26
Foundations of Math 9 Updated June 2019 Adrian Herlaar, School District 61 www.mrherlaar.weebly.com Section 6: Polynomials This book belongs to: Block: Section Due Date Date Handed In Level of Completion Corrections Made and Understood . . . Self-Assessment Rubric Learning Targets and Self-Evaluation L – T Description Mark βˆ’ Understanding terms, degree, coefficients, and constants Grouping like terms Pictorially demonstrating terms using algebra tiles βˆ’ Applying integer fundamentals in addition and subtraction of polynomials Applying exponent laws in the multiplication and division of polynomials Performing combined Operations of polynomials Comments: ______________________________________________________________________________ ______________________________________________________________________________ ______________________________________________________________________________ Category Sub-Category Description Expert (Extending) 4 Work meets the objectives; is clear, error free, and demonstrates a mastery of the Learning Targets β€œYou could teach this!” 3.5 Work meets the objectives; is clear, with some minor errors, and demonstrates a clear understanding of the Learning Targets β€œAlmost Perfect, one little error.” Apprentice (Proficient) 3 Work almost meets the objectives; contains errors, and demonstrates sound reasoning and thought concerning the Learning Targets β€œGood understanding with a few errors.” Apprentice (Developing) 2 Work is in progress; contains errors, and demonstrates a partial understanding of the Learning Targets β€œYou are on the right track, but key concepts are missing.” Novice (Emerging) 1.5 Work does not meet the objectives; frequent errors, and minimal understanding of the Learning Targets is demonstrated β€œYou have achieved the bare minimum to meet the learning outcome.” 1 Work does not meet the objectives; there is no or minimal effort, and no understanding of the Learning Targets β€œLearning Outcomes not met at this time.”

Section 6: Polynomials

  • Upload
    others

  • View
    5

  • Download
    0

Embed Size (px)

Citation preview

Foundations of Math 9 Updated June 2019

Adrian Herlaar, School District 61 www.mrherlaar.weebly.com

Section 6: Polynomials

This book belongs to: Block:

Section Due Date Date Handed In Level of Completion Corrections Made and Understood

πŸ”. 𝟏

πŸ”. 𝟐

πŸ”. πŸ‘

Self-Assessment Rubric

Learning Targets and Self-Evaluation

L – T Description Mark

πŸ” βˆ’ 𝟏 Understanding terms, degree, coefficients, and constants

Grouping like terms

Pictorially demonstrating terms using algebra tiles

πŸ” βˆ’ 𝟐 Applying integer fundamentals in addition and subtraction of polynomials

Applying exponent laws in the multiplication and division of polynomials

Performing combined Operations of polynomials

Comments:

______________________________________________________________________________

______________________________________________________________________________

______________________________________________________________________________

Category Sub-Category Description

Expert (Extending)

4 Work meets the objectives; is clear, error free, and demonstrates a mastery of the Learning Targets

β€œYou could teach this!”

3.5 Work meets the objectives; is clear, with some minor errors, and demonstrates a clear understanding of the Learning Targets

β€œAlmost Perfect, one little error.”

Apprentice (Proficient)

3 Work almost meets the objectives; contains errors, and demonstrates sound reasoning and thought

concerning the Learning Targets

β€œGood understanding with a few errors.”

Apprentice (Developing)

2 Work is in progress; contains errors, and demonstrates a partial understanding of the

Learning Targets

β€œYou are on the right track, but key concepts

are missing.”

Novice (Emerging)

1.5 Work does not meet the objectives; frequent errors, and minimal understanding of the Learning

Targets is demonstrated

β€œYou have achieved the bare minimum to meet the learning outcome.”

1 Work does not meet the objectives; there is no or minimal effort, and no understanding of the

Learning Targets

β€œLearning Outcomes not met at this time.”

Foundations of Math 9

1 Adrian Herlaar, School District 61 www.mrherlaar.weebly.com

Competency Evaluation

A valuable aspect to the learning process involves self-reflection and efficacy. Research has shown that authentic

self-reflection helps improve performance and effort, and can have a direct impact on the growth mindset of the

individual. In order to grow and be a life-long learner we need to develop the capacity to monitor, evaluate, and

know what and where we need to focus on improvement. Read the following list of Core Competency Outcomes

and reflect on your behaviour, attitude, effort, and actions throughout this unit.

4 3 2 1

I listen during instruction and come ready to ask questions

Personal Responsibility

I am on time for class

I am fully prepared for the class, with all the required supplies

I am fully prepared for Tests

I follow instructions keep my Workbook organized and tidy

I am on task during work blocks

I complete assignments on time

I keep track of my Learning Targets

Self-Regulation

I take ownership over my goals, learning, and behaviour

I can solve problems myself and know when to ask for help

I can persevere in challenging tasks

I am actively engaged in lessons and discussions

I only use my phone for school tasks

Classroom

Responsibility and

Communication

I am focused on the discussion and lessons

I ask questions during the lesson and class

I give my best effort and encourage others to work well

I am polite and communicate questions and concerns with my peers and teacher in a timely manner

I clean up after myself and leave the classroom tidy when I leave

Collaborative Actions

I can work with others to achieve a common goal

I make contributions to my group

I am kind to others, can work collaboratively and build relationships with my peers

I can identify when others need support and provide it

Communication

Skills

I present informative clearly, in an organized way

I ask and respond to simple direct questions

I am an active listener, I support and encourage the speaker

I recognize that there are different points of view and can disagree respectfully

