179
Brief Review Probability and Statistics

Section 02 Review of Probability and Statistics

Embed Size (px)

Citation preview

Page 1: Section 02 Review of Probability and Statistics

7/28/2019 Section 02 Review of Probability and Statistics

http://slidepdf.com/reader/full/section-02-review-of-probability-and-statistics 1/183

Brief Review 

Probability and Statistics

Page 2: Section 02 Review of Probability and Statistics

7/28/2019 Section 02 Review of Probability and Statistics

http://slidepdf.com/reader/full/section-02-review-of-probability-and-statistics 2/183

Probability distributions 

Continuous distributions

Page 3: Section 02 Review of Probability and Statistics

7/28/2019 Section 02 Review of Probability and Statistics

http://slidepdf.com/reader/full/section-02-review-of-probability-and-statistics 3/183

Defn (density function) 

Let x denote a continuous random variable then  f ( x) is

called the density function of  x 

1)  f ( x) ≥ 0 

2)

3)

( ) 1 f x dx

( )

b

a  f x dx P a x b

Page 4: Section 02 Review of Probability and Statistics

7/28/2019 Section 02 Review of Probability and Statistics

http://slidepdf.com/reader/full/section-02-review-of-probability-and-statistics 4/183

Defn (Joint density function) 

Let x = ( x1 , x2 , x3 , ... , xn) denote a vector of continuous

random variables then

 f (x) = f ( x1 , x2 , x3 , ... , xn)

is called the joint density function of x = ( x1 , x2 , x3 , ... , xn)if 

1)  f (x) ≥ 0 

2)

3)

1)(

xx d  f 

R xxx P d  f  R

)(

Page 5: Section 02 Review of Probability and Statistics

7/28/2019 Section 02 Review of Probability and Statistics

http://slidepdf.com/reader/full/section-02-review-of-probability-and-statistics 5/183

 Note:

nn dxdxdx x x x f d  f  2121 ,,)(

xx

n

 R

n

 R

dxdxdx x x x f d  f  2121 ,,)( xx

Page 6: Section 02 Review of Probability and Statistics

7/28/2019 Section 02 Review of Probability and Statistics

http://slidepdf.com/reader/full/section-02-review-of-probability-and-statistics 6/183

Defn (Marginal density function) 

The marginal density of x1 = ( x1 , x2 , x3 , ... , x p) ( p < n)

is defined by:

 f 1(x1) = =

where x2 = ( x p+1 , x p+2 , x p+3 , ... , xn)

2)( xx d  f  221 ),( xxx d  f 

The marginal density of x2 = ( x p+1 , x p+2 , x p+3 , ... , xn) is

defined by: f 2(x2) = =

where x1 = ( x1 , x2 , x3 , ... , x p) 121 ),( xxx d  f  1)( xx d  f 

Page 7: Section 02 Review of Probability and Statistics

7/28/2019 Section 02 Review of Probability and Statistics

http://slidepdf.com/reader/full/section-02-review-of-probability-and-statistics 7/183

Defn (Conditional density function) 

The conditional density of x1 given x2 (defined in previous

slide) ( p < n) is defined by:

 f 1|2(x1 |x2) =

conditional density of x2 given x1 is defined by:

 f 2|1(x2 |x1) =

22

21

22

),()(

x

xx

x

x

 f 

 f 

 f 

 f 

11

21

11

),()(

x

xx

x

x

 f 

 f 

 f 

 f 

Page 8: Section 02 Review of Probability and Statistics

7/28/2019 Section 02 Review of Probability and Statistics

http://slidepdf.com/reader/full/section-02-review-of-probability-and-statistics 8/183

Marginal densities describe how the subvector xi behaves ignoring x j 

Conditional densities describe how the

subvector xi behaves when the subvector x j is

held fixed

Page 9: Section 02 Review of Probability and Statistics

7/28/2019 Section 02 Review of Probability and Statistics

http://slidepdf.com/reader/full/section-02-review-of-probability-and-statistics 9/183

Defn (Independence) 

The two sub-vectors (x1 and x2) are called independent

if:

 f (x) = f (x1, x2) = f 1(x1) f 2(x2)

= product of marginals

or 

the conditional density of xi given x j :

 f i|j(xi |x j) = f i(xi) = marginal density of xi 

Page 10: Section 02 Review of Probability and Statistics

7/28/2019 Section 02 Review of Probability and Statistics

http://slidepdf.com/reader/full/section-02-review-of-probability-and-statistics 10/183

Example (p-variate Normal) 

The random vector x ( p × 1) is said to have the

p -variate Normal distribution with

mean vector  m ( p × 1) and

covariance matrix S ( p ×  p)

(written x ~ N p(m,S)) if:

S

S )()'(

2

1exp2

1 1

2/12/μxμxx

 p f 

 

Page 11: Section 02 Review of Probability and Statistics

7/28/2019 Section 02 Review of Probability and Statistics

http://slidepdf.com/reader/full/section-02-review-of-probability-and-statistics 11/183

Example (bivariate Normal) 

The random vector is said to have the bi variate

Normal distribution with mean vector  

and

covariance matrix

2

1

m μ

SS

)()'(2

1exp

2

1 1

2/12/μxμxx

 p f 

 

2

1

 x

 xx

S

2

221

21

2

1

2212

1211

    

    

  

  

Page 12: Section 02 Review of Probability and Statistics

7/28/2019 Section 02 Review of Probability and Statistics

http://slidepdf.com/reader/full/section-02-review-of-probability-and-statistics 12/183

S

S

)()'(

2

1exp

2

1, 1

2/121 μxμx

 

 x x f 

212/12

122211

,exp2

1 x xQ

    

)()'(,

1

2212

1211

21 μxμx

  

   x xQ

2

122211

2

2211221112

2

1122 )())((2)(

   

m  m m  m  

x x x x

Page 13: Section 02 Review of Probability and Statistics

7/28/2019 Section 02 Review of Probability and Statistics

http://slidepdf.com/reader/full/section-02-review-of-probability-and-statistics 13/183

212

1121

,exp12

1, x xQ x x f 

    

21, x xQ

2

2

2

22

2

22

1

11

2

1

11

1

2

  

 

 

 

m   

 

 

  

 

 

  

   

  

 

 

  

 

 x x x x

Page 14: Section 02 Review of Probability and Statistics

7/28/2019 Section 02 Review of Probability and Statistics

http://slidepdf.com/reader/full/section-02-review-of-probability-and-statistics 14/183

Page 15: Section 02 Review of Probability and Statistics

7/28/2019 Section 02 Review of Probability and Statistics

http://slidepdf.com/reader/full/section-02-review-of-probability-and-statistics 15/183

Theorem (Transformations)

Let x = ( x1 , x2 , x3 , ... , xn) denote a vector of 

continuous random variables with joint density

function f ( x1 , x2 , x3 , ... , xn) = f (x). Let

 y1 =f 1( x1 , x2 , x3 , ... , xn)

 y2 =f 2( x1 , x2 , x3 , ... , xn)

... yn =f n( x1 , x2 , x3 , ... , xn)

define a 1-1 transformation of x into y.

Page 16: Section 02 Review of Probability and Statistics

7/28/2019 Section 02 Review of Probability and Statistics

http://slidepdf.com/reader/full/section-02-review-of-probability-and-statistics 16/183

Then the joint density of y is g(y) given by:

 g (y) = f (x)| J | where

),...,,,(

),...,,,(

)(

)(

321

321

n

n

 y y y y

 x x x x J 

y

x

n

n

nn

n

n

 y

 x

 y

 x

 y

 x

 y

 x

 y

 x

 y

 x

 y x

 y x

 y x

...

...

...

...

det

21

22

2

2

1

11

2

1

1

= the Jacobian of thetransformation 

Page 17: Section 02 Review of Probability and Statistics

7/28/2019 Section 02 Review of Probability and Statistics

http://slidepdf.com/reader/full/section-02-review-of-probability-and-statistics 17/183

Corollary (Linear Transformations)

Let x = ( x1 , x2 , x3 , ... , xn) denote a vector of 

continuous random variables with joint density

function f ( x1 , x2 , x3 , ... , xn) = f (x). Let

 y1 = a11 x1 + a12 x2 + a13 x3 , ... + a1n xn 

 y2 = a21 x1 + a22 x2 + a23 x3 , ... + a2n xn 

... yn = an1 x1 + an2 x2 + an3 x3 , ... + ann xn 

define a 1-1 transformation of x into y.

Page 18: Section 02 Review of Probability and Statistics

7/28/2019 Section 02 Review of Probability and Statistics

http://slidepdf.com/reader/full/section-02-review-of-probability-and-statistics 18/183

Then the joint density of y is g(y) given by:

)det(

1)(

)det(

1)()( 1

 A A f 

 A f  g  yxy

nnnn

n

n

aaa

aaa

aaa

 A

...

...

...

 where

21

22221

11211

C ( i f i f

Page 19: Section 02 Review of Probability and Statistics

7/28/2019 Section 02 Review of Probability and Statistics

http://slidepdf.com/reader/full/section-02-review-of-probability-and-statistics 19/183

Corollary (Linear Transformations for Normal

Random variables)

Let x = ( x1 , x2 , x3 , ... , xn) denote a vector of continuous

random variables having an n-variate Normaldistribution with mean vector m and covariance matrixS.

i.e. x ~ Nn(m, S)

Let

 y1 = a11 x1 + a12 x2 + a13 x3 , ... + a1n xn 

 y2 = a21 x1 + a22 x2 + a23 x3 , ... + a2n xn 

... yn = an1 x1 + an2 x2 + an3 x3 , ... + ann xn 

define a 1-1 transformation of x into y.

Then y = ( y1 , y2 , y3 , ... , yn) ~ N n( Am, AS A') 

Page 20: Section 02 Review of Probability and Statistics

7/28/2019 Section 02 Review of Probability and Statistics

http://slidepdf.com/reader/full/section-02-review-of-probability-and-statistics 20/183

Defn (Expectation) 

Let x = ( x1 , x2 , x3 , ... , xn) denote a vector of 

continuous random variables with joint density

function

 f (x) = f ( x1 , x2 , x3 , ... , xn).

Let U = h(x) = h( x1 , x2 , x3 , ... , xn)

Then

xxxx d  f hh E U  E  )()()(

Page 21: Section 02 Review of Probability and Statistics

7/28/2019 Section 02 Review of Probability and Statistics

http://slidepdf.com/reader/full/section-02-review-of-probability-and-statistics 21/183

Defn (Conditional Expectation) 

Let x = ( x1 , x2 , x3 , ... , xn) = (x1 , x2 ) denote a

vector of continuous random variables with joint

density function

 f (x) = f ( x1 , x2 , x3 , ... , xn) = f (x1 , x2 ).

Let U = h(x1) = h( x1 , x2 , x3 , ... , x p)

Then the conditional expectation of U given x2

1

212|11212 )()()( xxxxxxx d  f hh E U  E 

Page 22: Section 02 Review of Probability and Statistics

7/28/2019 Section 02 Review of Probability and Statistics

http://slidepdf.com/reader/full/section-02-review-of-probability-and-statistics 22/183

Defn (Variance) 

Let x = ( x1 , x2 , x3 , ... , xn) denote a vector of 

continuous random variables with joint density

function

 f (x) = f ( x1 , x2 , x3 , ... , xn).

Let U = h(x) = h( x1 , x2 , x3 , ... , xn)

Then 222 )()( xx h E h E U  E U  E U Var U    

Page 23: Section 02 Review of Probability and Statistics

7/28/2019 Section 02 Review of Probability and Statistics

http://slidepdf.com/reader/full/section-02-review-of-probability-and-statistics 23/183

Defn (Conditional Variance) 

Let x = ( x1 , x2 , x3 , ... , xn) = (x1 , x2 ) denote a

vector of continuous random variables with joint

density function

 f (x) = f ( x1 , x2 , x3 , ... , xn) = f (x1 , x2 ).

