

  • Copyright 2004 by Oxford University Press, Inc.

    Struttura di un BJT reale

    Microelectronic Circuits - Fifth Edition Sedra/Smith 11

    Figure 5.6 Cross-section of an npn BJT.

    RelatoreNote di presentazionesedr42021_0506.jpg

  • Copyright 2004 by Oxford University Press, Inc.

    Modello di Ebers-Moll

    Microelectronic Circuits - Fifth Edition Sedra/Smith 12

    Figure 5.8 The Ebers-Moll (EM) model of the npn transistor.

    RelatoreNote di presentazionesedr42021_0508.jpg

  • Copyright 2004 by Oxford University Press, Inc.

    Modello di Ebers-Moll

    Microelectronic Circuits - Fifth Edition Sedra/Smith 13

  • Copyright 2004 by Oxford University Press, Inc.

    Modello di Ebers-Moll in ZAD

    Microelectronic Circuits - Fifth Edition Sedra/Smith 14

    Figure 5.9 The iC vCB characteristic of an npn transistor fed with a constant emitter current IE. The transistor enters the saturation mode of operation for vCB < 0.4 V, and the collector current diminishes.

    VBE>0 [0.6V 0.8V] VBC

  • Copyright 2004 by Oxford University Press, Inc.

    Modello di Ebers-Moll in regione di saturazione

    Microelectronic Circuits - Fifth Edition Sedra/Smith 15

    Figure 5.10 Concentration profile of the minority carriers (electrons) in the base of an npn transistor operating in the saturation mode.

    RelatoreNote di presentazionesedr42021_0510.jpg

  • Copyright 2004 by Oxford University Press, Inc.

    Transistore BJT pnp

    Microelectronic Circuits - Fifth Edition Sedra/Smith 16

    Figure 5.11 Current flow in a pnp transistor biased to operate in the active mode.

    RelatoreNote di presentazionesedr42021_0511.jpg

  • Copyright 2004 by Oxford University Press, Inc.

    Modello di Ebers-Moll BJT pnp in ZAD

    Microelectronic Circuits - Fifth Edition Sedra/Smith 17

    Figure 5.12 Large-signal model for the pnp transistor operating in the active mode.

    RelatoreNote di presentazionesedr42021_0512.jpg

  • Copyright 2004 by Oxford University Press, Inc. Microelectronic Circuits - Fifth Edition Sedra/Smith 18

    Figure 5.13 Circuit symbols for BJTs.

    RelatoreNote di presentazionesedr42021_0513a.jpg

  • Copyright 2004 by Oxford University Press, Inc.

    Relazioni tensione corrente in regione attiva diretta

    Microelectronic Circuits - Fifth Edition Sedra/Smith 19

    Figure 5.14 Voltage polarities and current flow in transistors biased in the active mode.

    Per il transistore pnp, sostituire vBE con vEB

    RelatoreNote di presentazionesedr42021_0514a.jpg

  • Copyright 2004 by Oxford University Press, Inc.

    Esempio 5.1

    Microelectronic Circuits - Fifth Edition Sedra/Smith 20

    Figure 5.15 Circuit for Example 5.1.

    RelatoreNote di presentazionesedr42021_0515a.jpg

  • Copyright 2004 by Oxford University Press, Inc.

    Esercizio 5.10

    Microelectronic Circuits - Fifth Edition Sedra/Smith 21

    Figure E5.10

    RelatoreNote di presentazionesedr42021_e0510.jpg

  • Copyright 2004 by Oxford University Press, Inc.

    Esercizio 5.11

    Microelectronic Circuits - Fifth Edition Sedra/Smith 22

    Figure E5.11

    RelatoreNote di presentazionesedr42021_e0511.jpg

  • Copyright 2004 by Oxford University Press, Inc.

    Rappresentazione grafica delle caratteristiche del transistore

    Microelectronic Circuits - Fifth Edition Sedra/Smith 23

    Figure 5.16 The iC vBE characteristic for an npn transistor.

    Anche le caratteristiche iE-vBE (vEB per i BJT pnp) e iB-vBE (vEB per i BJT pnp) sono esponenziali, ma con correnti in scala diverse: Is/ per iE e Is/ per iB

    RelatoreNote di presentazionesedr42021_0516.jpg

  • Copyright 2004 by Oxford University Press, Inc. Microelectronic Circuits - Fifth Edition Sedra/Smith 24

    Figure 5.17 Effect of temperature on the iCvBE characteristic. At a constant emitter current (broken line), vBE changes by 2 mV/C.

    Come per i diodi al silicio la tensione ai capi della giunzione base-emettitore, funzionante con una corrente costante, decresce di 2mV per ogni aumento di 1C della temperatura.

    RelatoreNote di presentazionesedr42021_0517.jpg

  • Copyright 2004 by Oxford University Press, Inc.