I do not interrupt or speak over others

Overall

Goal for next Unit – refer to the above criteria. Please select (underline/highlight) two areas you want to focus on

Rank yourself on the left of each column: 4 (Excellent), 3 (Good), 2 (Satisfactory), 1 (Needs Improvement)

I will rank your Competency Evaluation on the right half of each column

Foundations of Math 9

2 Adrian Herlaar, School District 61 www.mrherlaar.weebly.com

Section 6.1 – Polynomials

Vocabulary

There will be a lot vocabulary necessary to accurately understand Polynomials

Term: Any variable, constant, or product of the two

Example: 3, 4π‘₯, 𝑑, 2π‘Ÿ2, π‘₯𝑦𝑧

Like Terms: Terms that have the same variable(s) to the same exponents

Example: π‘₯2 π‘Žπ‘›π‘‘ 4π‘₯2, 7𝑑 π‘Žπ‘›π‘‘ 3𝑑, 4 π‘Žπ‘›π‘‘ 9

Degree of a Term: The exponent on the variable or sum of exponents on different variables

of one term

Example: 3π‘₯ 𝑖𝑠 π·π‘’π‘”π‘Ÿπ‘’π‘’ 1, 4π‘₯2 𝑖𝑠 π·π‘’π‘”π‘Ÿπ‘’π‘’ 2, 5π‘₯𝑦𝑧 𝑖𝑠 π·π‘’π‘”π‘Ÿπ‘’π‘’ 3

Polynomial: Any term or terms separated by addition or subtraction where all

exponents on the variables are whole numbers

Example: 5𝑑2 + 2𝑑 βˆ’ 7

Leading Term: The term in a Polynomial with the highest degree

Example: From above: 5𝑑2 is the leading term, it has the highest degree

Descending Order: Writing terms from highest to lowest degree

Example: From Above: Is in descending order, degree goes 2, 1, 0

Polynomial Degree: The highest degree on a term, becomes the degree of the polynomial

Example: From Above: 5𝑑2 is the leading term with degree 2, so the

Polynomial is of degree 2

Foundations of Math 9

3 Adrian Herlaar, School District 61 www.mrherlaar.weebly.com

Combining like Terms

Combining like terms is doing exactly that

When we have a long list of terms written as a Polynomial, we can combine any that are

Like Terms: same variables, same exponent

Example: 3π‘ž2 βˆ’ 4 + 2π‘ž βˆ’ 2π‘ž2 + 4π‘ž βˆ’ 8

Like Terms are: 3π‘ž2 π‘Žπ‘›π‘‘ βˆ’2π‘ž2 , βˆ’ 4 π‘Žπ‘›π‘‘ βˆ’ 8, 2π‘ž π‘Žπ‘›π‘‘ 4π‘ž

So, 3π‘ž2 βˆ’ 2π‘ž2 = π‘ž2

2π‘ž + 4π‘ž = 6π‘ž

βˆ’4 βˆ’ 8 = βˆ’12

And Descending Order: π’’πŸ + πŸ”π’’ βˆ’ 𝟏𝟐

Example: Combine the Like Terms and leave the simplified expression in Descending Order

5π‘₯𝑦 + 5π‘₯2 + 2π‘₯ βˆ’ 6 βˆ’ 4𝑦π‘₯ + 2π‘₯ + 6 βˆ’ 3π‘₯2

Like Terms are:

+5π‘₯2π‘Žπ‘›π‘‘ βˆ’3π‘₯2 so 5π‘₯2 βˆ’ 3π‘₯2 = 2π‘₯2 π·π‘’π‘”π‘Ÿπ‘’π‘’ π‘œπ‘“ 2

5π‘₯𝑦 π‘Žπ‘›π‘‘ βˆ’ 4𝑦π‘₯ so 5π‘₯𝑦 βˆ’ 4π‘₯𝑦 = π‘₯𝑦 π·π‘’π‘”π‘Ÿπ‘’π‘’ π‘œπ‘“ 2

+2π‘₯ π‘Žπ‘›π‘‘ + 2π‘₯ so 2π‘₯ + 2π‘₯ = 4π‘₯ π·π‘’π‘”π‘Ÿπ‘’π‘’ π‘œπ‘“ 1

βˆ’6 π‘Žπ‘›π‘‘ + 6 so βˆ’6 + 6 = 0 π·π‘’π‘”π‘Ÿπ‘’π‘’ π‘œπ‘“ 0

Since π‘₯2π‘Žπ‘›π‘‘ π‘₯𝑦 are both degree 2, which one goes first?

We list them ALPHABETICALLY, π‘₯2 = π‘₯π‘₯ π‘Žπ‘›π‘‘ π‘₯π‘₯ π‘π‘œπ‘šπ‘’π‘  π‘π‘’π‘“π‘œπ‘Ÿπ‘’ π‘₯𝑦

πŸπ’™πŸ + π’™π’š + πŸ’π’™

Degree 2 Degree 1

Degree 0

π‘₯𝑦 and 𝑦π‘₯ are the same, in

multiplication order doesn’t matter,

π‘₯𝑦 = 𝑦π‘₯

Foundations of Math 9

4 Adrian Herlaar, School District 61 www.mrherlaar.weebly.com

Section 6.1 – Practice Questions

Identify the number of terms, what are they, and their degrees?