Let U = h(x1) = h( x1 , x2 , x3 , ... , x p)

Then the conditional variance of U givenx2

2

2

112 )()( xxxx h E h E U Var 

Page 24: Section 02 Review of Probability and Statistics

7/28/2019 Section 02 Review of Probability and Statistics

http://slidepdf.com/reader/full/section-02-review-of-probability-and-statistics 24/183

Defn (Covariance, Correlation) 

Let x = ( x1 , x2 , x3 , ... , xn) denote a vector of 

continuous random variables with joint densityfunction

 f (x) = f ( x1 , x2 , x3 , ... , xn).

Let U = h(x) = h( x1 , x2 , x3 , ... , xn) and

V = g (x) = g ( x1 , x2 , x3 , ... , xn)

Then the covariance of U and V. 

)()()()( xxxx g  E  g h E h E 

V  E V U  E U  E V U Cov ,

ncorrelatio

)()(

, and

V Var U Var 

V U CovUV   

Page 25: Section 02 Review of Probability and Statistics

7/28/2019 Section 02 Review of Probability and Statistics

http://slidepdf.com/reader/full/section-02-review-of-probability-and-statistics 25/183

Properties

• Expectation

• Variance

• Covariance

• Correlation 

Page 26: Section 02 Review of Probability and Statistics

7/28/2019 Section 02 Review of Probability and Statistics

http://slidepdf.com/reader/full/section-02-review-of-probability-and-statistics 26/183

1.  E [a1 x1 + a2 x2 + a3 x3 + ... + an xn]= a1 E [ x1] + a2 E [ x2] + a3 E [ x3] + ... + an E [ xn]

or  E [a'x] = a' E [x]

Page 27: Section 02 Review of Probability and Statistics

7/28/2019 Section 02 Review of Probability and Statistics

http://slidepdf.com/reader/full/section-02-review-of-probability-and-statistics 27/183

2. E[UV] = E[h(x1)g(x2)]= E[U]E[V] = E[h(x1)]E[g(x2)]

if x1 and x2 are independent

Page 28: Section 02 Review of Probability and Statistics

7/28/2019 Section 02 Review of Probability and Statistics

http://slidepdf.com/reader/full/section-02-review-of-probability-and-statistics 28/183

3. Var [a1 x1 + a2 x2 + a3 x3 + ... + an xn]

or  Var [a'x] = a′S a

n

 ji

 ji ji

n

i

ii x xCovaa xVar a ],[2][1

2

S

)(...),(),(

...),(...)(),(

),(...),()(

 where

21

2212

1211

nnn

n

n

 xVar  x xCov x xCov

 x xCov xVar  x xCov

 x xCov x xCov xVar 

Page 29: Section 02 Review of Probability and Statistics

7/28/2019 Section 02 Review of Probability and Statistics

http://slidepdf.com/reader/full/section-02-review-of-probability-and-statistics 29/183

4. Cov[a1 x1 + a2 x2 + ... + an xn ,

b1 x1 + b2 x2 + ... + bn xn]

or  Cov[a'x, b'x] = a′S b

n

 ji

 ji ji

n

i

i ji x xCovba xVar ba ],[][1

Page 30: Section 02 Review of Probability and Statistics

7/28/2019 Section 02 Review of Probability and Statistics

http://slidepdf.com/reader/full/section-02-review-of-probability-and-statistics 30/183

5.

6.

22xx U  E  E U  E 

22 22xx xx U  E Var U Var  E U Var 

Page 31: Section 02 Review of Probability and Statistics

7/28/2019 Section 02 Review of Probability and Statistics

http://slidepdf.com/reader/full/section-02-review-of-probability-and-statistics 31/183

Multivariate distributions

Page 32: Section 02 Review of Probability and Statistics

7/28/2019 Section 02 Review of Probability and Statistics

http://slidepdf.com/reader/full/section-02-review-of-probability-and-statistics 32/183

The Normal distribution

Page 33: Section 02 Review of Probability and Statistics

7/28/2019 Section 02 Review of Probability and Statistics

http://slidepdf.com/reader/full/section-02-review-of-probability-and-statistics 33/183

1.The Normal distribution –  

 parameters m  and   (or  2)

Comment: If m = 0 and = 1 the distribution is

called the standard normal distribution 

0

0.005

0.01

0.015

0.02

0.025

0.03

0 20 40 60 80 100 120

 Normal distribution

with m = 50 and =15

 Normal distribution with

m = 70 and =20

Page 34: Section 02 Review of Probability and Statistics

7/28/2019 Section 02 Review of Probability and Statistics

http://slidepdf.com/reader/full/section-02-review-of-probability-and-statistics 34/183

2

221

( ) e ,

2

 x

 f x x

 

 

The probability density of the normal distribution 

If a random variable, X , has a normal distribution 

with mean m  and variance  2 then we willwrite:

2~ , X N  m  

Page 35: Section 02 Review of Probability and Statistics

7/28/2019 Section 02 Review of Probability and Statistics

http://slidepdf.com/reader/full/section-02-review-of-probability-and-statistics 35/183

The multivariate Normal

distribution

Page 36: Section 02 Review of Probability and Statistics

7/28/2019 Section 02 Review of Probability and Statistics

http://slidepdf.com/reader/full/section-02-review-of-probability-and-statistics 36/183

Let

1

 p

 x

 x

 x

= a random vector 

Let1

 p

= a vector of constants (the

mean vector)

Page 37: Section 02 Review of Probability and Statistics

7/28/2019 Section 02 Review of Probability and Statistics

http://slidepdf.com/reader/full/section-02-review-of-probability-and-statistics 37/183

Let1

1

 p

 p p

 p pp

 

 

S

= a p ×  p positive

definite matrix

Page 38: Section 02 Review of Probability and Statistics

7/28/2019 Section 02 Review of Probability and Statistics

http://slidepdf.com/reader/full/section-02-review-of-probability-and-statistics 38/183

Definition

The matrix A is positive semi definite if 

for all x Ax 0 x

Further the matrix A is positive definite if 

only if  x Ax 0 x 0

Page 39: Section 02 Review of Probability and Statistics

7/28/2019 Section 02 Review of Probability and Statistics

http://slidepdf.com/reader/full/section-02-review-of-probability-and-statistics 39/183

1( ) , ,  p f x f x x

Suppose that the joint density of the random

vector 

The random vector, [ x1, x2, … x p] is said

to have a p-variate normal distribution withmean vector and covariance matrix S 

We will write: ~ , p x N  m  S

11

2/ 2 1/ 2

1e

2

 x x

 p

m m 

 

S

S

 x

is: x

Page 40: Section 02 Review of Probability and Statistics

7/28/2019 Section 02 Review of Probability and Statistics

http://slidepdf.com/reader/full/section-02-review-of-probability-and-statistics 40/183

Example: the Bivariate Normal distribution

11

21 2 1/ 2

1, e

2

 x x

 f x xm m 

 

S

S

with1

2

m m 

2

2 1 2

22 22 22 2 2

   

   

S

and

Page 41: Section 02 Review of Probability and Statistics

7/28/2019 Section 02 Review of Probability and Statistics

http://slidepdf.com/reader/full/section-02-review-of-probability-and-statistics 41/183

 Now

1 x xm m  S

and

2 2 2 2

22 12 1 2 1  S

-1

11 12 1 1

1 1 2 2

12 22 2 2

, x

 x x x

m m m 

22 12 1 1

1 1 2 2

12 11 2 2

1,

 x x x

 x

m m m 

S

Page 42: Section 02 Review of Probability and Statistics

7/28/2019 Section 02 Review of Probability and Statistics

http://slidepdf.com/reader/full/section-02-review-of-probability-and-statistics 42/183

2 2

22 1 1 12 1 1 2 2 11 2 2

12 x x x x m m m m  

S

2 22 2

2 1 1 1 2 1 1 2 2 1 2 2

2 2 2

1 2

2

1

 x x x x m m m m  

 

2 2

1 1 1 1 2 2 2 2

1 1 2 2

2

2

1

 x x x xm m m m    

 

  

Page 43: Section 02 Review of Probability and Statistics

7/28/2019 Section 02 Review of Probability and Statistics

http://slidepdf.com/reader/full/section-02-review-of-probability-and-statistics 43/183

Hence

11

21 2

1/ 2

1, e

2

 x x

 f x xm m 

 

S

S

2 2

1 1 1 1 2 2 2 2

1 1 2 2

1 2 2

2

,1

 x x x x

Q x x

m m m m      

  

1 2

1,

2

21 2

1e

2 1

Q x x

 

where

Page 44: Section 02 Review of Probability and Statistics

7/28/2019 Section 02 Review of Probability and Statistics

http://slidepdf.com/reader/full/section-02-review-of-probability-and-statistics 44/183

 Note:

2 21 1 1 1 2 2 2 2

1 1 2 2

1 2 2

2

,1

 x x x x

Q x x

m m m m    

 

  

1 2

1,

21 2

21 2

1, e

2 1

Q x x

 f x x

 

is constant when

is constant.

This is true when x1, x2 lie on an ellipse

centered at m 1, m 2 .

Page 45: Section 02 Review of Probability and Statistics

7/28/2019 Section 02 Review of Probability and Statistics

http://slidepdf.com/reader/full/section-02-review-of-probability-and-statistics 45/183

Page 46: Section 02 Review of Probability and Statistics

7/28/2019 Section 02 Review of Probability and Statistics

http://slidepdf.com/reader/full/section-02-review-of-probability-and-statistics 46/183

Surface Plots of the bivariate

 Normal distribution

Page 47: Section 02 Review of Probability and Statistics

7/28/2019 Section 02 Review of Probability and Statistics

http://slidepdf.com/reader/full/section-02-review-of-probability-and-statistics 47/183

Contour Plots of the bivariate

 Normal distribution

Page 48: Section 02 Review of Probability and Statistics

7/28/2019 Section 02 Review of Probability and Statistics

http://slidepdf.com/reader/full/section-02-review-of-probability-and-statistics 48/183

Scatter Plots of data from the

 bivariate Normal distribution

Page 49: Section 02 Review of Probability and Statistics

7/28/2019 Section 02 Review of Probability and Statistics

http://slidepdf.com/reader/full/section-02-review-of-probability-and-statistics 49/183

Trivariate Normal distribution - Contour map

 x1  x2 

 x3 

mean vector 1

2

3

m m 

1 = const x xm m  S

Page 50: Section 02 Review of Probability and Statistics

7/28/2019 Section 02 Review of Probability and Statistics

http://slidepdf.com/reader/full/section-02-review-of-probability-and-statistics 50/183

Trivariate Normal distribution

 x1 

 x2 

 x3 

Page 51: Section 02 Review of Probability and Statistics

7/28/2019 Section 02 Review of Probability and Statistics

http://slidepdf.com/reader/full/section-02-review-of-probability-and-statistics 51/183

Trivariate Normal distribution

 x1  x2 

 x3 

Page 52: Section 02 Review of Probability and Statistics

7/28/2019 Section 02 Review of Probability and Statistics

http://slidepdf.com/reader/full/section-02-review-of-probability-and-statistics 52/183

Trivariate Normal distribution

 x1 

 x2 

 x3 

example

Page 53: Section 02 Review of Probability and Statistics

7/28/2019 Section 02 Review of Probability and Statistics

http://slidepdf.com/reader/full/section-02-review-of-probability-and-statistics 53/183

example

In the following study data was collected for a

sample of n = 183 females on the variables

• Age,

• Height (Ht),

• Weight (Wt),

• Birth control pill use (Bpl - 1=no pill, 2=pill)

and the following Blood Chemistry measurements

• Cholesterol (Chl),• Albumin (Abl),

• Calcium (Ca) and

• Uric Acid (UA). The data are tabulated next page:

The data :Age Ht Wt Bpl Chl Alb Ca UA Age Ht Wt Bpl Chl Alb Ca UA Age Ht Wt Bpl Chl Alb Ca UA

22 67 144 1 200 43 98 54 27 64 120 1 172 43 98 60 37 67 125 2 200 45 99 66

Page 54: Section 02 Review of Probability and Statistics

7/28/2019 Section 02 Review of Probability and Statistics

http://slidepdf.com/reader/full/section-02-review-of-probability-and-statistics 54/183