    Le caratteristiche a base comune

    Microelectronic Circuits - Fifth Edition Sedra/Smith 25

    Figure 5.18 The iCvCB characteristics of an npn transistor.

    RelatoreNote di presentazionesedr42021_0518a.jpg

  • Copyright 2004 by Oxford University Press, Inc.

    Caratteristiche ad Emettitore Comune

    Microelectronic Circuits - Fifth Edition Sedra/Smith 26

  • Copyright 2004 by Oxford University Press, Inc.

    Dipendenze della ic dalla tensione di collettore lEffetto Early

    Microelectronic Circuits - Fifth Edition Sedra/Smith 27

    Figure 5.19 (a) Conceptual circuit for measuring the iC vCE characteristics of the BJT. (b) The iC vCE characteristics of a practical BJT.

    Al crescere di vCE si riduce W e poich Is = f(1/W) Is aumenta e cos iC= effetto Early

    RelatoreNote di presentazionesedr42021_0519.jpg

  • Copyright 2004 by Oxford University Press, Inc.

    Rappresentazione dellEffetto Early

    Microelectronic Circuits - Fifth Edition Sedra/Smith 28

  • Copyright 2004 by Oxford University Press, Inc.

    Modello in ZAD con effetto Early

    Microelectronic Circuits - Fifth Edition Sedra/Smith 29

    Figure 5.20 Large-signal equivalent-circuit models of an npn BJT operating in the active mode in the common-emitter configuration.

    RelatoreNote di presentazionesedr42021_0520a.jpg

  • Copyright 2004 by Oxford University Press, Inc. Microelectronic Circuits - Fifth Edition Sedra/Smith 30

    Figure 5.21 Common-emitter characteristics. Note that the horizontal scale is expanded around the origin to show the saturation region in some detail.

    Caratteristiche ad emettitore comune

    RelatoreNote di presentazionesedr42021_0521.jpg

  • Copyright 2004 by Oxford University Press, Inc.

    La tensione di saturazione VCEsat e la resistenza di saturazione

    Microelectronic Circuits - Fifth Edition Sedra/Smith 31

    Figure 5.22 Typical dependence of on IC and on temperature in a modern integrated-circuit npn silicon transistor intended for operation around 1 mA.

    RelatoreNote di presentazionesedr42021_0522.jpg

  • Copyright 2004 by Oxford University Press, Inc. Microelectronic Circuits - Fifth Edition Sedra/Smith 32

    Figure 5.23 An expanded view of the common-emitter characteristics in the saturation region.

    Dal momento che Icsat stabilito dal progettista si dice che in saturazione lavora con un

    Il rapporto tra noto come fattore di pilotaggio (overdrive).

    e

    RelatoreNote di presentazionesedr42021_0523.jpg

  • Copyright 2004 by Oxford University Press, Inc. Microelectronic Circuits - Fifth Edition Sedra/Smith 33

    Figure 5.24 (a) An npn transistor operated in saturation mode with a constant base current IB. (b) The iCvCE characteristic curve corresponding to iB = IB. The curve can be approximated by a straight line of slope 1/RCEsat. (c) Equivalent-circuit representation of the saturated transistor. (d) A simplified equivalent-circuit model of the saturated transistor.

    RelatoreNote di presentazionesedr42021_0524a.jpg

  • Copyright 2004 by Oxford University Press, Inc. Microelectronic Circuits - Fifth Edition Sedra/Smith 34

    Figure 5.25 Plot of the normalized iC versus vCE for an npn transistor with F = 100 and R = 0.1. This is a plot of Eq. (5.47), which is derived using the Ebers-Moll model.

    RelatoreNote di presentazionesedr42021_0525.jpg

  • Copyright 2004 by Oxford University Press, Inc. Microelectronic Circuits - Fifth Edition Sedra/Smith 35

    Table 5.3

    RelatoreNote di presentazionesedr42021_tb0503a.jpg

  • Copyright 2004 by Oxford University Press, Inc. Microelectronic Circuits - Fifth Edition Sedra/Smith 36

    Table 5.3 (Continued)

    RelatoreNote di presentazionesedr42021_tb0503h.jpg

  • Copyright 2004 by Oxford University Press, Inc.

    Modello per piccoli segnali

    Microelectronic Circuits - Fifth Edition Sedra/Smith 37

    Figure 5.26 (a) Basic common-emitter amplifier circuit. (b) Transfer characteristic of the circuit in (a). The amplifier is biased at a point Q, and a small voltage signal vi is superimposed on the dc bias voltage VBE. The resulting output signal vo appears superimposed on the dc collector voltage VCE. The amplitude of vo is larger than that of vi by the voltage gain Av.

    RelatoreNote di presentazionesedr42021_0526a.jpg

  • Copyright 2004 by Oxford University Press, Inc. Microelectronic Circuits - Fifth Edition Sedra/Smith 38

    Figure 5.27 Circuit whose operation is to be analyzed graphically.