1. 3π‘₯ βˆ’ 4π‘₯2 βˆ’ 5

2. 4π‘₯𝑦𝑧

3. βˆ’2π‘₯𝑦𝑧 βˆ’ 5π‘₯𝑦 + 4

4. 5π‘₯3𝑦 + 4π‘₯𝑦3 βˆ’ 6π‘₯𝑦𝑧 5. 5

6. 3π‘₯ + 4𝑦 + 5𝑧 βˆ’ π‘₯2

Put the following Polynomials in DESCENDING ORDER

7. 3 + 4π‘₯2 βˆ’ 5π‘₯ 8. βˆ’2𝑑 + 4𝑑3 βˆ’ 2𝑑 βˆ’ 3𝑑2

9. 2 βˆ’ π‘₯ + 5π‘₯2

10. 𝑧2 βˆ’ 4𝑧 + 5 11. π‘₯ + π‘₯𝑦 + π‘₯𝑧 βˆ’ 𝑦

12. βˆ’5π‘₯𝑦 βˆ’ 𝑦 + 2π‘₯ + π‘₯2

Foundations of Math 9

5 Adrian Herlaar, School District 61 www.mrherlaar.weebly.com

Simplify the following, put your answer in DESCENDING ORDER

13. 3𝑑 + 4 βˆ’ 6𝑑 + 2𝑑2 + 4 βˆ’ 3𝑑2 14. 7𝑧3 + 2𝑧 βˆ’ 4𝑧2 + 1 βˆ’ 4𝑧2 βˆ’ 5 + 3𝑧2 + 3𝑧 15. 5π‘₯𝑦 + 3 βˆ’ 5𝑦π‘₯ + 2 16. βˆ’4π‘ž + 5π‘ž2 βˆ’ 7 βˆ’ 5π‘ž2 + 4π‘ž + 7

Foundations of Math 9

6 Adrian Herlaar, School District 61 www.mrherlaar.weebly.com

17. 1

3𝑖2 + 2𝑖 βˆ’

1

6𝑖2 + 4 βˆ’ 9

18. βˆ’4.9π‘₯ βˆ’ 3.2𝑦 βˆ’ 1.3π‘₯ + 4.2𝑦 + 1

19. 11

5π‘₯ +

2

3𝑦 βˆ’

3

5π‘₯ βˆ’

1

3𝑦 + 10

20. 1

4𝑗2 βˆ’ 𝑗 βˆ’

1

2𝑗 +

3

8𝑗2 +

5

16𝑗2

Foundations of Math 9

7 Adrian Herlaar, School District 61 www.mrherlaar.weebly.com

Section 6.2 – Addition and Subtraction of Polynomials

All we are doing here is grouping like terms, however it involves a couple extra steps

Let’s start with Addition

Addition of Polynomials

Example: (π‘₯2 + 4π‘₯ βˆ’ 7) + (2π‘₯2 βˆ’ 3π‘₯ + 4)

We have 2 Polynomials, shown in brackets, and we are adding the second Polynomial to the first.

Step 1: In addition just drop the Brackets, keep the sign on the first term of the second

Polynomial, since it’s positive, nothing changes

π‘₯2 + 4π‘₯ βˆ’ 7 + 2π‘₯2 βˆ’ 3π‘₯ + 4

Step 2: Group the Like Terms

π‘₯2 + 4π‘₯ βˆ’ 7 + 2π‘₯2 βˆ’ 3π‘₯ + 4

= πŸ‘π’™πŸ + 𝒙 βˆ’ πŸ‘

Make sure your answer is in DESCENDING ORDER!

We can’t SOLVE for the unknown yet, this is as far as we will go in this class.

If you make the Polynomial equal to something, then we can solve: We do this in Grade 10.

Example: (βˆ’4𝑝2 + 3 βˆ’ 2𝑝) + (2 βˆ’ 3𝑝2 + 7𝑝)

βˆ’4𝑝2 + 3 βˆ’ 2𝑝 + 2 βˆ’ 3𝑝2 + 7𝑝

βˆ’4𝑝2 βˆ’ 3𝑝2 βˆ’ 2𝑝 + 7𝑝 + 3 + 2

βˆ’πŸ•π’‘πŸ + πŸ“π’‘ + πŸ“

Drop the brackets, leave the sign on

the 1st term of the second Polynomial

Rearrange the terms so like terms are

together, descending order right

away is a bonus

Leave the solution in Descending Order

Foundations of Math 9

8 Adrian Herlaar, School District 61 www.mrherlaar.weebly.com

Example: (5π‘₯𝑦 + 3 βˆ’ 2π‘₯) + (βˆ’3 + 2π‘₯ βˆ’ 5π‘₯𝑦)

5π‘₯𝑦 + 3 βˆ’ 2π‘₯ βˆ’ 3 + 2π‘₯ βˆ’ 5π‘₯𝑦

5π‘₯𝑦 βˆ’ 5π‘₯𝑦 βˆ’ 2π‘₯ + 2π‘₯ + 3 βˆ’ 3

𝟎

Example: (4 + 3𝑑2 βˆ’ 7π‘₯) + (6π‘₯ βˆ’ 2𝑑2 βˆ’ 12)

4 + 3𝑑2 βˆ’ 7π‘₯ + 6π‘₯ βˆ’ 2𝑑2 βˆ’ 12

3𝑑2 βˆ’ 2𝑑2 βˆ’ 7π‘₯ + 6π‘₯ + 4 βˆ’ 12

π’•πŸ βˆ’ 𝒙 βˆ’ πŸ–

Subtraction of Polynomials

There is 1 very important concept to understand with subtraction

Consider this: (π‘₯2 + 5π‘₯ βˆ’ 4) βˆ’ (2π‘₯2 βˆ’ 5π‘₯ βˆ’ 4)

We are subtracting this from the 1st one. The subtraction symbol MUST affect each term.