The data :22 67 144 1 200 43 98 54 27 64 120 1 172 43 98 60 37 67 125 2 200 45 99 6625 62 128 1 243 41 104 33 27 64 180 2 317 37 98 84 37 65 116 1 270 42 100 4825 68 150 2 50 38 96 30 27 69 137 1 195 46 101 42 37 63 129 2 230 36 91 2219 64 125 1 158 41 99 47 27 64 125 2 185 36 94 54 38 64 165 1 255 44 102 6219 67 130 2 255 45 105 83 27 63 125 1 168 42 97 41 38 65 151 2 275 38 94 4620 64 118 1 210 39 95 40 27 64 124 2 200 40 96 52 39 64 135 1 210 40 95 4620 64 118 1 210 39 95 40 27 60 140 1 250 36 98 68 39 64 108 2 198 44 90 3820 65 119 2 192 38 93 50 27 65 155 2 280 42 103 52 39 63 195 1 260 40 108 4221 60 107 1 246 42 101 52 28 65 108 1 260 48 106 51 39 69 132 2 180 39 94 3021 65 135 2 245 34 106 48 28 62 110 2 250 44 105 38 39 62 100 1 210 45 91 2721 63 100 1 208 38 98 54 28 65 120 1 175 48 100 47 39 62 110 2 235 41 99 3521 64 120 2 260 47 106 38 28 66 113 2 305 41 93 24 40 63 110 1 196 39 97 42

21 67 134 1 204 40 108 34 28 62 135 1 200 43 97 37 40 64 151 2 305 39 99 4821 67 145 2 192 39 95 49 28 65 160 2 235 42 101 41 40 65 145 1 170 45 100 4321 63 138 1 280 41 102 41 29 61 142 1 177 39 99 46 40 66 140 2 276 46 100 5521 64 113 2 230 39 99 38 29 61 115 2 235 45 98 47 40 65 140 1 272 41 91 4421 63 160 1 215 39 96 39 29 68 155 1 226 38 94 43 40 65 137 2 315 37 96 9921 64 115 2 225 44 105 44 29 65 118 2 230 44 99 44 40 67 130 1 300 40 106 5221 68 125 1 165 48 105 28 30 66 143 1 198 45 107 65 40 62 117 2 290 42 99 4221 62 106 2 200 38 95 40 30 63 110 2 295 45 98 46 41 62 116 1 320 44 111 6121 68 150 1 220 47 102 75 30 61 99 1 230 43 99 39 41 68 215 2 255 43 105 4521 64 130 2 255 34 102 40 30 63 132 2 200 37 96 34 41 64 125 1 306 45 98 6222 62 135 1 263 43 98 47 30 62 125 1 230 46 104 48 41 69 170 2 324 40 99 5522 62 110 2 173 42 97 37 30 63 110 2 262 33 99 41 42 60 105 1 240 41 101 5122 57 105 1 170 46 98 45 30 64 135 1 174 40 95 35 42 63 129 2 210 40 100 4622 64 120 2 290 37 98 59 30 66 112 2 250 44 100 35 43 66 167 1 210 40 100 5222 64 115 1 263 42 102 47 30 64 160 1 217 35 95 31 43 68 145 2 250 36 98 4222 59 94 2 220 47 105 46 31 65 125 1 250 43 98 39 43 66 138 1 335 44 105 58

22 67 125 1 200 43 100 44 31 66 120 2 237 34 91 49 43 66 132 2 230 42 98 4822 62 97 2 192 38 95 43 31 65 115 1 270 41 111 64 43 64 125 1 285 45 105 5022 58 100 1 247 42 104 52 31 63 110 2 280 44 99 49 43 62 113 2 200 40 93 3622 66 130 2 175 44 106 58 31 66 123 1 238 37 96 33 43 64 126 1 280 45 106 3822 60 100 1 155 41 96 45 31 67 136 2 218 38 95 42 43 65 148 2 276 41 105 5022 60 100 1 155 41 96 45 32 67 132 1 185 39 103 37 55 64 124 1 275 40 98 5322 65 135 2 215 40 93 43 32 68 203 2 235 38 99 37 55 64 165 2 298 36 100 6322 60 95 1 200 47 99 34 32 62 155 1 262 37 99 43 44 62 118 1 253 43 94 4422 67 124 2 247 44 102 45 32 65 126 2 160 41 97 40 44 63 133 2 242 47 104 4923 63 125 1 220 32 92 42 32 63 125 1 189 40 94 40 45 67 180 1 160 38 97 5923 64 105 2 207 42 100 40 32 71 170 2 205 37 90 60 45 65 140 2 263 45 107 5223 63 125 1 266 42 103 47 32 62 120 1 260 43 107 38 46 67 145 2 320 40 101 3723 63 120 2 240 43 101 39 32 62 145 2 240 45 108 42 46 63 138 1 257 40 90 6124 68 125 1 195 49 106 52 32 66 140 1 197 44 106 58 46 62 118 2 190 38 95 4324 64 130 2 250 39 103 46 32 68 133 2 180 32 95 40 46 62 103 1 230 43 102 3324 64 130 2 250 39 103 46 54 67 140 2 245 39 104 56 46 65 190 2 265 41 108 8524 65 130 1 225 50 108 39 33 64 115 1 205 47 100 54 47 67 135 1 297 42 100 4524 65 148 2 200 37 104 49 33 60 118 2 260 38 99 38 47 67 143 2 255 41 100 4024 64 135 1 180 37 96 49 33 67 137 1 243 41 106 55 47 61 132 1 257 39 96 3824 71 156 2 240 42 102 51 33 68 130 2 195 40 95 58 47 59 94 2 257 41 103 5325 62 107 1 330 48 101 53 33 65 130 1 203 44 101 48 48 62 120 1 300 39 94 5125 67 175 2 175 39 93 51 33 69 138 2 222 40 104 42 48 66 143 2 225 40 100 6225 66 112 1 205 46 101 33 34 62 112 1 197 37 93 44 48 67 143 1 216 40 96 4725 63 120 2 235 44 103 40 34 63 125 2 245 38 95 41 48 65 134 2 248 42 102 4254 67 127 2 260 44 106 57 35 62 115 1 180 40 91 59 48 65 164 1 306 44 100 7825 67 135 1 295 46 106 47 35 67 125 2 223 40 100 37 48 66 120 2 235 36 97 3525 67 141 2 230 38 101 52 35 66 138 1 254 39 107 41 48 60 125 1 195 41 95 5326 66 135 1 240 48 103 51 35 66 140 2 245 39 105 56 48 64 138 2 338 37 100 5826 64 118 2 238 40 99 46 36 62 135 1 247 34 90 44 49 64 126 1 255 41 102 4826 65 125 1 198 44 96 43 36 67 120 2 175 46 103 39 49 69 158 2 217 36 106 6526 65 120 2 196 38 95 43 36 66 112 1 215 43 104 42 50 69 135 1 295 43 105 63

36 65 121 2 270 43 98 35 50 66 140 2 390 46 97 55 52 62 107 2 265 46 104 6453 65 140 2 220 40 107 46 54 66 158 1 305 42 103 48 54 60 170 2 220 35 88 63  

3D Scatterplot Wt Ht Age

Page 55: Section 02 Review of Probability and Statistics

7/28/2019 Section 02 Review of Probability and Statistics

http://slidepdf.com/reader/full/section-02-review-of-probability-and-statistics 55/183

3D Scatterplot Wt,Ht Age

3D Scatterplot  Alb, Chl, Bp

Page 56: Section 02 Review of Probability and Statistics

7/28/2019 Section 02 Review of Probability and Statistics

http://slidepdf.com/reader/full/section-02-review-of-probability-and-statistics 56/183

Page 57: Section 02 Review of Probability and Statistics

7/28/2019 Section 02 Review of Probability and Statistics

http://slidepdf.com/reader/full/section-02-review-of-probability-and-statistics 57/183

Marginal and Conditional

distributions

Th (W db )

Page 58: Section 02 Review of Probability and Statistics

7/28/2019 Section 02 Review of Probability and Statistics

http://slidepdf.com/reader/full/section-02-review-of-probability-and-statistics 58/183

11 1 1 1 1 1 A CBD A A C B DA C DA

Theorem: (Woodbury)

Proof:

11 1 1 1 1 A CBD A A C B DA C DA

11 1 1 1 1 A CBD A A CBD A C B DA C DA

11 1 1 1 1 I CBDA C CBDA C B DA C DA

11 1 1 1 1 1 I CBDA CB B DA C B DA C DA

1 1 I CBDA CBDA I 

E l

Page 59: Section 02 Review of Probability and Statistics

7/28/2019 Section 02 Review of Probability and Statistics

http://slidepdf.com/reader/full/section-02-review-of-probability-and-statistics 59/183

1

1n n n n

b I bJ I J 

nb

Example:

Solution:

11 1 1 1 1 1Use  A CBD A A C B DA C DA

1 1

with , 1, 1 ,n A I C D B b

1 11hence 1 1 1 1 1 1n n n n n I b I I b I I 

1

111n I 

b n

1n n

b I J 

nb

Theorem: (Inverse of a partitioned symmetric matrix)

Page 60: Section 02 Review of Probability and Statistics

7/28/2019 Section 02 Review of Probability and Statistics

http://slidepdf.com/reader/full/section-02-review-of-probability-and-statistics 60/183

11 12 11 121

12 22 12 22

Let and A A B B

 A B A

 A A B B

Theorem: (Inverse of a partitioned symmetric matrix) 

-11

11 11 12 22 12Then  B A A A A

-11

22 22 12 11 12  B A A A A

-11 1

12 22 12 11 12 22 12  B A A A A A A

-11 1

12 11 12 22 12 11 12  B A A A A A A

11 1 1 111 11 12 22 12 11 12 12 11 A A A A A A A A A

11 1 1 1

22 22 12 11 12 22 12 12 22 A A A A A A A A A

Page 61: Section 02 Review of Probability and Statistics

7/28/2019 Section 02 Review of Probability and Statistics

http://slidepdf.com/reader/full/section-02-review-of-probability-and-statistics 61/183

11 12 11 121

12 22 12 22

Let and A A B B

 A B A A A B B

Proof:

11 11 12 12 11 12 12 22

12 11 22 12 12 12 22 22

0=

0

q

 p q

 I  A B A B A B A B

 I  A B A B A B A B

11 12 11 121

12 22 12 22

Then  p

 A A B B I AA AB

 A A B B

11 11 12 12 11 12 12 22

12 11 22 12 12 12 22 22

0or 

0

q

 p q

 A B A B I A B A B

 A B A B A B A B I 

Page 62: Section 02 Review of Probability and Statistics

7/28/2019 Section 02 Review of Probability and Statistics

http://slidepdf.com/reader/full/section-02-review-of-probability-and-statistics 62/183

1 1 1

11 11 11 12 12 12 11 12 22

1 1 1

12 22 12 11 22 22 22 12 12

hence0

 B A A A B B A A B

 B A A B B A A A B

1 1 1

11 12 22 12 11 11or   I A A A A B A

1

11 12 22 12 11and  A A A A B I 

1 1 1

11 11 11 12 22 12 11and  B A A A A A B

-11

11 11 12 22 12hence  B A A A A -1

1

22 22 12 11 12similarly  B A A A A -1

1 1

12 22 12 11 12 22 12and  B A A A A A A -1

1 1

12 11 12 22 12 11 12   B A A A A A A

Theorem: (Determinant of a partitioned symmetric

Page 63: Section 02 Review of Probability and Statistics

7/28/2019 Section 02 Review of Probability and Statistics

http://slidepdf.com/reader/full/section-02-review-of-probability-and-statistics 63/183

11 12

12 22

Let A A

 A A A

Theorem: (Determinant of a partitioned symmetric

matrix) 

1

11 12 22 12 22

122 12 11 12 11

Then A A A A A

 A

 A A A A A

Proof: 111 12 11 11 12

1

12 22 12 22 12 11 12

0 Note

0

 A A A I A A A

 A A A I  A A A A

*0

and0

 B B C  B D

C D D

Theorem: (Marginal distributions for the Multivariate

Page 64: Section 02 Review of Probability and Statistics

7/28/2019 Section 02 Review of Probability and Statistics

http://slidepdf.com/reader/full/section-02-review-of-probability-and-statistics 64/183