    RelatoreNote di presentazionesedr42021_0527.jpg

  • Copyright 2004 by Oxford University Press, Inc. Microelectronic Circuits - Fifth Edition Sedra/Smith 39

    Figure 5.28 Graphical construction for the determination of the dc base current in the circuit of Fig. 5.27.

    RelatoreNote di presentazionesedr42021_0528.jpg

  • Copyright 2004 by Oxford University Press, Inc. Microelectronic Circuits - Fifth Edition Sedra/Smith 40

    Figure 5.29 Graphical construction for determining the dc collector current IC and the collector-to-emitter voltage VCE in the circuit of Fig. 5.27.

    RelatoreNote di presentazionesedr42021_0529.jpg

  • Copyright 2004 by Oxford University Press, Inc. Microelectronic Circuits - Fifth Edition Sedra/Smith 41

    Figure 5.30 Graphical determination of the signal components vbe, ib, ic, and vce when a signal component vi is superimposed on the dc voltage VBB (see Fig. 5.27).

    RelatoreNote di presentazionesedr42021_0530a.jpg

  • Copyright 2004 by Oxford University Press, Inc. Microelectronic Circuits - Fifth Edition Sedra/Smith 42

    Figure 5.31 Effect of bias-point location on allowable signal swing: Load-line A results in bias point QA with a corresponding VCE which is too close to VCC and thus limits the positive swing of vCE. At the other extreme, load-line B results in an operating point too close to the saturation region, thus limiting the negative swing of vCE.

    RelatoreNote di presentazionesedr42021_0531.jpg

  • Copyright 2004 by Oxford University Press, Inc. Microelectronic Circuits - Fifth Edition Sedra/Smith 43

    Figure 5.32 A simple circuit used to illustrate the different modes of operation of the BJT.

    RelatoreNote di presentazionesedr42021_0532.jpg

  • Copyright 2004 by Oxford University Press, Inc. Microelectronic Circuits - Fifth Edition Sedra/Smith 44

    Figure 5.33 Circuit for Example 5.3.

    RelatoreNote di presentazionesedr42021_0533.jpg

  • Copyright 2004 by Oxford University Press, Inc. Microelectronic Circuits - Fifth Edition Sedra/Smith 45

    Figure 5.34 Analysis of the circuit for Example 5.4: (a) circuit; (b) circuit redrawn to remind the reader of the convention used in this book to show connections to the power supply; (c) analysis with the steps numbered.

    RelatoreNote di presentazionesedr42021_0534a.jpg

  • Copyright 2004 by Oxford University Press, Inc. Microelectronic Circuits - Fifth Edition Sedra/Smith 46

    Figure 5.35 Analysis of the circuit for Example 5.5. Note that the circled numbers indicate the order of the analysis steps.

    RelatoreNote di presentazionesedr42021_0535a.jpg

  • Copyright 2004 by Oxford University Press, Inc. Microelectronic Circuits - Fifth Edition Sedra/Smith 47

    Figure 5.36 Example 5.6: (a) circuit; (b) analysis with the order of the analysis steps indicated by circled numbers.

    RelatoreNote di presentazionesedr42021_0536a.jpg

  • Copyright 2004 by Oxford University Press, Inc. Microelectronic Circuits - Fifth Edition Sedra/Smith 48

    Figure 5.37 Example 5.7: (a) circuit; (b) analysis with the steps indicated by circled numbers.

    RelatoreNote di presentazionesedr42021_0537a.jpg

  • Copyright 2004 by Oxford University Press, Inc. Microelectronic Circuits - Fifth Edition Sedra/Smith 49

    Figure 5.38 Example 5.8: (a) circuit; (b) analysis with the steps indicated by the circled numbers.

    RelatoreNote di presentazionesedr42021_0538a.jpg

  • Copyright 2004 by Oxford University Press, Inc. Microelectronic Circuits - Fifth Edition Sedra/Smith 50

    Figure 5.39 Example 5.9: (a) circuit; (b) analysis with steps numbered.

    RelatoreNote di presentazionesedr42021_0539a.jpg

  • Copyright 2004 by Oxford University Press, Inc. Microelectronic Circuits - Fifth Edition Sedra/Smith 51

    Figure 5.40 Circuits for Example 5.10.

    RelatoreNote di presentazionesedr42021_0540a.jpg

  • Copyright 2004 by Oxford University Press, Inc. Microelectronic Circuits - Fifth Edition Sedra/Smith 52

    Figure 5.43 Two obvious schemes for biasing the BJT: (a) by fixing VBE; (b) by fixing IB. Both result in wide variations in IC and hence in VCE and therefore are considered to be bad. Neither scheme is recommended.