Think about WATERBOMBING in the negative symbol

The signs change

(π‘₯2 + 5π‘₯ βˆ’ 4) βˆ’ (2π‘₯2 βˆ’ 5π‘₯ βˆ’ 4)

After you WATERBOMB in the negative you can change the signs and DROP the BRACKETS

Remember:

o π‘›π‘’π‘”π‘Žπ‘‘π‘–π‘£π‘’ βˆ— π‘›π‘’π‘”π‘Žπ‘‘π‘–π‘£π‘’ = π‘π‘œπ‘ π‘–π‘‘π‘–π‘£π‘’

o π‘›π‘’π‘”π‘Žπ‘‘π‘–π‘£π‘’ βˆ— π‘π‘œπ‘ π‘–π‘‘π‘–π‘£π‘’ = π‘›π‘’π‘”π‘Žπ‘‘π‘–π‘£π‘’

π‘₯2 + 5π‘₯ βˆ’ 4 βˆ’ 2π‘₯2 + 5π‘₯ + 4

Drop the brackets, leave the sign on

the 1st term of the second Polynomial

Rearrange the terms so like terms are

together, descending order right

away is a bonus

Leave the solution in Descending Order,

if everything cancels out, zero is a valid

answer!

Foundations of Math 9

9 Adrian Herlaar, School District 61 www.mrherlaar.weebly.com

Now we GROUP the LIKE TERMS and we’re done

π‘₯2 βˆ’ 2π‘₯2 = βˆ’π‘₯2

5π‘₯ + 5π‘₯ = 10π‘₯

βˆ’4 + 4 = 0

So, in Descending Order,

βˆ’π’™πŸ + πŸπŸŽπ’™

Example: (3π‘₯2 βˆ’ 4π‘₯ + 2) βˆ’ (6π‘₯2 + 5π‘₯ βˆ’ 12)

Step 1: Drop the Brackets 3π‘₯2 βˆ’ 4π‘₯ + 2 βˆ’ (6π‘₯2 + 5π‘₯ βˆ’ 12)

of 1st Polynomial

Step 2: Waterbomb in the 3π‘₯2 βˆ’ 4π‘₯ + 2 βˆ’ 6π‘₯2 βˆ’ 5π‘₯ + 12

(βˆ’) to the second one

and Drop the Brackets

Step 3: Group the LIKE TERMS βˆ’πŸ‘π’™πŸ βˆ’ πŸ—π’™ + πŸπŸ’

and put the result in

DESCENDING ORDER

Example: (9π‘Ÿ2 + 4π‘Ÿ + 5) βˆ’ (βˆ’3π‘Ÿ2 βˆ’ 4π‘Ÿ + 5)

9π‘Ÿ2 + 4π‘Ÿ + 5 + 3π‘Ÿ2 + 4π‘Ÿ βˆ’ 5

9π‘Ÿ2 + 3π‘Ÿ2 + 4π‘Ÿ + 4π‘Ÿ + 5 βˆ’ 5

πŸπŸπ’“πŸ + πŸ–π’“

Example: βˆ’(2𝑑2 + 4𝑑 βˆ’ 6) βˆ’ (8𝑑2 βˆ’ 5𝑑 + 2)

βˆ’2𝑑2 βˆ’ 4𝑑 + 6 βˆ’ 8𝑑2 + 5𝑑 βˆ’ 2

βˆ’2𝑑2 βˆ’ 8𝑑2 βˆ’ 4𝑑 + 5𝑑 + 6 βˆ’ 2

βˆ’πŸπŸŽπ’•πŸ + 𝒕 + πŸ’

Waterbomb in the negative sign

Group the LIKE TERMS

Waterbomb in the negative sign Waterbomb in the negative

Group the LIKE TERMS

Foundations of Math 9

10 Adrian Herlaar, School District 61 www.mrherlaar.weebly.com

Section 6.2 – Practice Questions

Add the following Polynomials, leave answer in DESCENDING order.

1. (π‘₯ + 4) + (π‘₯ βˆ’ 7)

2. (2π‘₯2 βˆ’ 4π‘₯ βˆ’ 7) + (3π‘₯2 βˆ’ 7 + 4π‘₯)

3. (3π‘₯𝑦 + 4π‘₯3 + 4) + (2π‘₯𝑦 βˆ’ 4π‘₯3 βˆ’ 4) 4. (10 + 4𝑑2 + 4𝑑) + (2𝑑 βˆ’ 7𝑑2 βˆ’ 8)

5. (𝑗3 + 2𝑗2 + 𝑗 + 4) + (3𝑗3 βˆ’ 2𝑗2 βˆ’ 7𝑗 + 15)

6. (4 + 6π‘₯ βˆ’ 2π‘₯2) + (βˆ’π‘₯2 βˆ’ 2π‘₯) 7. (𝑑2 + 4) + (βˆ’π‘‘2 βˆ’ 4)

Foundations of Math 9

11 Adrian Herlaar, School District 61 www.mrherlaar.weebly.com

8. (βˆ’π‘₯2 + 2 βˆ’ 3π‘₯) + (βˆ’4π‘₯2 + π‘₯ βˆ’ 5) 9. (βˆ’2π‘₯ + π‘₯2 βˆ’ 2𝑦2) + (βˆ’π‘¦2 βˆ’ π‘₯ + 2π‘₯2)