1

2

Let q

 p q x x x

Theorem: (Marginal distributions for the Multivariate

 Normal distribution) 

11 12

12 22

 S S

S S S

have p-variate Normal distribution

with mean vector 1

2

 q

 p q

m m 

and Covariance matrix

Then the marginal distribution of is qi-variate Normaldistribution (q1 = q, q2 = p - q)

iiS

with mean vector  im 

and Covariance matrix

i x

Theorem: (Conditional distributions for the

Page 65: Section 02 Review of Probability and Statistics

7/28/2019 Section 02 Review of Probability and Statistics

http://slidepdf.com/reader/full/section-02-review-of-probability-and-statistics 65/183

1

2

Let q

 p q x x x

Theorem: (Conditional distributions for the

Multivariate Normal distribution) 

11 12

12 22

 S S

S S S

have p-variate Normal distribution

with mean vector 1

2

 q

 p q

m m 

and Covariance matrix

Then the conditional distribution of given is qi-variate Normal distribution

1-ii j ii ij jj ij

S S S S S

with mean vector  1=i j i ij jj j j xm m m  S S

and Covariance matrix

i x   j x

Proof: (of Previous

two theorems)

Page 66: Section 02 Review of Probability and Statistics

7/28/2019 Section 02 Review of Probability and Statistics

http://slidepdf.com/reader/full/section-02-review-of-probability-and-statistics 66/183

1

2

  x

 x x

Proof: (of Previous two theorems) 

11 12

12 22

 S S

S S S

is

where1

2

 q

 p q

m m 

,

The joint density of 

and

112

12

1 2 / 2

1,

2

 x x

 p f x f x x e

m m 

 

S S

1

1 2212

,

/ 2

1

2

Q x x

 p e 

S

1

1 2,Q x x x xm m  S

1

Page 67: Section 02 Review of Probability and Statistics

7/28/2019 Section 02 Review of Probability and Statistics

http://slidepdf.com/reader/full/section-02-review-of-probability-and-statistics 67/183

-1 11 1211 121

21 2212 22

  S S S SS S S S S

where

,

and

1

1 2,Q x x x xm m  S

11 121 1

1 1 2 2 21 222 2

, x

 x x x

m m m 

S S

S S

22

2 2 2 2 x xm m 

S

11 12

1 1 1 1 1 1 2 22 x x x xm m m m   S S

-1

12 1 1 21

11 12 22 12 11 12 =

S S S S S S S S

111 1 1 1 111 11 12 22 12 11 12 12 11

S S S S S S S S S S 1

22 1

22 12 11 12

S S S S S

Page 68: Section 02 Review of Probability and Statistics

7/28/2019 Section 02 Review of Probability and Statistics

http://slidepdf.com/reader/full/section-02-review-of-probability-and-statistics 68/183

also

,

and

-1

1 1

1 1 11 12 22 12 11 12 2 22  x xm m 

S S S S S S

1

1 1 11 1 1 x xm m  S

1

11 22 12 11 12

S S S S S S

22

2 2 2 2 x xm m  S

11 12

1 1 1 1 1 1 1 1 2 2, 2Q x x x x x xm m m m  

S S

1

1 1 1

1 1 11 12 22 12 11 12 12 11 1 1 x xm m  S S S S S S S S

-1

1

2 2 22 12 11 12 2 2  x xm m 

S S S S

Page 69: Section 02 Review of Probability and Statistics

7/28/2019 Section 02 Review of Probability and Statistics

http://slidepdf.com/reader/full/section-02-review-of-probability-and-statistics 69/183

,

-1

1 1

2 2 12 11 1 1 22 12 11 12 x xm m 

S S S S S S

1

1 2 1 1 11 1 1Hence ,Q x x x xm m  S

1

2 2 12 11 1 1 x xm m  S S

1 1 2 1 2,Q x Q x x

1

1 1 1 11 1 1where Q x x xm m  S

1

2 1 2 2 2 12 11 1 1and ,Q x x x xm m 

S S

-1

1 1

22 12 11 12 2 2 12 11 1 1 x xm m 

S S S S S S

-1

2 2 x b A x b

1h b S S

Page 70: Section 02 Review of Probability and Statistics

7/28/2019 Section 02 Review of Probability and Statistics

http://slidepdf.com/reader/full/section-02-review-of-probability-and-statistics 70/183

1

2 12 11 1 1where b xm m 

S S

1

22 12 11 12and  A

S S S S

11 22

12

,

1 2 / 2

1now ,

2

Q x x

 p f x f x x e

 

S

11 1 2 1 22

1122

,

/ 2 111 22 12 11 12

1

2

Q x Q x x

 p

S S S S S

111 1 11 1 12

12

/ 2

11

1

2

 x x

qe

m m 

 

S

S

112 22

12

/ 2

1

2

 x b A x b

 p qe

 A 

Page 71: Section 02 Review of Probability and Statistics

7/28/2019 Section 02 Review of Probability and Statistics

http://slidepdf.com/reader/full/section-02-review-of-probability-and-statistics 71/183

1 1 1 2 2 1 2 1, , q p f x f x x dx f x x dx dx

111 1 11 1 12

12

/ 2

11

1

2

 x x

qe

m m 

 

S S

112 22

12

2/ 2

1

2

 x b A x b

 p qe dx

 A 

The marginal distribution of is1 x

11 1 1 11 1 12

12

/ 2

11

12

 x xq

e m m 

 

S S

Page 72: Section 02 Review of Probability and Statistics

7/28/2019 Section 02 Review of Probability and Statistics

http://slidepdf.com/reader/full/section-02-review-of-probability-and-statistics 72/183

1 2

2|1 2 1

1 1

,

 

 f x x

 f x x  f x

112 22

12

/ 2

1

2

 x b A x b

 p qe

 A 

The conditional distribution of given is:2 x

1 x

1

2 12 11 1 1where b xm m 

S S

1

22 12 11 12and  A

S S S S

Page 73: Section 02 Review of Probability and Statistics

7/28/2019 Section 02 Review of Probability and Statistics

http://slidepdf.com/reader/full/section-02-review-of-probability-and-statistics 73/183

1

2 1 22 12 11 12The matrix

S S S S S

is called the matrix of partial var iances and covariances .

th

2 1The , element of the matrixi j S

1,2....ij q  

is called the partial covariance (variance if i = j)

 between xi and x j given x1, … , xq.

1,2....

1,2....

1,2.... 1,2....

ij q

ij q

ii q jj q

    

  

is called the partial correlation between xi and x j given

 x1, … , xq.

Page 74: Section 02 Review of Probability and Statistics

7/28/2019 Section 02 Review of Probability and Statistics

http://slidepdf.com/reader/full/section-02-review-of-probability-and-statistics 74/183

1

12 11the matrix

S S

is called the matrix of regression coeff icients for 

 predicting xq+1, xq+2, … , x p from x1, … , xq.

1

2 1 1 2 12 11 1where xm m m  

S S

Mean vector of  xq+1, xq+2, … , x p given x1, … , xqis:

Example:x

Page 75: Section 02 Review of Probability and Statistics

7/28/2019 Section 02 Review of Probability and Statistics

http://slidepdf.com/reader/full/section-02-review-of-probability-and-statistics 75/183

p

10

15and

6

14

Suppose that

1

2

3

4

 x

 x x

 x x

Is 4-variate normal with

4 2 4 2

2 17 6 5

4 6 14 6

2 5 6 7

S

x

Page 76: Section 02 Review of Probability and Statistics

7/28/2019 Section 02 Review of Probability and Statistics

http://slidepdf.com/reader/full/section-02-review-of-probability-and-statistics 76/183

1

10and

15m 

The marginal distribution of 1

1

2

 x x

 x

is bivariate normal with

11

4 2

2 17

S

1

10

15 and

6

The marginal distribution of 

1

1 2

3

 x

 x x

 x

is trivariate normal with

11

4 2 4

2 17 6

4 6 14

S

x

Page 77: Section 02 Review of Probability and Statistics

7/28/2019 Section 02 Review of Probability and Statistics

http://slidepdf.com/reader/full/section-02-review-of-probability-and-statistics 77/183

Find the conditional distribution of 

1

12

15

5

 x

 x  x

given

114 2

2 17 S

1 2

10 6and

15 14

m m 

 Now

and

3

2

4

 x x

 x

2214 6

6 7 S

124 2

6 5 S

Page 78: Section 02 Review of Probability and Statistics

7/28/2019 Section 02 Review of Probability and Statistics

http://slidepdf.com/reader/full/section-02-review-of-probability-and-statistics 78/183

1

2 1 22 12 11 12

S S S S S

114 6 4 6 4 2 4 2

6 7 2 5 2 17 6 5

9 3

3 5

Page 79: Section 02 Review of Probability and Statistics

7/28/2019 Section 02 Review of Probability and Statistics

http://slidepdf.com/reader/full/section-02-review-of-probability-and-statistics 79/183

1

12 11

S S

The matrix of regression coeff icients for predicting x3, x4 

from x1, x2.

14 6 4 2

2 5 2 17

0.875 .250

0.375 .250

1

2 12 11 1 m m 

S S

Page 80: Section 02 Review of Probability and Statistics

7/28/2019 Section 02 Review of Probability and Statistics

http://slidepdf.com/reader/full/section-02-review-of-probability-and-statistics 80/183

1 2

2 1 1

1 2

0.875 0.250 6.5 

0.375 0.250 6.5

 x x x

 x xm  

6 0.875 0.250 10

14 0.375 0.250 15

6.5

6.5

2 12 11 1m m

2 1m m 

0.875 15 0.250 5 6.5 7.875

0.375 15 0.250 5 6.5 13.375

Page 81: Section 02 Review of Probability and Statistics

7/28/2019 Section 02 Review of Probability and Statistics

http://slidepdf.com/reader/full/section-02-review-of-probability-and-statistics 81/183

The Chi-square distribution

The Chi-square distribution

Page 82: Section 02 Review of Probability and Statistics

7/28/2019 Section 02 Review of Probability and Statistics

http://slidepdf.com/reader/full/section-02-review-of-probability-and-statistics 82/183

The Chi-square ( c 2) distribution with n d.f. 

21

2 2

112

2

0

0 0

 x x e x

 f x

 x

2

2 2

2

2

10

2

0 0

 x

 x e x

 x

n n 

The Chi-square distribution

Graph: The c 2 distribution

Page 83: Section 02 Review of Probability and Statistics

7/28/2019 Section 02 Review of Probability and Statistics

http://slidepdf.com/reader/full/section-02-review-of-probability-and-statistics 83/183

0

0.1

0.2

0 4 8 12 16

(n = 4)

(n = 5)

(n = 6)

Basic Properties of the Chi-Square distribution 

Page 84: Section 02 Review of Probability and Statistics

7/28/2019 Section 02 Review of Probability and Statistics

http://slidepdf.com/reader/full/section-02-review-of-probability-and-statistics 84/183

1. If   z has a Standard Normal distribution then z 2 has

a c 2 distribution with 1 degree of freedom.

p q

2. If   z 1, z 2,…, z n  are independent random variables

each having Standard Normal distribution then

has a c 2 distribution with n  degrees of freedom.

2 2 2

1 2 ...U z z z  n 

3. Let X and Y  be independent random variables

having a c 2 distribution with n 1 and n 2 degrees of 

freedom respectively then  X + Y has a c 2

distribution with degrees of freedom n 1 + n 2.

continued 

Page 85: Section 02 Review of Probability and Statistics

7/28/2019 Section 02 Review of Probability and Statistics

http://slidepdf.com/reader/full/section-02-review-of-probability-and-statistics 85/183

4. Let x1, x2,…, xn,  be independent random variables

having a c 2 distribution with n 1

, n 

2,…, n 

n degrees

of freedom respectively then x1+ x2 +…+ xn has a

 c 2 distribution with degrees of freedom n 1 +…+ n n.