    RelatoreNote di presentazionesedr42021_0543a.jpg

  • Copyright 2004 by Oxford University Press, Inc. Microelectronic Circuits - Fifth Edition Sedra/Smith 53

    Figure 5.44 Classical biasing for BJTs using a single power supply: (a) circuit; (b) circuit with the voltage divider supplying the base replaced with its Thvenin equivalent.

    RelatoreNote di presentazionesedr42021_0544a.jpg

  • Copyright 2004 by Oxford University Press, Inc. Microelectronic Circuits - Fifth Edition Sedra/Smith 54

    Figure 5.45 Biasing the BJT using two power supplies. Resistor RB is needed only if the signal is to be capacitively coupled to the base. Otherwise, the base can be connected directly to ground, or to a grounded signal source, resulting in almost total -independence of the bias current.

    RelatoreNote di presentazionesedr42021_0545.jpg

  • Copyright 2004 by Oxford University Press, Inc. Microelectronic Circuits - Fifth Edition Sedra/Smith 55

    Figure 5.46 (a) A common-emitter transistor amplifier biased by a feedback resistor RB. (b) Analysis of the circuit in (a).

    RelatoreNote di presentazionesedr42021_0546a.jpg

  • Copyright 2004 by Oxford University Press, Inc. Microelectronic Circuits - Fifth Edition Sedra/Smith 56

    Figure 5.47 (a) A BJT biased using a constant-current source I. (b) Circuit for implementing the current source I.

    RelatoreNote di presentazionesedr42021_0547a.jpg

  • Copyright 2004 by Oxford University Press, Inc.

    Modello per piccoli segnali

    Microelectronic Circuits - Fifth Edition Sedra/Smith 57

    Figure 5.48 (a) Conceptual circuit to illustrate the operation of the transistor as an amplifier. (b) The circuit of (a) with the signal source vbe eliminated for dc (bias) analysis.

    RelatoreNote di presentazionesedr42021_0548a.jpg

  • Copyright 2004 by Oxford University Press, Inc. Microelectronic Circuits - Fifth Edition Sedra/Smith 58

    Figure 5.49 Linear operation of the transistor under the small-signal condition: A small signal vbe with a triangular waveform is superimposed on the dc voltage VBE. It gives rise to a collector signal current ic, also of triangular waveform, superimposed on the dc current IC. Here, ic = gmvbe, where gm is the slope of the iCvBE curve at the bias point Q.

    RelatoreNote di presentazionesedr42021_0549.jpg

  • Copyright 2004 by Oxford University Press, Inc. Microelectronic Circuits - Fifth Edition Sedra/Smith 59

    Figure 5.50 The amplifier circuit of Fig. 5.48(a) with the dc sources (VBE and VCC) eliminated (short circuited). Thus only the signal components are present. Note that this is a representation of the signal operation of the BJT and not an actual amplifier circuit.

    RelatoreNote di presentazionesedr42021_0550.jpg

  • Copyright 2004 by Oxford University Press, Inc. Microelectronic Circuits - Fifth Edition Sedra/Smith 60

    Figure 5.51 Two slightly different versions of the simplified hybrid- model for the small-signal operation of the BJT. The equivalent circuit in (a) represents the BJT as a voltage-controlled current source (a transconductance amplifier), and that in (b) represents the BJT as a current-controlled current source (a current amplifier).

    RelatoreNote di presentazionesedr42021_0551a.jpg

  • Copyright 2004 by Oxford University Press, Inc. Microelectronic Circuits - Fifth Edition Sedra/Smith 61

    Figure 5.53 Example 5.14: (a) circuit; (b) dc analysis; (c) small-signal model.

    RelatoreNote di presentazionesedr42021_0553a.jpg

  • Copyright 2004 by Oxford University Press, Inc. Microelectronic Circuits - Fifth Edition Sedra/Smith 62

    Figure 5.54 Signal waveforms in the circuit of Fig. 5.53.

    RelatoreNote di presentazionesedr42021_0554a.jpg

  • Copyright 2004 by Oxford University Press, Inc. Microelectronic Circuits - Fifth Edition Sedra/Smith 63

    Figure 5.55 Example 5.16: (a) circuit; (b) dc analysis; (c) small-signal model; (d) small-signal analysis performed directly on the circuit.

    RelatoreNote di presentazionesedr42021_0555a.jpg

  • Copyright 2004 by Oxford University Press, Inc. Microelectronic Circuits - Fifth Edition Sedra/Smith 64

    Figure 5.56 Distortion in output signal due to transistor cutoff. Note that it is assumed that no distortion due to the transistor nonlinear characteristics is occurring.

    RelatoreNote di presentazionesedr42021_0556.jpg

  • Copyright 2004 by Oxford University Press, Inc. Microelectronic Circuits - Fifth Edition Sedra/Smith 65

    Figure 5.57 Input and output waveforms for the circuit of Fig. 5.55. Observe that this amplifier is noninverting, a property of the common-base configuration.