10. (4π‘₯ βˆ’ 2π‘₯2) + (βˆ’5 + π‘₯2) 11. (βˆ’3 + 4π‘₯2 + 4π‘₯) + (5π‘₯ βˆ’ 2π‘₯2 + 4)

12. (3π‘₯ βˆ’ 2π‘₯𝑦 + 2𝑦) + (π‘₯𝑦 βˆ’ 3𝑦) + (βˆ’3𝑦 βˆ’ π‘₯)

13. (βˆ’2𝑦 + 3π‘₯ + π‘₯𝑦) + (2π‘₯𝑦 βˆ’ π‘₯ βˆ’ 𝑦) + (βˆ’π‘₯ βˆ’ 4π‘₯𝑦)

Foundations of Math 9

12 Adrian Herlaar, School District 61 www.mrherlaar.weebly.com

Subtract the Polynomials, leave answer in DESCENDING order.

14. (3π‘₯2 + 4π‘₯ βˆ’ 7) βˆ’ (βˆ’2π‘₯2 + 4π‘₯ + 9) 15. (𝑑3 βˆ’ 5𝑑 + 4𝑑2) βˆ’ (𝑑2 βˆ’ 7𝑑 βˆ’ 2𝑑2)

16. (𝑧 βˆ’ 4) βˆ’ (3𝑧 βˆ’ 7) 17. (𝑀 βˆ’ 7) βˆ’ (2𝑀 + 4)

18. (π‘Ÿ + 6) βˆ’ (βˆ’2π‘Ÿ βˆ’ 2) 19. (𝑗 + 14) βˆ’ (βˆ’5𝑗 + 7)

20. (2π‘˜2 + π‘˜ βˆ’ 7π‘˜) βˆ’ (3π‘˜2 βˆ’ π‘˜ βˆ’ 4π‘˜) βˆ’ (6π‘˜2 βˆ’ 8π‘˜ + 7π‘˜)

Foundations of Math 9

13 Adrian Herlaar, School District 61 www.mrherlaar.weebly.com

21. (5 βˆ’ 𝑑) βˆ’ (βˆ’7 + 𝑑) βˆ’ (12 + 𝑑2) 22. (βˆ’2π‘₯ βˆ’ 3𝑦) βˆ’ (4π‘₯ + 2𝑦) βˆ’ (π‘₯ βˆ’ 3𝑦) 23. (βˆ’5π‘₯ βˆ’ 2𝑦 + 3𝑧) βˆ’ (βˆ’2π‘₯ + 9𝑦) βˆ’ (βˆ’π‘₯ + 𝑦 βˆ’ 2𝑧)

Perform the Combined Operations

24. (2𝑠𝑑 βˆ’ 𝑠 βˆ’ 𝑑) βˆ’ (βˆ’3𝑠𝑑 + 𝑑) + (βˆ’π‘  + 2𝑑) 25. (βˆ’3π‘₯ + 4𝑦) + (6π‘₯ βˆ’ 5𝑦) βˆ’ (2π‘₯ + 11𝑦 βˆ’ 5𝑧) 26. (βˆ’2π‘₯𝑦 + 9𝑧) + (4π‘₯2 βˆ’ 11𝑧) βˆ’ (6π‘₯2 + 8π‘₯𝑦 βˆ’ 11𝑧)

Foundations of Math 9

14 Adrian Herlaar, School District 61 www.mrherlaar.weebly.com

Section 6.3 – Multiply, Divide, Combined Operations, and Tiles

Multiplication of Polynomials

Multiplication is awesome, all we do is WATERBOMB (DISTRIBUTIVITY) and use our

Exponent Laws for the Variables

Remember: When we multiply a COMMON BASE we ADD the exponents!

Also, the Order of Multiplication does not matter!

2 βˆ— 3 𝑖𝑠 π‘‘β„Žπ‘’ π‘ π‘Žπ‘šπ‘’ π‘Žπ‘  3 βˆ— 2

π‘₯𝑦𝑧 𝑖𝑠 π‘‘β„Žπ‘’ π‘ π‘Žπ‘šπ‘’ π‘Žπ‘  𝑦π‘₯𝑧, 𝑧𝑦π‘₯, π‘œπ‘Ÿ 𝑧π‘₯𝑦

It makes no difference, keep this in mind

Example: 3(π‘₯ + 4)

3(π‘₯ + 4) Waterbomb in the 3

3 π‘‘π‘–π‘šπ‘’π‘  π‘₯ 𝑖𝑠 3

3 π‘‘π‘–π‘šπ‘’π‘  4 𝑖𝑠 12

So,

πŸ‘(𝒙 + πŸ’) = πŸ‘π’™ + 𝟏𝟐

Example: βˆ’4π‘₯(π‘₯ + 6)

βˆ’4π‘₯ βˆ— π‘₯ + βˆ’4π‘₯ βˆ— 6

βˆ’πŸ’π’™πŸ βˆ’ πŸπŸ’π’™

Example: π‘₯(π‘₯ + 𝑦)

π‘₯ βˆ— π‘₯ + π‘₯ βˆ— 𝑦

π’™πŸ + π’™π’š

Example: 4π‘˜(3π‘˜π‘š βˆ’ 2π‘š)