5. Suppose X and Y are independent random variableswith X and X + Y having a c 2 distribution with n 1and n   (n  > n 1 ) degrees of freedom respectively

then Y  has a c 2 distribution with degrees of 

freedom n   - n 1.

The non-central Chi-squared distribution 

Page 86: Section 02 Review of Probability and Statistics

7/28/2019 Section 02 Review of Probability and Statistics

http://slidepdf.com/reader/full/section-02-review-of-probability-and-statistics 86/183

q

If  z 1, z 2,…, z n  are independent random variables eachhaving a Normal distribution with mean m i and

variance  2 = 1, then

has a non-central c2 distribution with n  degrees of 

freedom and non-centrality parameter 

2 2 2

1 2

...U z z z  n 

m  1

2

21

i

i

Mean and Variance of non-central c2 

Page 87: Section 02 Review of Probability and Statistics

7/28/2019 Section 02 Review of Probability and Statistics

http://slidepdf.com/reader/full/section-02-review-of-probability-and-statistics 87/183

distribution 

If U has a non-central c2

distribution with n  degrees of freedom and non-centrality parameter 

m  1

2

21

i

i

Then

m n  n 1

22i

iU  E   n  42 U Var 

If U has a central c2

distribution with n  degrees of freedom and  is zero, thus

n U  E  n 2U Var 

Page 88: Section 02 Review of Probability and Statistics

7/28/2019 Section 02 Review of Probability and Statistics

http://slidepdf.com/reader/full/section-02-review-of-probability-and-statistics 88/183

Distribution of Linear and

Quadratic Forms

S SN

Page 89: Section 02 Review of Probability and Statistics

7/28/2019 Section 02 Review of Probability and Statistics

http://slidepdf.com/reader/full/section-02-review-of-probability-and-statistics 89/183

Suppose S,  μy N 

Consider the random variable22

222

2

111 nnn ya ya yaU  yAy

nnnn y ya y ya 1,12112 22

Questions

1. What is the distribution of U ? (many statistics

have this form)

2. When is this distribution simple?

3. When we have two such statistics when are

they independent?

Si l t C I0N

Page 90: Section 02 Review of Probability and Statistics

7/28/2019 Section 02 Review of Probability and Statistics

http://slidepdf.com/reader/full/section-02-review-of-probability-and-statistics 90/183

Simplest Case I0y ,   N 

22

2

2

1 n y y yU 

yIy

Then the distribution of U is the central c 2 

distribution with n = n degrees of freedom.

Now consider the distribution of other quadratic forms

Page 91: Section 02 Review of Probability and Statistics

7/28/2019 Section 02 Review of Probability and Statistics

http://slidepdf.com/reader/full/section-02-review-of-probability-and-statistics 91/183

 Now consider the distribution of other quadratic forms

then, Suppose 

2

IμyTheorem  

 N 

  c  

, 1 22

2

2

12n y y yU  n

yIy

where

 m  

1

2

2

12

i

i

Page 92: Section 02 Review of Probability and Statistics

7/28/2019 Section 02 Review of Probability and Statistics

http://slidepdf.com/reader/full/section-02-review-of-probability-and-statistics 92/183

then,  Note  IμyzProof 

11

   N 

  c  

, 1 22

2

2

12n y y yU  n

yIyzz

with

   m  

1

2

2

11121

2

i

iμμ

thenSuppose SμyTheorem

N

Page 93: Section 02 Review of Probability and Statistics

7/28/2019 Section 02 Review of Probability and Statistics

http://slidepdf.com/reader/full/section-02-review-of-probability-and-statistics 93/183

then, Suppose  SμyTheorem  N 

  c  , 1 nU  S yy

with μμ S

21 

 n.s. withLet AAAProof  S

 Consider  1yAz

 ,  1 IμA

111 , Then S AAμAz

 N 

  c  , and nU  zz

with μAμA11

1

Page 94: Section 02 Review of Probability and Statistics

7/28/2019 Section 02 Review of Probability and Statistics

http://slidepdf.com/reader/full/section-02-review-of-probability-and-statistics 94/183

with μAμA2

 

μμ

μAAμμAAμ

11

S

21

1

21

2

1

also

yy

yAAy

yAAy

yAyAzz

1

1

11

11

S

 

1

Page 95: Section 02 Review of Probability and Statistics

7/28/2019 Section 02 Review of Probability and Statistics

http://slidepdf.com/reader/full/section-02-review-of-probability-and-statistics 95/183

 Hence   c  , 1 nU S yy

with μμ

S 21 

then,Suppose I0zTheorem

N

Page 96: Section 02 Review of Probability and Statistics

7/28/2019 Section 02 Review of Probability and Statistics

http://slidepdf.com/reader/full/section-02-review-of-probability-and-statistics 96/183

then, Suppose  I0zTheorem  N 

d.f.on withdistributi centralahas  r U  c zAz

if and only if 

•  A is symmetric idempotent of rank r.

Proof  Since A is symmetric idempotent of rank r , there exists an orthogonal matrix Psuch that

A = PDP  or  PAP = D

Since A is idempotent the eigenvalues of Aare 0 or 1 and the # of 1’s is r , the rank of A. 

Thus

0I

Dr 

Page 97: Section 02 Review of Probability and Statistics

7/28/2019 Section 02 Review of Probability and Statistics

http://slidepdf.com/reader/full/section-02-review-of-probability-and-statistics 97/183

 Thus

00

Dr n

 and

00

0IAPP  Let 21 PPP

000I

APPAPPAPPAPP

PPAP

PAPP

 

Then

2212

21111

21

2

1

11consider

yzPzPy

Page 98: Section 02 Review of Probability and Statistics

7/28/2019 Section 02 Review of Probability and Statistics

http://slidepdf.com/reader/full/section-02-review-of-probability-and-statistics 98/183

12

 consider yzP

zPy

 ,  Now IPP0Py

 N  , PP0

 N 

 ,I0

 N 

1 thus y

 ,I0

r  N 

d.f.on withdistributiahas and 2

11 r U  c yy

zAzyAPPyy00

0Iyyy

11  Now U 

d.f.on withdistributiahas Thus 2 r  c zAz

theorem previousof tiongeneraliza(ATheorem

thS I

N

Page 99: Section 02 Review of Probability and Statistics

7/28/2019 Section 02 Review of Probability and Statistics

http://slidepdf.com/reader/full/section-02-review-of-probability-and-statistics 99/183

on.distributi , central-nonahas    c  r U 

zAz

if and only if 

•  A is symmetric idempotent of rank r.

Proof Similar to previous theorem

then, Suppose Iμz  N 

μAμ

21 parameter centrality-nonwith  

then, Suppose  SμyTheorem

 N 

Page 100: Section 02 Review of Probability and Statistics

7/28/2019 Section 02 Review of Probability and Statistics

http://slidepdf.com/reader/full/section-02-review-of-probability-and-statistics 100/183

,pp μy

ondistributi , has    c  r U  yAy

with μAμ 21 

if and only if the following two conditions are

satisfied:

1. AS is idempotent of rank r.

2. SA is idempotent of rank r. 

.such that beLet QQQProof  S

Page 101: Section 02 Review of Probability and Statistics

7/28/2019 Section 02 Review of Probability and Statistics

http://slidepdf.com/reader/full/section-02-review-of-probability-and-statistics 101/183

ondistributi

,,ahas then 11111IμQQQμQyQz

S  N  N 

 on withdistributi

 ,ahas

theorem previousthe

 fromthen,or Let

11

211

11

μAμμBQQμ

yAyyBQQyzBz

BQQAAQQB

 

 r  χ U 

 .rank of idempotentis if onlyandif  r AQQB

.rank of isif onlyandif rank of is  r r  AAQQB

similar congruent,areand  AAQQB

BBBAQQB idempotentisAlso

Page 102: Section 02 Review of Probability and Statistics

7/28/2019 Section 02 Review of Probability and Statistics

http://slidepdf.com/reader/full/section-02-review-of-probability-and-statistics 102/183

BBBAQQB  idempotentis Also

AAA

AAA

QAQQAQQAQ

QAQQAQQAQ

QAQQQQAQQAQQQ

AQQAQQAQQ

SSS

SSS

shown becanitSimilarly

and

 i.e.

 i.e.

.or 

. i.e.

11

.idempotentareandidempotentis Thus AABSS

 gSummarizin

Page 103: Section 02 Review of Probability and Statistics

7/28/2019 Section 02 Review of Probability and Statistics

http://slidepdf.com/reader/full/section-02-review-of-probability-and-statistics 103/183

ondistributi , has    c  r U  yAy

with μAμ

21 

if and only if the following two conditions are

satisfied:

1. AS is idempotent of rank r.

2. SA is idempotent of rank r. 

Application:

Page 104: Section 02 Review of Probability and Statistics

7/28/2019 Section 02 Review of Probability and Statistics

http://slidepdf.com/reader/full/section-02-review-of-probability-and-statistics 104/183

Application:

Let y1, y2, … , yn  be a sample from the Normal

distribution with mean m , and variance  2.

Then

has a c 2 distribution with n = n -1 d.f. and   = 0

(central)

2

21

 

 snU 

Proof

11 y

Page 105: Section 02 Review of Probability and Statistics

7/28/2019 Section 02 Review of Probability and Statistics

http://slidepdf.com/reader/full/section-02-review-of-probability-and-statistics 105/183

Proof 

1

1

 where, 

2

1

1I1y m 

 N 

 y

 y

y

n

 

 

 

 

 

 

 

 

n

i

n

i

in

 y

 y1

2

1

1

2

21

 

n

i

i y y sn

U 1

2

22

2 11

  

Page 106: Section 02 Review of Probability and Statistics

7/28/2019 Section 02 Review of Probability and Statistics

http://slidepdf.com/reader/full/section-02-review-of-probability-and-statistics 106/183

y11Iy

y11yyy

 

 

 

 

 

 

 

 

nn

11122

  

Ayy

 

  

  11IA n

11 where 2 

nnn

nnn

nnn

111

111

111

2

1

1

1

1

 

11II11IA

 

  S

111Now 2

Page 107: Section 02 Review of Probability and Statistics

7/28/2019 Section 02 Review of Probability and Statistics

http://slidepdf.com/reader/full/section-02-review-of-probability-and-statistics 107/183

11II11IA

 

 

Snn

  Now2

  

11IA S n1 Also

 

  

   

  

  SS 11I11IAAnn

11

11111111I 2

111

nnn

nnnn 11111111I  since 111

S A11In

1

1rankofidempotentis1

Thus S nr11IA

Page 108: Section 02 Review of Probability and Statistics

7/28/2019 Section 02 Review of Probability and Statistics

http://slidepdf.com/reader/full/section-02-review-of-probability-and-statistics 108/183

1rank of idempotentis  Thus S nr n

11IA

Hence

has a c 2

distribution with n = n -1 d.f. and non-centrality parameter 

yAy

2

21

 

 snU 

111I11A1 n12

21

21 m m m  

012

21 111111

nm 

Independence of Linear and Quadratic Forms

Page 109: Section 02 Review of Probability and Statistics

7/28/2019 Section 02 Review of Probability and Statistics

http://slidepdf.com/reader/full/section-02-review-of-probability-and-statistics 109/183

p Q

ondistributi ,ahave letAgain Sμy

 N 

 and ,

s'V.R.followingheConsider t

21 yCvyByyAy

U U 

 ? of tindependen 

?of tindependen iswhen

1

21

yCvyAy

yByyAy

U U 

Theorem

di t ib tihL t I

N

Page 110: Section 02 Review of Probability and Statistics

7/28/2019 Section 02 Review of Probability and Statistics

http://slidepdf.com/reader/full/section-02-review-of-probability-and-statistics 110/183

ondistributi ,ahave Let Iμy

 N 

 .if 

 of tindependenis then

0CA

yCvyAy

Proof  Since A is symmetric there exists an

orthogonal matrix P such that PAP = D whereD is diagonal.