    RelatoreNote di presentazionesedr42021_0557.jpg

  • Copyright 2004 by Oxford University Press, Inc. Microelectronic Circuits - Fifth Edition Sedra/Smith 66

    Figure 5.58 The hybrid- small-signal model, in its two versions, with the resistance ro included.

    RelatoreNote di presentazionesedr42021_0558a.jpg

  • Copyright 2004 by Oxford University Press, Inc. Microelectronic Circuits - Fifth Edition Sedra/Smith 67

    Figure E5.40

    RelatoreNote di presentazionesedr42021_e0540.jpg

  • Copyright 2004 by Oxford University Press, Inc. Microelectronic Circuits - Fifth Edition Sedra/Smith 68

    Table 5.4

    RelatoreNote di presentazionesedr42021_tb0504a.jpg

  • Copyright 2004 by Oxford University Press, Inc. Microelectronic Circuits - Fifth Edition Sedra/Smith 69

    Figure 5.59 Basic structure of the circuit used to realize single-stage, discrete-circuit BJT amplifier configurations.

    RelatoreNote di presentazionesedr42021_0559.jpg

  • Copyright 2004 by Oxford University Press, Inc. Microelectronic Circuits - Fifth Edition Sedra/Smith 70

    Figure E5.41

    RelatoreNote di presentazionesedr42021_e0541a.jpg

  • Copyright 2004 by Oxford University Press, Inc. Microelectronic Circuits - Fifth Edition Sedra/Smith 71

    Table 5.5

    RelatoreNote di presentazionesedr42021_tb0505a.jpg

  • Copyright 2004 by Oxford University Press, Inc. Microelectronic Circuits - Fifth Edition Sedra/Smith 72

    Figure 5.60 (a) A common-emitter amplifier using the structure of Fig. 5.59. (b) Equivalent circuit obtained by replacing the transistor with its hybrid- model.

    RelatoreNote di presentazionesedr42021_0560a.jpg

  • Copyright 2004 by Oxford University Press, Inc. Microelectronic Circuits - Fifth Edition Sedra/Smith 73

    Figure 5.61 (a) A common-emitter amplifier with an emitter resistance Re. (b) Equivalent circuit obtained by replacing the transistor with its T model.

    RelatoreNote di presentazionesedr42021_0561a.jpg

  • Copyright 2004 by Oxford University Press, Inc. Microelectronic Circuits - Fifth Edition Sedra/Smith 74

    Figure 5.62 (a) A common-base amplifier using the structure of Fig. 5.59. (b) Equivalent circuit obtained by replacing the transistor with its T model.

    RelatoreNote di presentazionesedr42021_0562a.jpg

  • Copyright 2004 by Oxford University Press, Inc. Microelectronic Circuits - Fifth Edition Sedra/Smith 75

    Figure 5.63 (a) An emitter-follower circuit based on the structure of Fig. 5.59. (b) Small-signal equivalent circuit of the emitter follower with the transistor replaced by its T model augmented with ro. (c) The circuit in (b) redrawn to emphasize that ro is in parallel with RL. This simplifies the analysis considerably.

    RelatoreNote di presentazionesedr42021_0563a.jpg

  • Copyright 2004 by Oxford University Press, Inc. Microelectronic Circuits - Fifth Edition Sedra/Smith 76

    Figure 5.64 (a) An equivalent circuit of the emitter follower obtained from the circuit in Fig. 5.63(c) by reflecting all resistances in the emitter to the base side. (b) The circuit in (a) after application of Thvenin theorem to the input circuit composed of vsig, Rsig, and RB.

    RelatoreNote di presentazionesedr42021_0564.jpg

  • Copyright 2004 by Oxford University Press, Inc. Microelectronic Circuits - Fifth Edition Sedra/Smith 77

    Figure 5.65 (a) An alternate equivalent circuit of the emitter follower obtained by reflecting all base-circuit resistances to the emitter side. (b) The circuit in (a) after application of Thvenin theorem to the input circuit composed of vsig, Rsig / ( 1 1), and RB / ( 1 1).

    RelatoreNote di presentazionesedr42021_0565.jpg

  • Copyright 2004 by Oxford University Press, Inc. Microelectronic Circuits - Fifth Edition Sedra/Smith 78

    Figure 5.66 Thvenin equivalent circuit of the output of the emitter follower of Fig. 5.63(a). This circuit can be used to find vo and hence the overall voltage gain vo/vsig for any desired RL.

    RelatoreNote di presentazionesedr42021_0566.jpg

  • Copyright 2004 by Oxford University Press, Inc. Microelectronic Circuits - Fifth Edition Sedra/Smith 79

    Table 5.6

    RelatoreNote di presentazionesedr42021_tb0506a.jpg

  • Copyright 2004 by Oxford University Press, Inc. Microelectronic Circuits - Fifth Edition Sedra/Smith 80

    Figure 5.67 The high-frequency hybrid- model.