4π‘˜ βˆ— 3π‘˜π‘š + 4π‘˜ βˆ— βˆ’2π‘š

πŸπŸπ’ŒπŸπ’Ž βˆ’ πŸ–π’Œπ’Ž

Example: 𝑑2(6𝑝 βˆ’ 4𝑑)

𝑑2 βˆ— 6𝑝 + 𝑑2 βˆ— βˆ’4𝑑

6𝑑2𝑝 βˆ’ 4𝑑3

βˆ’πŸ’π’•πŸ‘ + πŸ”π’•πŸπ’‘

Foundations of Math 9

15 Adrian Herlaar, School District 61 www.mrherlaar.weebly.com

Example: 14π‘ž(2π‘ž2 βˆ’ 4π‘ž)

14π‘ž βˆ— 2π‘ž2 + 14π‘ž βˆ— βˆ’4π‘ž

πŸπŸ–π’’πŸ‘ βˆ’ πŸ“πŸ”π’’πŸ

Division of Polynomials

Division of Polynomials is just fractions and exponent laws

Consider this:

2 + 3

7=

2

7+

3

7

So,

4π‘Ÿ + 2

2=

4π‘Ÿ

2+

2

2 β†’ 2π‘Ÿ + 1

Example:

𝑑2 + 7𝑑

𝑑=

𝑑2

𝑑+

7𝑑

𝑑 β†’ 𝑑 + 7

Example:

4𝑧3 βˆ’ 2𝑧2 + 12𝑧

2𝑧

4𝑧3

2𝑧+

βˆ’2𝑧2

2𝑧+

12𝑧

2𝑧

πŸπ’›πŸ βˆ’ 𝒛 + πŸ”

Remember this?

We can break Polynomials down the same way.

𝑑2

𝑑= 𝑑

7𝑑

𝑑= 7

Exponent Laws

Anything divided by itself is 1

Foundations of Math 9

16 Adrian Herlaar, School District 61 www.mrherlaar.weebly.com

Example:

8π‘₯𝑦𝑧 + 4𝑦𝑧 + 2𝑧

2𝑧

8π‘₯𝑦𝑧

2𝑧+

4𝑦𝑧

2𝑧+

2𝑧

2𝑧

πŸ’π’™π’š + πŸπ’š + 𝟏

Combined Operations

It is very rare that you only have to add, subtract, multiply, or divide only.

More often than not it involves a combination of steps

Example:

3π‘Ÿ(π‘Ÿ + 4) βˆ’ 2π‘Ÿ(4π‘Ÿ + 6)

3π‘Ÿ2 + 12π‘Ÿ βˆ’ 8π‘Ÿ2 βˆ’ 12π‘Ÿ

βˆ’5π‘Ÿ2

So it’ll take a few steps, multiply first, add/subtract, then combine the terms and leave

your answer in Descending Order

Example:

4𝑑(𝑑2 + 5)

𝑑

4𝑑3 + 20𝑑

𝑑

4𝑑3

𝑑+

20𝑑

𝑑 = πŸ’π’•πŸ + 𝟐𝟎

Waterbomb to remove the BRACKETS

Combine LIKE TERMS and SIMPLIFY

Foundations of Math 9

17 Adrian Herlaar, School District 61 www.mrherlaar.weebly.com

Example:

3π‘₯(π‘₯ + 4)

π‘₯+

5π‘₯(3π‘₯ βˆ’ 12)

3π‘₯

3π‘₯2 + 12π‘₯

π‘₯+

15π‘₯2 βˆ’ 60π‘₯

3π‘₯

3π‘₯2

π‘₯+

12π‘₯

π‘₯+

15π‘₯2

3π‘₯+

βˆ’60π‘₯

3π‘₯

3π‘₯ + 12 + 5π‘₯ βˆ’ 20

πŸ–π’™ βˆ’ πŸ–

Example:

2π‘Ÿ2(π‘Ÿ βˆ’ 4)

π‘Ÿβˆ’

6(π‘Ÿ2 + 2π‘Ÿ)

2

2π‘Ÿ3 βˆ’ 8π‘Ÿ2

π‘Ÿβˆ’ (

6π‘Ÿ2 + 12π‘Ÿ

2)

2π‘Ÿ3

π‘Ÿβˆ’

8π‘Ÿ2

π‘Ÿβˆ’ (

6π‘Ÿ2

2+

12π‘Ÿ

2)

2π‘Ÿ2 βˆ’ 8π‘Ÿβˆ’(3π‘Ÿ2 + 6π‘Ÿ)

2π‘Ÿ2 βˆ’ 8π‘Ÿ βˆ’ 3π‘Ÿ2 βˆ’ 6π‘Ÿ

2π‘Ÿ2 βˆ’ 3π‘Ÿ2 βˆ’ 8π‘Ÿ βˆ’ 6π‘Ÿ

βˆ’π’“πŸ βˆ’ πŸπŸ’π’“

Waterbomb to remove brackets

Divide each term by the denominator

Group LIKE TERMS and SIMPLIFY

Waterbomb to remove brackets

Since you’re subtracting, put brackets

around the second Polynomial so you

don’t forget to subtract each term

Divide each term by its denominator

Waterbomb in the NEGATIVE symbol

Group LIKE TERMS

Simplify the final solution

Foundations of Math 9

18 Adrian Herlaar, School District 61 www.mrherlaar.weebly.com

Algebra Tiles: The Visual Representation of Polynomials

If the Tiles are Shaded In, they are the POSTIVE representation, non-shaded are NEGATIVE

