47
Operational Amplifiers 1

Sedra42021_ch02_DDV

Embed Size (px)

Citation preview

  • Operational Amplifiers

    1

  • I terminali dellamplificatore

    operazionale

    Copyright 2004 by Oxford University Press, Inc.Microelectronic Circuits - Fifth Edition Sedra/Smith 2

    Figure 2.1 Circuit symbol for the op amp.

  • Copyright 2004 by Oxford University Press, Inc.Microelectronic Circuits - Fifth Edition Sedra/Smith 3

    Figure 2.2 The op amp shown connected to dc power supplies.

  • Funzione e caratteristiche

    dellamplificatore operazionale

    ideale

    A= guadagno differenziale

    Copyright 2004 by Oxford University Press, Inc.Microelectronic Circuits - Fifth Edition Sedra/Smith 4

    Figure 2.3 Equivalent circuit of the ideal op amp.

    A= guadagno differenziale

  • Segnale differenziale e di modo

    comune

    vid=v2-v1

    Copyright 2004 by Oxford University Press, Inc.Microelectronic Circuits - Fifth Edition Sedra/Smith 5

    Figure 2.4 Representation of the signal sources v1 and v2 in terms of their differential and common-mode components.

    vic=1/2(v1+v2)

    v1=vicm-vid/2

    v2= vicm+vid/2

  • La configurazione invertente

    Copyright 2004 by Oxford University Press, Inc.Microelectronic Circuits - Fifth Edition Sedra/Smith 6

    Figure 2.5 The inverting closed-loop configuration.

  • Copyright 2004 by Oxford University Press, Inc.Microelectronic Circuits - Fifth Edition Sedra/Smith 7

    A

    v2-v1=vo/A=>0 v1=v2 cortocircuito virtuale

    Sfasamento di 180

  • Effetti del guadagno a anello aperto

    finito

    Copyright 2004 by Oxford University Press, Inc.Microelectronic Circuits - Fifth Edition Sedra/Smith 8

    v0=A(v2-v1)

    v2=0

    v1=-v0/A

    Se A G-R2/R1

  • Resistenza di ingresso e di uscita

    R=vi/i1=vi/(vi/R1)=R1

    Per avere alta resistenza di ingresso ed elevato guadagno R2 dovrebbe essere

    troppo elevata (> decine di M) e questo farebbe perdere di idealit al funzionamento

    Copyright 2004 by Oxford University Press, Inc.Microelectronic Circuits - Fifth Edition Sedra/Smith 9

    troppo elevata (> decine di M) e questo farebbe perdere di idealit al funzionamento

    delloperazionale.

  • Esempio di possibile

    configurazione ad alto guadagno

    Copyright 2004 by Oxford University Press, Inc.Microelectronic Circuits - Fifth Edition Sedra/Smith 10

    Figure 2.8 Circuit for Example 2.2. The circled numbers indicate the sequence of the steps in the analysis.

  • Copyright 2004 by Oxford University Press, Inc.Microelectronic Circuits - Fifth Edition Sedra/Smith 11

    Figure 2.9 A current amplifier based on the circuit of Fig. 2.8. The amplifier delivers its output current to R4. It has a

    current gain of (1 + R2/R3), a zero input resistance, and an infinite output resistance. The load (R4), however, must be

    floating (i.e., neither of its two terminals can be connected to ground).

  • Esercizio 2.5 (Amplificatore in

    transresistenza)

    Copyright 2004 by Oxford University Press, Inc.Microelectronic Circuits - Fifth Edition Sedra/Smith 12

    Figure E2.5

  • Esercizio 2.6

    Copyright 2004 by Oxford University Press, Inc.Microelectronic Circuits - Fifth Edition Sedra/Smith 13

    Figure E2.6

  • Applicazione: il circuito

    sommatore

    Copyright 2004 by Oxford University Press, Inc.Microelectronic Circuits - Fifth Edition Sedra/Smith 14

    Figure 2.10 A weighted summer.

  • Copyright 2004 by Oxford University Press, Inc.Microelectronic Circuits - Fifth Edition Sedra/Smith 15

    Figure 2.11 A weighted summer capable of implementing summing coefficients of both signs.