    RelatoreNote di presentazionesedr42021_0567.jpg

  • Copyright 2004 by Oxford University Press, Inc. Microelectronic Circuits - Fifth Edition Sedra/Smith 81

    Figure 5.68 Circuit for deriving an expression for hfe(s) ; Ic/Ib.

    RelatoreNote di presentazionesedr42021_0568.jpg

  • Copyright 2004 by Oxford University Press, Inc. Microelectronic Circuits - Fifth Edition Sedra/Smith 82

    Figure 5.69 Bode plot for uhfeu.

    RelatoreNote di presentazionesedr42021_0569.jpg

  • Copyright 2004 by Oxford University Press, Inc. Microelectronic Circuits - Fifth Edition Sedra/Smith 83

    Figure 5.70 Variation of fT with IC.

    RelatoreNote di presentazionesedr42021_0570.jpg

  • Copyright 2004 by Oxford University Press, Inc. Microelectronic Circuits - Fifth Edition Sedra/Smith 84

    Table 5.7

    RelatoreNote di presentazionesedr42021_tb0507a.jpg

  • Copyright 2004 by Oxford University Press, Inc. Microelectronic Circuits - Fifth Edition Sedra/Smith 85

    Figure 5.71 (a) Capacitively coupled common-emitter amplifier. (b) Sketch of the magnitude of the gain of the CE amplifier versus frequency. The graph delineates the three frequency bands relevant to frequency-response determination.

    RelatoreNote di presentazionesedr42021_0571a.jpg

  • Copyright 2004 by Oxford University Press, Inc. Microelectronic Circuits - Fifth Edition Sedra/Smith 86

    Figure 5.72 Determining the high-frequency response of the CE amplifier: (a) equivalent circuit; (b) the circuit of (a) simplified at both the input side and the output side; (c) equivalent circuit with C replaced at the input side with the equivalent capacitance Ceq; (d) sketch of the frequency-response plot, which is that of a low-pass STC circuit.

    RelatoreNote di presentazionesedr42021_0572a.jpg

  • Copyright 2004 by Oxford University Press, Inc. Microelectronic Circuits - Fifth Edition Sedra/Smith 87

    Figure 5.73 Analysis of the low-frequency response of the CE amplifier: (a) amplifier circuit with dc sources removed; (b) the effect of CC1 is determined with CE and CC2 assumed to be acting as perfect short circuits;

    RelatoreNote di presentazionesedr42021_0573a.jpg

  • Copyright 2004 by Oxford University Press, Inc. Microelectronic Circuits - Fifth Edition Sedra/Smith 88

    Figure 5.73 (Continued) (c) the effect of CE is determined with CC1 and CC2 assumed to be acting as perfect short circuits; (d) the effect of CC2 is determined with CC1 and CE assumed to be acting as perfect short circuits;

    RelatoreNote di presentazionesedr42021_0573c.jpg

  • Copyright 2004 by Oxford University Press, Inc. Microelectronic Circuits - Fifth Edition Sedra/Smith 89

    Figure 5.73 (Continued) (e) sketch of the low-frequency gain under the assumptions that CC1, CE, and CC2 do not interact and that their break (or pole) frequencies are widely separated.

    RelatoreNote di presentazionesedr42021_0573e.jpg

  • Copyright 2004 by Oxford University Press, Inc. Microelectronic Circuits - Fifth Edition Sedra/Smith 90

    Figure 5.74 Basic BJT digital logic inverter.

    RelatoreNote di presentazionesedr42021_0574.jpg

  • Copyright 2004 by Oxford University Press, Inc. Microelectronic Circuits - Fifth Edition Sedra/Smith 91

    Figure 5.75 Sketch of the voltage transfer characteristic of the inverter circuit of Fig. 5.74 for the case RB 5 10 k, RC 5 1 k, 5 50, and VCC 5 5 V. For the calculation of the coordinates of X and Y, refer to the text.

    RelatoreNote di presentazionesedr42021_0575.jpg

  • Copyright 2004 by Oxford University Press, Inc. Microelectronic Circuits - Fifth Edition Sedra/Smith 92

    Figure 5.81 Capture schematic of the CE amplifier in Example 5.21.

    RelatoreNote di presentazionesedr42021_0580.jpg

  • Copyright 2004 by Oxford University Press, Inc. Microelectronic Circuits - Fifth Edition Sedra/Smith 93

    Figure 5.82 Frequency response of the CE amplifier in Example 5.21 with Rce = 0 and Rce = 130 .