That means that the Shaded and Non-Shaded CANCEL OUT

So here are a couple Examples:

Add the following:

π‘₯

π‘₯ 1

π‘₯

1 1

1 𝑑𝑖𝑙𝑒 π‘₯ 𝑑𝑖𝑙𝑒 π‘₯2 𝑑𝑖𝑙𝑒

π‘Žπ‘›π‘‘

π‘Žπ‘›π‘‘

π‘Žπ‘›π‘‘ π‘π‘Žπ‘›π‘π‘’π‘™ π‘œπ‘’π‘‘

π‘π‘Žπ‘›π‘π‘’π‘™ π‘œπ‘’π‘‘

π‘π‘Žπ‘›π‘π‘’π‘™ π‘œπ‘’π‘‘

+ =

βˆ’π‘₯2 βˆ’ 2π‘₯ + 2 π‘₯2 + π‘₯ βˆ’ 3 βˆ’π‘₯ βˆ’ 1

Foundations of Math 9

19 Adrian Herlaar, School District 61 www.mrherlaar.weebly.com

Subtract the following (this is tricky):

Multiply the following:

βˆ’

Remember when we

illustrated INTEGERS

We need a NEGATIVE to

take away and we don’t

have one so we bring in β€œ0”

Now we TAKE AWAY

=

π‘₯2 + π‘₯ βˆ’ 1 βˆ’π‘₯2 + π‘₯ βˆ’ 1 2π‘₯2

π‘₯(βˆ’π‘₯ βˆ’ 2) = βˆ’π‘₯2 βˆ’ 2π‘₯

βˆ’π‘₯ βˆ’ 2

π‘₯

Foundations of Math 9

20 Adrian Herlaar, School District 61 www.mrherlaar.weebly.com

Section 6.3 – Practice Questions

Multiply the following. Leave answer in DESCENDING order.

1. βˆ’3(π‘₯ βˆ’ 7)

2. βˆ’(𝑑2 βˆ’ 7𝑑 + 4)

3. 4𝑑𝑝(βˆ’2𝑑2 + 3𝑝)

4. 4π‘˜2(π‘˜2 + 7π‘˜ βˆ’ 2)

5. βˆ’π‘§(𝑧 + 4)

6. 2π‘₯(2𝑦 + π‘₯ βˆ’ 3𝑧)

7. π‘₯𝑦(π‘₯𝑦𝑧 + 𝑧 βˆ’ π‘₯𝑦) 8. 2𝑠𝑑(βˆ’3𝑠 + 4𝑑 βˆ’ 𝑠𝑑)

9. βˆ’2π‘₯2(3π‘₯2 βˆ’ 2𝑦2 + 4𝑧2)

Foundations of Math 9

21 Adrian Herlaar, School District 61 www.mrherlaar.weebly.com

Divide the following. Leave answer in DESCENDING order.

10. 3π‘₯+12

3 11.

𝑑2+4𝑑

𝑑

12. 3π‘₯2βˆ’9π‘₯+6

3

13. 5π‘ž3+10π‘ž2βˆ’5π‘ž

5π‘ž 14.

βˆ’4𝑑2+2𝑑

2𝑑

15. βˆ’π‘Ž2𝑏𝑐 βˆ’ π‘Žπ‘2𝑐 + π‘Žπ‘π‘2

βˆ’π‘Žπ‘π‘

16. 18𝑧4βˆ’6𝑧3+3𝑧2

βˆ’3𝑧2 17. 4π‘Ÿ12+6π‘Ÿ3βˆ’8π‘Ÿ2

βˆ’2π‘Ÿβˆ’2

18. βˆ’π‘Ž2𝑏2𝑐+π‘Žπ‘2𝑐2βˆ’ π‘Ž2𝑏2𝑐2

π‘Žπ‘2𝑐

Foundations of Math 9

22 Adrian Herlaar, School District 61 www.mrherlaar.weebly.com

Perform the Combined Operations. Answer in DESCENDING order.

19. βˆ’3(π‘₯2 + 4π‘₯) + 5π‘₯(π‘₯ βˆ’ 6)

20. 2𝑑(𝑑2βˆ’4𝑑)

𝑑 βˆ’3𝑑(4𝑑 βˆ’ 5)

21. 7π‘ž(3π‘ž2+4π‘ž)

7+

9π‘ž(6π‘ž2βˆ’3π‘ž)

3

22. βˆ’3𝑧3(π‘§βˆ’3)

3βˆ’

4𝑧2(3𝑧+6𝑧2)