 Note: since CA = 0 then rank(A) = r   n and

some of the eigenvalues (diagonal elements of D) are zero. 

thus11

00

0DPPA

0PAPCP0CA

Page 111: Section 02 Review of Probability and Statistics

7/28/2019 Section 02 Review of Probability and Statistics

http://slidepdf.com/reader/full/section-02-review-of-probability-and-statistics 111/183

0PAPCP0CA

PC

BB

BB

00

00

00

0D

BB

BB

2221

1211

11

2221

1211

 where

0B0BD

0DB0DB

21111

11211111

,thenexistssinceand

, i.e.

11

. thus 2

22

12B0

B0

B0PC

ndist',,ahasthen,Let IμPPPμPzyPz

 N  N 

Page 112: Section 02 Review of Probability and Statistics

7/28/2019 Section 02 Review of Probability and Statistics

http://slidepdf.com/reader/full/section-02-review-of-probability-and-statistics 112/183

1111

2

111

21 

now

zDzz

z

00

0Dzz

zPPAzyAy

22

2

1 Also zB

z

zB0zPCyC 2

221111

21

 of tindependenisthenof tindependenisSince

zByCzDzyAyzz

Theorem

N kfihdi t ib tihL t SS

Page 113: Section 02 Review of Probability and Statistics

7/28/2019 Section 02 Review of Probability and Statistics

http://slidepdf.com/reader/full/section-02-review-of-probability-and-statistics 113/183

n N  rank of ison wheredistributi ,ahave Let SSμy

 formlinear theof tindependenis

 formquadratictheimpliesthen

yCv

yAy0AC

S U 

Proof  Exercise.

Similar to previous thereom.

Application:

Page 114: Section 02 Review of Probability and Statistics

7/28/2019 Section 02 Review of Probability and Statistics

http://slidepdf.com/reader/full/section-02-review-of-probability-and-statistics 114/183

Application:

Let y1, y2, … , yn  be a sample from the Normal

distribution with mean m , and variance  2.

Then

t.independenare 1

1

 and  1

22

n

ii y yn s y

Proof 

yCy1

n

n

nnn

 y

 y

 y

 yv 12

1

111

 y1

Page 115: Section 02 Review of Probability and Statistics

7/28/2019 Section 02 Review of Probability and Statistics

http://slidepdf.com/reader/full/section-02-review-of-probability-and-statistics 115/183

yAyy11Iy

 11

12

nn s

yCy1

n

n

nnn

 y

 y yv 12111

01111I1

11II1AC

S

11

1

11

11

 

and

nnnnn

nnn

  

 

I1μ

μy

S

S

 m   and 

on withdistributi ,ahas  Now

 N 

Q.E.D.

Theorem (Independence of quadratic forms) 

Page 116: Section 02 Review of Probability and Statistics

7/28/2019 Section 02 Review of Probability and Statistics

http://slidepdf.com/reader/full/section-02-review-of-probability-and-statistics 116/183

.rank of is

 on wheredistributi ,ahave Let

n

 N 

S

Sμy

 t.independenare and

 formsquadratictheimpliesthen

21 yByyAy

0BA

S

U U 

Proof  Let S = is non- singular) .

VVWW

VWBVAW0WV

0BA0BABA

S

 and 

symmetric.areand both: Note, whereor 

Expected Value and Variance of quadratic

Page 117: Section 02 Review of Probability and Statistics

7/28/2019 Section 02 Review of Probability and Statistics

http://slidepdf.com/reader/full/section-02-review-of-probability-and-statistics 117/183

Theorem

 thenandar  and Suppose

S

S

AμAμ

yAyyμy

tr U  E 

U V  E 

S

S

AμAμeeAμAμ

eeAμAμeAeμAμ

eAeeAμμAeμAμ

eμAeμ

0eeeμyeProof 

tr  E tr 

tr  E tr  E 

 E  E  E 

 E U  E 

 E  E 

 

andthen,Let

forms

Summary

Page 118: Section 02 Review of Probability and Statistics

7/28/2019 Section 02 Review of Probability and Statistics

http://slidepdf.com/reader/full/section-02-review-of-probability-and-statistics 118/183

 S AμAμyAy tr  E U  E 

μyeeAeμAμ

 where   E 

Summary

 

 

 

 

n

i

n

 j jiij

n

i

n

 j jiij eea E a 1 11 1  m m 

Example – One-way Anova

Page 119: Section 02 Review of Probability and Statistics

7/28/2019 Section 02 Review of Probability and Statistics

http://slidepdf.com/reader/full/section-02-review-of-probability-and-statistics 119/183

n

 j

ijni

i

n

 j

iij y ySS  y yU 1

1

1 1

Error 

2

1  where

 y11, y12, y13, … y1n a sample from N (m 1, 2)

 y21, y22, y23, … y2n a sample from N (m 2, 2

 yk 1, yk 2, yk 3, … ykn a sample from N (m k , 2)

  Now iiijij y E  y E  m m 

Thus

Page 120: Section 02 Review of Probability and Statistics

7/28/2019 Section 02 Review of Probability and Statistics

http://slidepdf.com/reader/full/section-02-review-of-probability-and-statistics 120/183

 

 

 

 

i

n

 j iij

y y E U  E 1 1

2

1

 

  

 

i

n

 j

iij

i

n

 j

iij ee E 1 1

2

1 1

2m m 

22

1

1

2

11

2

1  and where  

e

n

 j

iijn

e  s E ee s

21   nk 

  

  

i

e

i sn E 1

210

 Now let

Page 121: Section 02 Review of Probability and Statistics

7/28/2019 Section 02 Review of Probability and Statistics

http://slidepdf.com/reader/full/section-02-review-of-probability-and-statistics 121/183

i ik 

i i

y ySS  y ynU 1

1

Treatments1

2

2

 where

m m m k 

i

ik ii y E  y E 1

1 and  Now

Thus

  

i

i y yn E U  E 1

2

2

Page 122: Section 02 Review of Probability and Statistics

7/28/2019 Section 02 Review of Probability and Statistics

http://slidepdf.com/reader/full/section-02-review-of-probability-and-statistics 122/183

   i 1

 

  

 

i

i

i

i eenE n1

2

1

2m m 

2

1

21 e

i

i s E k nn

m m 

n

eVar  s E eee

ee s

iek 

iik e

 2

21

1

2

1

12

 and ,,, fromcalculated

variancesample where

2

1

21  m m 

k n

i

i

Page 123: Section 02 Review of Probability and Statistics

7/28/2019 Section 02 Review of Probability and Statistics

http://slidepdf.com/reader/full/section-02-review-of-probability-and-statistics 123/183

Statistical Inference 

Making decisions from data

There are two main areas of Statistical Inference

Page 124: Section 02 Review of Probability and Statistics

7/28/2019 Section 02 Review of Probability and Statistics

http://slidepdf.com/reader/full/section-02-review-of-probability-and-statistics 124/183

• Estimation  – deciding on the value of a

 parameter  – Point estimation

 – Confidence Interval, Confidence region Estimation

• Hypothesis testing

 – Deciding if a statement (hypotheisis) about a

 parameter is True or False 

Page 125: Section 02 Review of Probability and Statistics

7/28/2019 Section 02 Review of Probability and Statistics

http://slidepdf.com/reader/full/section-02-review-of-probability-and-statistics 125/183

The general statistical modelMost data fits this situation

Defn (The Classical Statistical Model)

Page 126: Section 02 Review of Probability and Statistics

7/28/2019 Section 02 Review of Probability and Statistics

http://slidepdf.com/reader/full/section-02-review-of-probability-and-statistics 126/183

The data vector  

x = ( x1 , x2 , x3 , ... , xn)

The model 

Let f (x| q) = f ( x1 , x2 , ... , xn | q 1 , q 2 ,... , q  p)

denote the joint density of the data vector x =

( x1 , x2 , x3 , ... , xn) of observations where the

unknown parameter vector  q  W (a subset of  p-dimensional space).

An Example

Page 127: Section 02 Review of Probability and Statistics

7/28/2019 Section 02 Review of Probability and Statistics

http://slidepdf.com/reader/full/section-02-review-of-probability-and-statistics 127/183

The data vector  

x = ( x1 , x2 , x3 , ... , xn) a sample from the normaldistribution with mean m and variance  2

The model 

Then f (x| m ,  

2

) = f ( x1 , x2 , ... , xn | m ,  

2

), the jointdensity of x = ( x1 , x2 , x3 , ... , xn) takes on the form:

where the unknown parameter vector  q (m ,  2)  W 

={(x,y)|-∞ < x < ∞ , 0 ≤ y < ∞}.

n

i

ii x

nn

n

i

 x

ee f  1

22

2

2/1

22

2

1

2

1  

 

     m x

Defn (Sufficient Statistics)

Page 128: Section 02 Review of Probability and Statistics

7/28/2019 Section 02 Review of Probability and Statistics

http://slidepdf.com/reader/full/section-02-review-of-probability-and-statistics 128/183

Let x have joint density f (x| q) where the unknown

 parameter vector  q  W.

Then S = (S 1(x) ,S 2(x) ,S 3(x) , ... , S k (x)) is called a set of 

sufficient statistics for the parameter vector q if the

conditional distribution of x given S = (S 1(x) ,S 2(x)

,S 3(x) , ... , S k (x)) is not functionally dependent on the

 parameter vector q.

A set of sufficient statistics contains all of the

information concerning the unknown parameter vector 

A Simple Example illustrating Sufficiency 

Page 129: Section 02 Review of Probability and Statistics

7/28/2019 Section 02 Review of Probability and Statistics

http://slidepdf.com/reader/full/section-02-review-of-probability-and-statistics 129/183

Suppose that we observe a Success-Failure experiment

n = 3 times. Let q denote the probability of Success.

Suppose that the data that is collected is x1, x2, x3 where

 xitakes on the value 1 is the ith trial is a Success and 0 if 

the ith trial is a Failure.

The following table gives possible values of ( x1, x2, x3).

Page 130: Section 02 Review of Probability and Statistics

7/28/2019 Section 02 Review of Probability and Statistics

http://slidepdf.com/reader/full/section-02-review-of-probability-and-statistics 130/183

( x1, x2, x3)   f ( x1, x2, x3|q )  S =S  xi   g (S |q )   f ( x1, x2, x3| S ) 

(0, 0, 0)  (1 - q )3  0 (1 - q )

3  1

(1, 0, 0)  (1 - q )2q   1 1/3

(0, 1, 0)  (1 - q )2q   1 1/3

(0, 0, 1)  (1 - q )2q   1

3(1 - q )2q  

1/3

(1, 1, 0)  (1 - q )q 2  2 1/3

(1, 0, 1)  (1 - q )q 2  2 1/3

(0, 1, 1)  (1 - q )q 2  2

3(1 - q )q 2 

1/3

(1, 1, 1)  q 3  3 q 

3  1

The data can be generated in two equivalent ways:

1. Generating ( x1, x2, x3) directly from f ( x1, x2, x3|q) or 

2. Generating S from g(S|q  ) then generating ( x1, x2, x3) from f ( x1,

 x2, x3|S ). Since the second step does involve q no additional

information will be obtained by knowing ( x1, x2, x3) once S is

determined

The Sufficiency Principle

Page 131: Section 02 Review of Probability and Statistics

7/28/2019 Section 02 Review of Probability and Statistics

http://slidepdf.com/reader/full/section-02-review-of-probability-and-statistics 131/183

Any decision regarding the parameter q should

 be based on a set of Sufficient statistics S 1(x),

S 2(x), ...,S k (x) and not otherwise on the value of x.

A useful approach in developing a statistical

Page 132: Section 02 Review of Probability and Statistics

7/28/2019 Section 02 Review of Probability and Statistics

http://slidepdf.com/reader/full/section-02-review-of-probability-and-statistics 132/183

A useful approach in developing a statistical

 procedure

1. Find sufficient statistics

2. Develop estimators , tests of hypotheses etc.using only these statistics

Defn (Minimal Sufficient Statistics)

Page 133: Section 02 Review of Probability and Statistics

7/28/2019 Section 02 Review of Probability and Statistics

http://slidepdf.com/reader/full/section-02-review-of-probability-and-statistics 133/183

Let x have joint density f (x| q) where theunknown parameter vector  q  W.