    RelatoreNote di presentazionesedr42021_0581.jpg

  • Copyright 2004 by Oxford University Press, Inc. Microelectronic Circuits - Fifth Edition Sedra/Smith 94

    Figure P5.20

    RelatoreNote di presentazionesedr42021_p05020a.jpg

  • Copyright 2004 by Oxford University Press, Inc. Microelectronic Circuits - Fifth Edition Sedra/Smith 95

    Figure P5.24

    RelatoreNote di presentazionesedr42021_p05024a.jpg

  • Copyright 2004 by Oxford University Press, Inc. Microelectronic Circuits - Fifth Edition Sedra/Smith 96

    Figure P5.26

    RelatoreNote di presentazionesedr42021_p05026.jpg

  • Copyright 2004 by Oxford University Press, Inc. Microelectronic Circuits - Fifth Edition Sedra/Smith 97

    Figure P5.53

    RelatoreNote di presentazionesedr42021_p05053.jpg

  • Copyright 2004 by Oxford University Press, Inc. Microelectronic Circuits - Fifth Edition Sedra/Smith 98

    Figure P5.57

    RelatoreNote di presentazionesedr42021_p05057.jpg

  • Copyright 2004 by Oxford University Press, Inc. Microelectronic Circuits - Fifth Edition Sedra/Smith 99

    Figure P5.58

    RelatoreNote di presentazionesedr42021_p05058a.jpg

  • Copyright 2004 by Oxford University Press, Inc. Microelectronic Circuits - Fifth Edition Sedra/Smith 100

    Figure P5.65

    RelatoreNote di presentazionesedr42021_p05065.jpg

  • Copyright 2004 by Oxford University Press, Inc. Microelectronic Circuits - Fifth Edition Sedra/Smith 101

    Figure P5.66

    RelatoreNote di presentazionesedr42021_p05066.jpg

  • Copyright 2004 by Oxford University Press, Inc. Microelectronic Circuits - Fifth Edition Sedra/Smith 102

    Figure P5.67

    RelatoreNote di presentazionesedr42021_p05067a.jpg

  • Copyright 2004 by Oxford University Press, Inc. Microelectronic Circuits - Fifth Edition Sedra/Smith 103

    Figure P5.68

    RelatoreNote di presentazionesedr42021_p05068.jpg

  • Copyright 2004 by Oxford University Press, Inc. Microelectronic Circuits - Fifth Edition Sedra/Smith 104

    Figure P5.69

    RelatoreNote di presentazionesedr42021_p05069.jpg

  • Copyright 2004 by Oxford University Press, Inc. Microelectronic Circuits - Fifth Edition Sedra/Smith 105

    Figure P5.71

    RelatoreNote di presentazionesedr42021_p05071.jpg

  • Copyright 2004 by Oxford University Press, Inc. Microelectronic Circuits - Fifth Edition Sedra/Smith 106

    Figure P5.72

    RelatoreNote di presentazionesedr42021_p05072.jpg

  • Copyright 2004 by Oxford University Press, Inc. Microelectronic Circuits - Fifth Edition Sedra/Smith 107

    Figure P5.74

    RelatoreNote di presentazionesedr42021_p05074.jpg

  • Copyright 2004 by Oxford University Press, Inc. Microelectronic Circuits - Fifth Edition Sedra/Smith 108

    Figure P5.76

    RelatoreNote di presentazionesedr42021_p05076.jpg

  • Copyright 2004 by Oxford University Press, Inc. Microelectronic Circuits - Fifth Edition Sedra/Smith 109

    Figure P5.78

    RelatoreNote di presentazionesedr42021_p05078.jpg

  • Copyright 2004 by Oxford University Press, Inc. Microelectronic Circuits - Fifth Edition Sedra/Smith 110

    Figure P5.79

    RelatoreNote di presentazionesedr42021_p05079a.jpg

  • Copyright 2004 by Oxford University Press, Inc. Microelectronic Circuits - Fifth Edition Sedra/Smith 111

    Figure P5.81

    RelatoreNote di presentazionesedr42021_p05081.jpg

  • Copyright 2004 by Oxford University Press, Inc. Microelectronic Circuits - Fifth Edition Sedra/Smith 112

    Figure P5.82

    RelatoreNote di presentazionesedr42021_p05082.jpg

  • Copyright 2004 by Oxford University Press, Inc. Microelectronic Circuits - Fifth Edition Sedra/Smith 113

    Figure P5.112

    RelatoreNote di presentazionesedr42021_p05112.jpg

  • Copyright 2004 by Oxford University Press, Inc. Microelectronic Circuits - Fifth Edition Sedra/Smith 114

    Figure P5.115

    RelatoreNote di presentazionesedr42021_p05115.jpg

  • Copyright 2004 by Oxford University Press, Inc. Microelectronic Circuits - Fifth Edition Sedra/Smith 115

    Figure P5.116

    RelatoreNote di presentazionesedr42021_p05116.jpg

  • Copyright 2004 by Oxford University Press, Inc. Microelectronic Circuits - Fifth Edition Sedra/Smith 116