3

Foundations of Math 9

23 Adrian Herlaar, School District 61 www.mrherlaar.weebly.com

23. Add

24. Multiply

+ βˆ’π‘₯2 π‘₯2 βˆ’π‘₯ βˆ’π‘₯

βˆ’1 +1

Foundations of Math 9

24 Adrian Herlaar, School District 61 www.mrherlaar.weebly.com

Extra Work Space

Foundations of Math 9

25 Adrian Herlaar, School District 61 www.mrherlaar.weebly.com

Answer Key

Section 6.1

1. π‘‡π‘’π‘Ÿπ‘šπ‘ : 3 3π‘₯, βˆ’4π‘₯2, βˆ’5

π·π‘’π‘”π‘Ÿπ‘’π‘’: 1, 2, 0

2. π‘‡π‘’π‘Ÿπ‘šπ‘ : 1 4π‘₯𝑦𝑧

π·π‘’π‘”π‘Ÿπ‘’π‘’: 3

3. π‘‡π‘’π‘Ÿπ‘šπ‘ : 3 βˆ’2π‘₯𝑦𝑧, βˆ’5π‘₯𝑦, 4 π·π‘’π‘”π‘Ÿπ‘’π‘’: 3, 2, 0

4. π‘‡π‘’π‘Ÿπ‘šπ‘ : 3 5π‘₯3𝑦, 4π‘₯𝑦3, βˆ’6π‘₯𝑦𝑧

π·π‘’π‘”π‘Ÿπ‘’π‘’: 4, 4, 3

5. π‘‡π‘’π‘Ÿπ‘šπ‘ : 1 5

π·π‘’π‘”π‘Ÿπ‘’π‘’: 0

6. π‘‡π‘’π‘Ÿπ‘šπ‘ : 4 3π‘₯, 4𝑦, 5𝑧, βˆ’π‘₯2

π·π‘’π‘”π‘Ÿπ‘’π‘’: 1, 1, 1, 2

7. 4π‘₯2 βˆ’ 5π‘₯ + 3 8. 4𝑑3 βˆ’ 3𝑑2 βˆ’ 4𝑑

9. 5π‘₯2 βˆ’ π‘₯ + 2 10. 𝑧2 βˆ’ 4𝑧 + 5 11. π‘₯𝑦 + π‘₯𝑧 + π‘₯ βˆ’ 𝑦 12. π‘₯2 βˆ’ 5π‘₯𝑦 + 2π‘₯ βˆ’ 𝑦

13. βˆ’π‘‘2 βˆ’ 3𝑑 + 8 14. 7𝑧3 βˆ’ 5𝑧2 + 5𝑧 βˆ’ 4 15. 5 16. 0

17. 1

6𝑖2 + 2𝑖 βˆ’ 5 18. βˆ’6.2π‘₯ + 𝑦 + 1 19.

8

5π‘₯ +

1

3𝑦 + 10 20.

15

16𝑗2 βˆ’

3

2𝑗

Section 6.2

1. 2π‘₯ βˆ’ 3 2. 5π‘₯2 βˆ’ 14 3. 5π‘₯𝑦 4. βˆ’3𝑑2 + 6𝑑 + 2

5. 4𝑗3 βˆ’ 6𝑗 + 19 6. βˆ’3π‘₯2 + 4π‘₯ + 4 7. 0 8. βˆ’5π‘₯2 βˆ’ 2π‘₯ βˆ’ 3

9. 3π‘₯2 βˆ’ 3𝑦2 βˆ’ 3π‘₯ 10. βˆ’π‘₯2 + 4π‘₯ βˆ’ 5 11. 2π‘₯2 + 9π‘₯ + 1 12. βˆ’π‘₯𝑦 + 2π‘₯ βˆ’ 4𝑦

13. βˆ’π‘₯𝑦 + π‘₯ βˆ’ 3𝑦 14. 5π‘₯2 βˆ’ 16 15. 𝑑3 + 5𝑑2 + 2𝑑 16. βˆ’2𝑧 + 3

17. βˆ’π‘€ βˆ’ 11 18. 3π‘Ÿ + 8 19. 6𝑗 + 7 20. βˆ’7π‘˜2

21. βˆ’π‘‘2 βˆ’ 2𝑑 22. βˆ’7π‘₯ βˆ’ 2𝑦 23. βˆ’2π‘₯ βˆ’ 12𝑦 + 5𝑧 24. 5𝑠𝑑 βˆ’ 2𝑠

25. π‘₯ βˆ’ 12𝑦 + 5𝑧 26. βˆ’2π‘₯2 βˆ’ 10π‘₯𝑦 + 9𝑧

Section 6.3

1. βˆ’3π‘₯ + 21 2. βˆ’π‘‘2 + 7𝑑 βˆ’ 4 3. βˆ’8𝑑3𝑝 + 12𝑑𝑝2 4. 4π‘˜4 + 28π‘˜3 βˆ’ 8π‘˜2

5. βˆ’π‘§2 βˆ’ 4𝑧 6. 2π‘₯2 + 4π‘₯𝑦 βˆ’ 6π‘₯𝑧 7. π‘₯2𝑦2𝑧 βˆ’ π‘₯2𝑦2 + π‘₯𝑦𝑧 8. βˆ’2𝑠2𝑑2 βˆ’ 6𝑠2𝑑 + 8𝑠𝑑2

9. βˆ’6π‘₯4 + 4π‘₯2𝑦2 βˆ’ 8π‘₯2𝑧2 10. π‘₯ + 4 11. 𝑑 + 4 12. π‘₯2 βˆ’ 3π‘₯ + 2

13. π‘ž2 + 2π‘ž βˆ’ 1 14. βˆ’2𝑑 + 1 15. π‘Ž + 𝑏 βˆ’ 𝑐 16. βˆ’6𝑧2 + 2𝑧 βˆ’ 1

17. βˆ’2π‘Ÿ14 βˆ’ 3π‘Ÿ5 + 4π‘Ÿ4 18. βˆ’π‘Žπ‘ βˆ’ π‘Ž + 𝑐 19. 2π‘₯2 βˆ’ 42π‘₯ 20. βˆ’10𝑑2 + 7𝑑

21. 21π‘ž3 βˆ’ 5π‘ž2 22. βˆ’9𝑧4 βˆ’ 𝑧3 23. βˆ’4π‘₯ βˆ’ 1 24. 2π‘₯