  • Configurazione non invertente

    Copyright 2004 by Oxford University Press, Inc.Microelectronic Circuits - Fifth Edition Sedra/Smith 16

    Figure 2.12 The noninverting configuration.

  • Analisi della configurazione non

    invertente ideale e calcolo del

    guadagno in anello chiuso

    Copyright 2004 by Oxford University Press, Inc.Microelectronic Circuits - Fifth Edition Sedra/Smith 17

    Figure 2.13 Analysis of the noninverting circuit. The sequence of the steps in the analysis is indicated by the circled

    numbers.

  • Applicazione: buffer

    Copyright 2004 by Oxford University Press, Inc.Microelectronic Circuits - Fifth Edition Sedra/Smith 18

    Figure 2.14 (a) The unity-gain buffer or follower amplifier. (b) Its equivalent circuit model.

  • Effetto del guadagno ad anello

    aperto finito

    Copyright 2004 by Oxford University Press, Inc.Microelectronic Circuits - Fifth Edition Sedra/Smith 19

    Se A oppure A>>1+R2/R1

    G=1+R2/R1

  • Esercizio 2.9

    Copyright 2004 by Oxford University Press, Inc.Microelectronic Circuits - Fifth Edition Sedra/Smith 20

    Figure E2.9

  • Esercizio 2.13

    Copyright 2004 by Oxford University Press, Inc.Microelectronic Circuits - Fifth Edition Sedra/Smith 21

    Figure E2.13

  • Esercizio 2.14

    Si deve collegare un trasduttore caratterizzato da una tensione a circuito

    Aperto di 1V ed una resistenza interna di 1M ad un carico di 1k.

    Si determini la tensione sul carico se il collegamento viene fatto

    (a) Direttamente

    (b) Attraverso un inseguitore di tensione a guadagno unitario (buffer)

    Copyright 2004 by Oxford University Press, Inc.Microelectronic Circuits - Fifth Edition Sedra/Smith 22

  • Amplificatori differenziali

    vid= tensione differenziale

    Ad= guadagni differenziale

    vicm= tensione di modo comune

    Acm= guadagno di modo comune

    Copyright 2004 by Oxford University Press, Inc.Microelectronic Circuits - Fifth Edition Sedra/Smith 23

    Figure 2.15 Representing the input signals to a differential amplifier in terms of their differential and common-mode

    components.

    Rapporto di reiezione di modo comune

  • Amplificatore di differenza a

    singolo stadio

    Copyright 2004 by Oxford University Press, Inc.Microelectronic Circuits - Fifth Edition Sedra/Smith 24

    Figure 2.16 A difference amplifier.

  • Calcolo del guadagno differenziale

    Copyright 2004 by Oxford University Press, Inc.Microelectronic Circuits - Fifth Edition Sedra/Smith 25

    vo1=-R2/R1 vi1

    vo2=( R4/(R3+R4))(1+R2/R1)vi2

    vo=vo1+vo2=( R4/(R3+R4))(1+R2/R1)vi2-R2/R1vi1

    Se si vuole pesare nella stessa maniera i due ingressi si deve porre:

    ( R4/(R3+R4))(1+R2/R1)= R2/R1 ovvero (R4/(R3+R4))(R1+R2)/R1=R2/R1

    R4/(R3+R4)=R2/(R1+R2)

    Questa condizione viene soddisfatta se R4/R3=R2/R1

    vo=R2/R1 (vi2-vi1) Ad=R2/R1

  • Calcolo del guadagno di modo

    comune

    Copyright 2004 by Oxford University Press, Inc.Microelectronic Circuits - Fifth Edition Sedra/Smith 26

    Essendo i2=i1 si ha:

  • Resistenza di ingresso

    dellamplificatore differenziale Oltre a rigettare i segnali di modo comune, lamplificatore differenziale

    normalmente dovrebbe avere unelevata resistenza di ingresso.