    Figure P5.124

    RelatoreNote di presentazionesedr42021_p05124.jpg

  • Copyright 2004 by Oxford University Press, Inc. Microelectronic Circuits - Fifth Edition Sedra/Smith 117

    Figure P5.130

    RelatoreNote di presentazionesedr42021_p05130.jpg

  • Copyright 2004 by Oxford University Press, Inc. Microelectronic Circuits - Fifth Edition Sedra/Smith 118

    Figure P5.134

    RelatoreNote di presentazionesedr42021_p05134.jpg

  • Copyright 2004 by Oxford University Press, Inc. Microelectronic Circuits - Fifth Edition Sedra/Smith 119

    Figure P5.136

    RelatoreNote di presentazionesedr42021_p05136.jpg

  • Copyright 2004 by Oxford University Press, Inc. Microelectronic Circuits - Fifth Edition Sedra/Smith 120

    Figure P5.143

    RelatoreNote di presentazionesedr42021_p05143.jpg

  • Copyright 2004 by Oxford University Press, Inc. Microelectronic Circuits - Fifth Edition Sedra/Smith 121

    Figure P5.144

    RelatoreNote di presentazionesedr42021_p05144.jpg

  • Copyright 2004 by Oxford University Press, Inc. Microelectronic Circuits - Fifth Edition Sedra/Smith 122

    Figure P5.159

    RelatoreNote di presentazionesedr42021_p05159.jpg

    Diapositiva numero 1BJT npnBJT pnpRegione attiva direttaDiapositiva numero 5Corrente di collettoreCorrente di baseCorrente di baseCorrente di emettitoreModelli circuitali equivalenti per grandi segnali del BJT in zona attiva direttaStruttura di un BJT realeModello di Ebers-MollModello di Ebers-MollModello di Ebers-Moll in ZADModello di Ebers-Moll in regione di saturazioneTransistore BJT pnpModello di Ebers-Moll BJT pnp in ZADDiapositiva numero 18Relazioni tensione corrente in regione attiva direttaEsempio 5.1Esercizio 5.10Esercizio 5.11Rappresentazione grafica delle caratteristiche del transistoreDiapositiva numero 24Le caratteristiche a base comuneCaratteristiche ad Emettitore ComuneDipendenze della ic dalla tensione di collettore lEffetto EarlyRappresentazione dellEffetto EarlyModello in ZAD con effetto EarlyCaratteristiche ad emettitore comuneLa tensione di saturazione VCEsat e la resistenza di saturazioneDiapositiva numero 32Diapositiva numero 33Diapositiva numero 34Diapositiva numero 35Diapositiva numero 36Modello per piccoli segnaliDiapositiva numero 38Diapositiva numero 39Diapositiva numero 40Diapositiva numero 41Diapositiva numero 42Diapositiva numero 43Diapositiva numero 44Diapositiva numero 45Diapositiva numero 46Diapositiva numero 47Diapositiva numero 48Diapositiva numero 49Diapositiva numero 50Diapositiva numero 51Diapositiva numero 52Diapositiva numero 53Diapositiva numero 54Diapositiva numero 55Diapositiva numero 56Modello per piccoli segnaliDiapositiva numero 58Diapositiva numero 59Diapositiva numero 60Diapositiva numero 61Diapositiva numero 62Diapositiva numero 63Diapositiva numero 64Diapositiva numero 65Diapositiva numero 66Diapositiva numero 67Diapositiva numero 68Diapositiva numero 69Diapositiva numero 70Diapositiva numero 71Diapositiva numero 72Diapositiva numero 73Diapositiva numero 74Diapositiva numero 75Diapositiva numero 76Diapositiva numero 77Diapositiva numero 78Diapositiva numero 79Diapositiva numero 80Diapositiva numero 81Diapositiva numero 82Diapositiva numero 83Diapositiva numero 84Diapositiva numero 85Diapositiva numero 86Diapositiva numero 87Diapositiva numero 88Diapositiva numero 89Diapositiva numero 90Diapositiva numero 91Diapositiva numero 92Diapositiva numero 93Diapositiva numero 94Diapositiva numero 95Diapositiva numero 96Diapositiva numero 97Diapositiva numero 98Diapositiva numero 99Diapositiva numero 100Diapositiva numero 101Diapositiva numero 102Diapositiva numero 103Diapositiva numero 104Diapositiva numero 105Diapositiva numero 106Diapositiva numero 107Diapositiva numero 108Diapositiva numero 109Diapositiva numero 110Diapositiva numero 111Diapositiva numero 112Diapositiva numero 113Diapositiva numero 114Diapositiva numero 115Diapositiva numero 116Diapositiva numero 117Diapositiva numero 118Diapositiva numero 119Diapositiva numero 120Diapositiva numero 121Diapositiva numero 122