Then S = (S 1(x) ,S 2(x) ,S 3(x) , ... , S k (x)) is a set

of Minimal Sufficient statistics for the parameter vector q  if S = (S 1(x) ,S 2(x) ,S 3(x) , ...

, S k (x)) is a set of Sufficient statistics and can be

calculated from any other set of Sufficientstatistics.

Theorem (The Factorization Criterion)

Page 134: Section 02 Review of Probability and Statistics

7/28/2019 Section 02 Review of Probability and Statistics

http://slidepdf.com/reader/full/section-02-review-of-probability-and-statistics 134/183

Let x have joint density f (x| q) where the unknown parameter vector  q  W.

Then S = (S 1(x) ,S 2(x) ,S 3(x) , ... , S k (x)) is a set of 

Sufficient statistics for the parameter vector q  if 

 f (x| q) = h(x) g (S, q)

= h(x) g (S 1(x) ,S 2(x) ,S 3(x) , ... , S k (x), q). 

This is useful for finding Sufficient statisticsi.e. If you can factor out q-dependence with a set of 

statistics then these statistics are a set of Sufficient

statistics

 Defn (Completeness)

Page 135: Section 02 Review of Probability and Statistics

7/28/2019 Section 02 Review of Probability and Statistics

http://slidepdf.com/reader/full/section-02-review-of-probability-and-statistics 135/183

Let x have joint density f (x| q) where the unknown parameter vector  q  W.

Then S = (S 1(x) ,S 2(x) ,S 3(x) , ... , S k (x)) is a set of 

Complete Sufficient statistics for the parameter vector 

q  if S = (S 1(x) ,S 2(x) ,S 3(x) , ... , S k (x)) is a set of 

Sufficient statistics and whenever 

E[f(S 1(x) ,S 2(x) ,S 3(x) , ... , S k (x)) ] = 0

then

P[f(S 1(x) ,S 2(x) ,S 3(x) , ... , S k (x)) = 0] = 1

 Defn (The Exponential Family)

Page 136: Section 02 Review of Probability and Statistics

7/28/2019 Section 02 Review of Probability and Statistics

http://slidepdf.com/reader/full/section-02-review-of-probability-and-statistics 136/183

Let x have joint density f (x| q)| where theunknown parameter vector  q  W. Then f (x| q)

is said to be a member of the exponential family  

of distributions if:

,

0

)()(exp)()(1

Otherwise

b xa pS  g h f  iiii

i

i θxθxθx

q W,where 

1) ∞ < a < b < ∞ are not dependent on

Page 137: Section 02 Review of Probability and Statistics

7/28/2019 Section 02 Review of Probability and Statistics

http://slidepdf.com/reader/full/section-02-review-of-probability-and-statistics 137/183

1) - ∞ < ai < bi < ∞ are not dependent on q.

2) W contains a nondegenerate k-dimensional

rectangle.

3) g (q), ai ,bi and pi(q) are not dependent on x.

4) h(x), ai ,bi and S i(x) are not dependent on q.

If in addition.

Page 138: Section 02 Review of Probability and Statistics

7/28/2019 Section 02 Review of Probability and Statistics

http://slidepdf.com/reader/full/section-02-review-of-probability-and-statistics 138/183

If in addition.

5) The S i( x) are functionally independent for i = 1, 2,..., k .

6) [S i(x)]/ x j exists and is continuous for all i = 1, 2,..., k j = 1,2,..., n.

7) pi(q) is a continuous function of q  for all i = 1, 2,..., k .

8) R = {[p1(q),p2(q), ...,p K (q)] | q  W,} contains nondegenerate

k-dimensional rectangle.

Then

the set of statistics S1(x), S2(x), ...,Sk (x) form a Minimal

Complete set of Sufficient statistics.

 Defn (The Likelihood function) 

Page 139: Section 02 Review of Probability and Statistics

7/28/2019 Section 02 Review of Probability and Statistics

http://slidepdf.com/reader/full/section-02-review-of-probability-and-statistics 139/183

Let x have joint density f (x|q) where the unkown parameter vector  q W. Then for a

given value of the observation vector x ,the

Likelihood function, Lx(q), is defined by: Lx(q) =  f (x|q) with q W 

The log Likelihood function l x(q) is defined by:

l x(q) =lnLx(q) = lnf (x|q) with q W 

The Likelihood Principle

Page 140: Section 02 Review of Probability and Statistics

7/28/2019 Section 02 Review of Probability and Statistics

http://slidepdf.com/reader/full/section-02-review-of-probability-and-statistics 140/183

Any decision regarding the parameter q should

 be based on the likelihood function Lx (q) and not

otherwise on the value of x.If two data sets result in the same likelihood

function the decision regarding q should be the

same.

Page 141: Section 02 Review of Probability and Statistics

7/28/2019 Section 02 Review of Probability and Statistics

http://slidepdf.com/reader/full/section-02-review-of-probability-and-statistics 141/183

 Some statisticians find it useful to plot the

likelihood function Lx (q) given the value of x.

It summarizes the information contained in xregarding the parameter vector q.

An Example

Page 142: Section 02 Review of Probability and Statistics

7/28/2019 Section 02 Review of Probability and Statistics

http://slidepdf.com/reader/full/section-02-review-of-probability-and-statistics 142/183

The data vector  

x = ( x1 , x2 , x3 , ... , xn) a sample from the normaldistribution with mean m and variance  2

The joint distr ibution of x

Then f (x| m ,  2) = f ( x1

, x2

, ... , xn | m ,  2), the joint

density of x = ( x1 , x2 , x3 , ... , xn) takes on the form:

where the unknown parameter vector  q (m ,  2)  W 

={(x,y)|-∞ < x < ∞ , 0 ≤ y < ∞}.

n

i

ii x

nn

n

i

 x

ee f  1

22

2

2/1

22

2

1

2

1  

 

     m x

The Likelihood function

A d i k

Page 143: Section 02 Review of Probability and Statistics

7/28/2019 Section 02 Review of Probability and Statistics

http://slidepdf.com/reader/full/section-02-review-of-probability-and-statistics 143/183

Assume data vector is known

x = ( x1 , x2 , x3 , ... , xn) 

The L ikel ihood function 

Then L(m ,  )= f (x| m ,  ) = f ( x1 , x2 , ... , xn | m ,  2),

22

1 22/ 2

1

1 1

2 2

n

ii

i

 x xn

n ni

e em m 

  

   

2

1

1

2

/ 2

1

2

n

i

i

 x

n n e

m  

 

2 2

1

12

2

/ 2

1

2

n

i i

i

 x x

n ne

m m  

or 

2 2

1

12

2

/ 2

1,

2

n

i i

i

 x x

n n L e

m m  

m    

Page 144: Section 02 Review of Probability and Statistics

7/28/2019 Section 02 Review of Probability and Statistics

http://slidepdf.com/reader/full/section-02-review-of-probability-and-statistics 144/183

2 2

1 1

1 22

/ 2

1

2

n n

i i

i i

 x x n

n ne

m m  

 

2 2 211 2

2/ 2

1

2

n s nx nx n

n n e

m m  

 

2 2

2 2 2 21

1since or 11

n

i ni

ii

 x nx

 s x n s nxn

1

1

and since then

n

i ni

i

i

 x

 x x nx

n

Page 145: Section 02 Review of Probability and Statistics

7/28/2019 Section 02 Review of Probability and Statistics

http://slidepdf.com/reader/full/section-02-review-of-probability-and-statistics 145/183

Page 146: Section 02 Review of Probability and Statistics

7/28/2019 Section 02 Review of Probability and Statistics

http://slidepdf.com/reader/full/section-02-review-of-probability-and-statistics 146/183

Contour Map of Likelihood n = 100

Page 147: Section 02 Review of Probability and Statistics

7/28/2019 Section 02 Review of Probability and Statistics

http://slidepdf.com/reader/full/section-02-review-of-probability-and-statistics 147/183

1

S1

 0 20

50

70

 Now consider the following data: (n = 100)

57.1 72.3 75.0 57.8 50.3 48.0 49.6 53.1 58.5 53.7

77 8 43 0 69 8 65 1 71 1 44 4 64 4 52 9 56 4 43 9

Page 148: Section 02 Review of Probability and Statistics

7/28/2019 Section 02 Review of Probability and Statistics

http://slidepdf.com/reader/full/section-02-review-of-probability-and-statistics 148/183

 

2 2199 11.8571 100 62.02

250 100

1,

6.2832 L e

m  m  

 

77.8 43.0 69.8 65.1 71.1 44.4 64.4 52.9 56.4 43.9

49.0 37.6 65.5 50.4 40.7 66.9 51.5 55.8 49.1 59.5

64.5 67.6 79.9 48.0 68.1 68.0 65.8 61.3 75.0 78.0

61.8 69.0 56.2 77.2 57.5 84.0 45.5 64.4 58.7 77.5

81.9 77.1 58.7 71.2 58.1 50.3 53.2 47.6 53.3 76.4

69.8 57.8 65.9 63.0 43.5 70.7 85.2 57.2 78.9 72.9

78.6 53.9 61.9 75.2 62.2 53.2 73.0 38.9 75.4 69.7

68.8 77.0 51.2 65.6 44.7 40.4 72.1 68.1 82.2 64.7

83.1 71.9 65.4 45.0 51.6 48.3 58.5 65.3 65.9 59.6

mean 62.02

 s 11.8571

Likelihood n = 100

Page 149: Section 02 Review of Probability and Statistics

7/28/2019 Section 02 Review of Probability and Statistics

http://slidepdf.com/reader/full/section-02-review-of-probability-and-statistics 149/183

1

S1

0

2E-170

4E-170

6E-170

8E-170

1E-169

1.2E-169

1.4E-169

1.6E-169

 0

2050

70

Contour Map of Likelihood n = 100

Page 150: Section 02 Review of Probability and Statistics

7/28/2019 Section 02 Review of Probability and Statistics

http://slidepdf.com/reader/full/section-02-review-of-probability-and-statistics 150/183

1

S1

 0 20

50

70

The Sufficiency Principle

Page 151: Section 02 Review of Probability and Statistics

7/28/2019 Section 02 Review of Probability and Statistics

http://slidepdf.com/reader/full/section-02-review-of-probability-and-statistics 151/183

Any decision regarding the parameter q should

 be based on a set of Sufficient statistics S 1(x),

S 2(x), ...,S k (x) and not otherwise on the value of x.

If two data sets result in the same values for the

set of Sufficient statistics the decision regardingq should be the same.

Theorem (Birnbaum - Equivalency of the

Likelihood Principle and Sufficiency Principle)

Page 152: Section 02 Review of Probability and Statistics

7/28/2019 Section 02 Review of Probability and Statistics

http://slidepdf.com/reader/full/section-02-review-of-probability-and-statistics 152/183

p y p )

 Lx1(q)  Lx

2(q)if and only if 

S 1(x1) = S 1(x2),..., and S k (x1) = S k (x2)

The following table gives possible values of ( x1, x2, x3).

(x1 x2 x3) f(x1 x2 x3|q) S =Sxi g(S |q) f(x1 x2 x3| S)

Page 153: Section 02 Review of Probability and Statistics

7/28/2019 Section 02 Review of Probability and Statistics

http://slidepdf.com/reader/full/section-02-review-of-probability-and-statistics 153/183

( x1, x2, x3)   f ( x1, x2, x3|q )  S =S  xi   g (S |q )   f ( x1, x2, x3| S ) 

(0, 0, 0)  (1 - q )3  0 (1 - q )

3  1

(1, 0, 0)  (1 - q )2

q   1 1/3(0, 1, 0)  (1 - q )

2q   1 1/3

(0, 0, 1)  (1 - q )2q   1

3(1 - q )2q  

1/3

(1, 1, 0)  (1 - q )q 2  2 1/3

(1, 0, 1)  (1 - q )q 2  2 1/3

(0, 1, 1)  (1 - q )q 2  2

3(1 - q )q 2 

1/3

(1, 1, 1)  q 3  3 q 3  1

The Likelihood function

S = 0

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1

S = 1

0

0.02

0.04

0.06

0.08

0.10.12

0.14

0.16

0 0.2 0.4 0.6 0.8 1

S = 2

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0 0.2 0.4 0.6 0.8 1

S = 3

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1

Page 154: Section 02 Review of Probability and Statistics

7/28/2019 Section 02 Review of Probability and Statistics

http://slidepdf.com/reader/full/section-02-review-of-probability-and-statistics 154/183

Estimation Theory

Point Estimation

 Defn (Estimator)

Page 155: Section 02 Review of Probability and Statistics

7/28/2019 Section 02 Review of Probability and Statistics

http://slidepdf.com/reader/full/section-02-review-of-probability-and-statistics 155/183

Let x = ( x1 , x2 , x3 , ... , xn) denote the vector of observations having joint density f (x|q) where

the unknown parameter vector  q W.