    Per determinare la resistenza di ingresso tra i due terminali (cio la vid),

    detta resistenza di ingresso differenziale Rid, si consderi R1=R3 e R2=R4

    Copyright 2004 by Oxford University Press, Inc.Microelectronic Circuits - Fifth Edition Sedra/Smith 27

    Figure 2.19 Finding the input resistance of the difference amplifier for the case R3 = R1 and R4 = R2.

    Vid=R1 ii+0+R1ii

    Rid=2R1

    Per avere Rid grande devo

    Aumentare R1 ma questo

    riduce Ad

  • Amplificatore da strumentazione

    Copyright 2004 by Oxford University Press, Inc.Microelectronic Circuits - Fifth Edition Sedra/Smith 28

    Figure 2.20 A popular circuit for an instrumentation amplifier: (a) Initial approach to the circuit; (b) The circuit in (a) with

    the connection between node X and ground removed and the two resistors R1 and R1 lumped together. This simple wiring

    change dramatically improves performance; (c) Analysis of the circuit in (b) assuming ideal op amps.

  • Dipendenza dalla frequenza del

    guadagno ad anello aperto

    Copyright 2004 by Oxford University Press, Inc.Microelectronic Circuits - Fifth Edition Sedra/Smith 29

    Figure 2.22 Open-loop gain of a typical general-purpose internally compensated op amp.

  • Risposta in frequenza degli

    amplificatori ad anello chiuso

    Copyright 2004 by Oxford University Press, Inc.Microelectronic Circuits - Fifth Edition Sedra/Smith 30

    Figure 2.23 Frequency response of an amplifier with a nominal gain of +10 V/V.

  • Copyright 2004 by Oxford University Press, Inc.Microelectronic Circuits - Fifth Edition Sedra/Smith 31

    Figure 2.24 Frequency response of an amplifier with a nominal gain of 10 V/V.

  • Comportamento per grandi segnali:

    Saturazione della tensione di uscita

    Copyright 2004 by Oxford University Press, Inc.Microelectronic Circuits - Fifth Edition Sedra/Smith 32

    Figure 2.25 (a) A noninverting amplifier with a nominal gain of 10 V/V designed using an op amp that saturates at 13-V

    output voltage and has 20-mA output current limits. (b)When the input sine wave has a peak of 1.5 V, the output is

    clipped off at 13 V.

  • Comportamento per grandi segnali:

    slew rate

    Copyright 2004 by Oxford University Press, Inc.Microelectronic Circuits - Fifth Edition Sedra/Smith 33

    Figure 2.26 (a) Unity-gain follower. (b) Input step waveform. (c) Linearly rising output waveform obtained when the

    amplifier is slew-rate limited. (d) Exponentially rising output waveform obtained when V is sufficiently small so that the

    initial slope (vtV) is smaller than or equal to SR.

  • Copyright 2004 by Oxford University Press, Inc.Microelectronic Circuits - Fifth Edition Sedra/Smith 34

    Figure 2.27 Effect of slew-rate limiting on output sinusoidal waveforms.

  • Non idealit in continua: offset

    Copyright 2004 by Oxford University Press, Inc.Microelectronic Circuits - Fifth Edition Sedra/Smith 35

    Figure 2.28 Circuit model for an op amp with input offset voltage VOS

    .

  • Copyright 2004 by Oxford University Press, Inc.Microelectronic Circuits - Fifth Edition Sedra/Smith 36

    Figure E2.23 Transfer characteristic of an op amp with VOS

    = 5 mV.

  • Copyright 2004 by Oxford University Press, Inc.Microelectronic Circuits - Fifth Edition Sedra/Smith 37

    Figure 2.29 Evaluating the output dc offset voltage due to VOS

    in a closed-loop amplifier.

  • Copyright 2004 by Oxford University Press, Inc.Microelectronic Circuits - Fifth Edition Sedra/Smith 38

    Figure 2.30 The output dc offset voltage of an op amp can be trimmed to zero by connecting a potentiometer to the two

    offset-nulling terminals. The wiper of the potentiometer is connected to the negative supply of the op amp.

  • Integratori e derivatori

    Copyright 2004 by Oxford University Press, Inc.Microelectronic Circuits - Fifth Edition Sedra/Smith 39

    Figure 2.37 The inverting configuration with general impedances in the feedback and the feed-in paths.

  • Integratore reale (Esempio 2.6)

    Si ricavi per il circuito in figura unespressione

    per Vo(s)/Vi(s) . Si dimostri che la funzione di

    trasferimento quella di un circuito passa-basso.

    Si trovi il guadagno dc e la frequenza a -3dB.

    Si dimensioni il circuito per avere un guadagno

    dc di 40dB, una frequenza a -3dB di 1kHz e la

    resistenza di ingresso 1k. Per quale frequenza

    il modulo della funz. di trasferimento 1?

    Copyright 2004 by Oxford University Press, Inc.Microelectronic Circuits - Fifth Edition Sedra/Smith 40

    Figure 2.38 Circuit for Example 2.6.

    il modulo della funz. di trasferimento 1?

    Qual langolo di fase a questa frequenza?

  • Diagramma di Bode di un filtro

    passa-basso del primo ordine

    Copyright 2004 by Oxford University Press, Inc.Microelectronic Circuits - Fifth Edition Sedra/Smith 41

  • Integratore di Miller

    i1=vi/R1

    vo(t)=-vc(t)

    Copyright 2004 by Oxford University Press, Inc.Microelectronic Circuits - Fifth Edition Sedra/Smith 42

    Si comporta come un passa basso con frequenza di taglio nulla.

    Per =0 il modulo infinito funziona ad anello aperto

  • In dc , quando il condensatore si comporta come circuito aperto, non c

    retroazione negativa!

    Questa una fonte di problemi: ogni pur piccola componente dc in ingresso

    produrrebbe una tensione teoricamente infinita. Ovviamente nella pratica luscita

    Saturer positivamente o negativamente a seconda del segno del segnale dc in ingresso

    Copyright 2004 by Oxford University Press, Inc.Microelectronic Circuits - Fifth Edition Sedra/Smith 43

    Figure 2.40 Determining the effect of the op-amp input

    offset voltage VOS

    on the Miller integrator circuit. Note that

    since the output rises with time, the op amp eventually

    saturates.

  • Effetti delle correnti di bias in

    ingresso

    Copyright 2004 by Oxford University Press, Inc.Microelectronic Circuits - Fifth Edition Sedra/Smith 44

    Figure 2.41 Effect of the op-amp input bias and offset currents on the performance of the Miller integrator circuit.

  • Copyright 2004 by Oxford University Press, Inc.Microelectronic Circuits - Fifth Edition Sedra/Smith 45

    Figure 2.42 The Miller integrator with a large resistance RF

    connected in parallel with C in order to provide negative

    feedback and hence finite gain at dc.

  • Esempio 2.7Si determini luscita prodotta da un integratore di Miller in

    risposta ad un impulso di ingresso di ampiezza 1V e durata 1ms.

    Siano R1=10k e C=10nF. Se in parallelo al condensatore viene posto

    Un resistore 1M, come si modificher la risposta?

    Si ipotizzi che lopamp saturi a +/-13V.

    Si assuma che per t=0 Vc=0

    Copyright 2004 by Oxford University Press, Inc.Microelectronic Circuits - Fifth Edition Sedra/Smith 46

    Figure 2.43 Waveforms for Example 2.7: (a) Input pulse. (b) Output linear ramp of

    ideal integrator with time constant of 0.1 ms. (c) Output exponential ramp with resistor

    RF

    connected across integrator capacitor.

    Dove v0(0+) il valore iniziale che 0.

    Luscita sar un esponenziale con cost. di tempo RFC=10ms

    Per t=1ms v0(t)=9.5V

  • Il derivatore (filtro passa-alto)

    Copyright 2004 by Oxford University Press, Inc.Microelectronic Circuits - Fifth Edition Sedra/Smith 47

    Figure 2.44 (a) A differentiator. (b) Frequency response of a differentiator with a time-constant CR.

    Fase =-90 (ovvero -180 (configurazione invertente)+uno sfasamento dovuto allo zero (+90))