Then an estimator  of the parameter f (q) = f (q 1 ,q 2 , ... , q k ) is any function T (x)=T ( x1 , x2 , x3 , ... ,

 xn) of the observation vector.

 Defn (Mean Square Error)

Page 156: Section 02 Review of Probability and Statistics

7/28/2019 Section 02 Review of Probability and Statistics

http://slidepdf.com/reader/full/section-02-review-of-probability-and-statistics 156/183

Let x = ( x1 , x2 , x3 , ... , xn) denote the vector of observations having joint density f (x|q) where theunknown parameter vector  q  W.

Let T(x) be an estimator of the parameter 

f (q). Then the Mean Square Error of T(x) isdefined to be:

2))()((... θxθx f  T  E  E S  M  T 

xθxθx d  f T  )|())()(( 2f 

 Defn (Uniformly Better)

Page 157: Section 02 Review of Probability and Statistics

7/28/2019 Section 02 Review of Probability and Statistics

http://slidepdf.com/reader/full/section-02-review-of-probability-and-statistics 157/183

Let x = ( x1 , x2 , x3 , ... , xn) denote the vector of observations having joint density f (x|q) wherethe unknown parameter vector  q  W.

Let T(x) and T*(x) be estimators of the parameter f (q). Then T(x) is said to beuni formly better than T*(x) if:

θθ xx *...... T T  E S  M  E S  M  Wθwhenever 

 Defn (Unbiased )

Page 158: Section 02 Review of Probability and Statistics

7/28/2019 Section 02 Review of Probability and Statistics

http://slidepdf.com/reader/full/section-02-review-of-probability-and-statistics 158/183

Let x = ( x1 , x2 , x3 , ... , xn) denote the vector of observations having joint density f (x|q) wherethe unknown parameter vector  q  W.

Let T(x) be an estimator of the parameter f (q).Then T(x) is said to be an unbiased estimator of the parameter f (q) if:

θxθxxx f  d  f T T  E  )|()(

Theorem (Cramer Rao Lower bound) Let x = ( x1 , x2 , x3 , ... , xn) denote the vector of observations having joint density f(x| ) where

Page 159: Section 02 Review of Probability and Statistics

7/28/2019 Section 02 Review of Probability and Statistics

http://slidepdf.com/reader/full/section-02-review-of-probability-and-statistics 159/183

observations having joint density f (x|q) where

the unknown parameter vector  q  W. Supposethat:i) exists for all x and for all . Wθ

θ

θx

)|( f 

ii)

x

θ

θxxθx

θd  f d  f  )|()|(

iii)

iv)

x

θ

θxxxθxx

θd 

 f t d  f t 

)|()|(

W

θ

θx allfor 

)|(0

2

i

 f  E 

Let M denote the p x p matrix with ijth element.

Page 160: Section 02 Review of Probability and Statistics

7/28/2019 Section 02 Review of Probability and Statistics

http://slidepdf.com/reader/full/section-02-review-of-probability-and-statistics 160/183

p p j

θˆ

 p ji f  E m ji

ij ,,2,1, )|(ln2

q q θx

Then V = M -1 is the lower bound for the covariance

matrix of unbiased estimators of q.That is, var(c' ) = c'var( )c ≥ c' M -1c = c'V c where

is a vector of unbiased estimators of  q.θˆ θˆ

Defn (Uniformly Minimum Variance

Unbiased Estimator)

Page 161: Section 02 Review of Probability and Statistics

7/28/2019 Section 02 Review of Probability and Statistics

http://slidepdf.com/reader/full/section-02-review-of-probability-and-statistics 161/183

Let x = ( x1 , x2 , x3 , ... , xn) denote the vector of observations having joint density f (x|q) where

the unknown parameter vector q  W. ThenT *(x) is said to be the UMVU (Uniformly 

minimum variance unbiased)   estimator of  f (q)if:

1) E [T *(x)] = f (q) for all q  W.

2) Var [T *(x)] ≤ Var [T (x)] for all q  W whenever  E [T (x)] = f (q).

Theorem (Rao-Blackwell) 

Let x = (x x x x ) denote the vector of

Page 162: Section 02 Review of Probability and Statistics

7/28/2019 Section 02 Review of Probability and Statistics

http://slidepdf.com/reader/full/section-02-review-of-probability-and-statistics 162/183

Let x ( x1 , x2 , x3 , ... , xn) denote the vector of 

observations having joint density f(x|q) wherethe unknown parameter vector  q  W.

Let S 1(x), S 2(x), ...,S  K (x) denote a set of sufficientstatistics.

Let T(x) be any unbiased estimator of f(q).Then T*[S 1(x), S 2(x), ...,S k  (x)] = E [T (x)|S 1(x),S 2(x), ...,S k  (x)] is an unbiased estimator of f(q)such that:

Var [T*(S 1(x), S 2(x), ...,S k (x))] ≤ Var [T (x)]for all q  W.

Theorem (Lehmann-Scheffe')

Let x = (x x x x ) denote the vector of

Page 163: Section 02 Review of Probability and Statistics

7/28/2019 Section 02 Review of Probability and Statistics

http://slidepdf.com/reader/full/section-02-review-of-probability-and-statistics 163/183

Let x = ( x1 , x2 , x3 , ... , xn) denote the vector of 

observations having joint density f(x|q) wherethe unknown parameter vector  q  W.

Let S 1(x), S 2(x), ...,S  K (x) denote a set of 

complete sufficient statistics.Let T*[S 1(x), S 2(x), ...,S k  (x)] be an unbiased

estimator of f(q). Then:

T*(S 1(x), S 2(x), ...,S k (x)) )] is the UMVUestimator of f(q).

Defn (Consistency)

Page 164: Section 02 Review of Probability and Statistics

7/28/2019 Section 02 Review of Probability and Statistics

http://slidepdf.com/reader/full/section-02-review-of-probability-and-statistics 164/183

Let x = ( x1 , x2 , x3 , ... , xn) denote the vector of observations having joint density f (x|q) where

the unknown parameter vector q  W. Let T n(x)

 be an estimator of  f (q). Then T n(x) is called aconsistent  estimator of f (q) if for any e > 0:

W θθx  allfor 0lim e f nn T  P 

Defn (M. S. E. Consistency)

Page 165: Section 02 Review of Probability and Statistics

7/28/2019 Section 02 Review of Probability and Statistics

http://slidepdf.com/reader/full/section-02-review-of-probability-and-statistics 165/183

Let x = ( x1 , x2 , x3 , ... , xn) denote the vector of observations having joint density f (x|q) where the

unknown parameter vector q  W. Let T n(x) be an 

estimator of  f (q). Then T n(x) is called a M. S. E.consistent  estimator of f (q) if for any e > 0:

 0lim...lim2

θxθ f n

nT 

nT  E  E S  M 

n

Wθallfor 

Page 166: Section 02 Review of Probability and Statistics

7/28/2019 Section 02 Review of Probability and Statistics

http://slidepdf.com/reader/full/section-02-review-of-probability-and-statistics 166/183

Methods for Finding Estimators

1. The Method of Moments2. Maximum Likelihood Estimation

Methods for finding estimators

Page 167: Section 02 Review of Probability and Statistics

7/28/2019 Section 02 Review of Probability and Statistics

http://slidepdf.com/reader/full/section-02-review-of-probability-and-statistics 167/183

g

1. Method of Moments

2. Maximum Likelihood Estimation

Method of Moments

Page 168: Section 02 Review of Probability and Statistics

7/28/2019 Section 02 Review of Probability and Statistics

http://slidepdf.com/reader/full/section-02-review-of-probability-and-statistics 168/183

Let x1, … , xn denote a sample from the densityfunction

 f ( x; q 1, … , q  p) = f ( x; q)

The k th moment of the distribution being

sampled is defined to be:

1 1, , ; , ,k k k p p E x x f x dxm q q q q  

The k th sample moment is defined to be:

Page 169: Section 02 Review of Probability and Statistics

7/28/2019 Section 02 Review of Probability and Statistics

http://slidepdf.com/reader/full/section-02-review-of-probability-and-statistics 169/183

To find the method of moments estimator of 

q 1, … , q  p we set up the equations:

1

1 n

k k i

im xn

1 1 1, ,  p mm q q 

2 1 2

, , p

mm q q 

1, , p p pmm q q 

We then solve the equations

mm q q

Page 170: Section 02 Review of Probability and Statistics

7/28/2019 Section 02 Review of Probability and Statistics

http://slidepdf.com/reader/full/section-02-review-of-probability-and-statistics 170/183

for q 1, … , q  p. 

1 1 1, ,  p mm q q 

2 1 2, ,  p mm q q 

1, , p p pmm q q 

The solutions 1, ,  pq q 

are called the method of moments estimators 

The Method of Maximum Likelihood

Page 171: Section 02 Review of Probability and Statistics

7/28/2019 Section 02 Review of Probability and Statistics

http://slidepdf.com/reader/full/section-02-review-of-probability-and-statistics 171/183

Suppose that the data x1, … , xn has joint densityfunction

 f ( x1, … , xn ; q 1, … , q  p)

where q (q 1, … , q  p) are unknown parametersassumed to lie in W (a subset of  p-dimensional

space).

We want to estimate the parametersq 1, … , q  p 

Definition: Maximum Likel ihood Estimation 

Suppose that the data x1 x has joint density

Page 172: Section 02 Review of Probability and Statistics

7/28/2019 Section 02 Review of Probability and Statistics

http://slidepdf.com/reader/full/section-02-review-of-probability-and-statistics 172/183

Suppose that the data x1, … , xn has joint density

function f ( x1, … , xn ; q 1, … , q  p)

Then the L ikel ihood function is defined to be

 L(q) = L(q 1, … , q  p)= f ( x1, … , xn ; q 1, … , q  p)

the Maximum L ikel ihood estimators of the parameters

q 1, … , q  p are the values that maximize

 L(q) = L(q 1, … , q  p)

the Maximum L ikel ihood estimators of the parameters

q1, … , q are the values

Page 173: Section 02 Review of Probability and Statistics

7/28/2019 Section 02 Review of Probability and Statistics

http://slidepdf.com/reader/full/section-02-review-of-probability-and-statistics 173/183

q 1, … , q  p are the values

1

1 1, ,ˆ ˆ, , max , ,

 p

 p p L Lq q q q q q  

1ˆ ˆ, ,  pq q 

Such that

Note: 1maximizing , ,  p L q q 

is equivalent to maximizing

1 1, , ln , , p pl Lq q q q  

the log-l ikelihood function  

Page 174: Section 02 Review of Probability and Statistics

7/28/2019 Section 02 Review of Probability and Statistics

http://slidepdf.com/reader/full/section-02-review-of-probability-and-statistics 174/183

Hypothesis Testing 

Defn (Test of size ) 

Page 175: Section 02 Review of Probability and Statistics

7/28/2019 Section 02 Review of Probability and Statistics

http://slidepdf.com/reader/full/section-02-review-of-probability-and-statistics 175/183

Let x = ( x1 , x2 , x3 , ... , xn) denote the vector of observations having joint density f (x| q) where

the unknown parameter vector  q  W.

Let w be any subset of  W.Consider testing the the Null Hypothesis

H0: q  w

against the alternative hypothesis

H1: q  w.

Let A denote the acceptance region for the test.

(all values x = ( x1 , x2 , x3 , ... ,  xn) of such that the

d i i t t H i d )

Page 176: Section 02 Review of Probability and Statistics

7/28/2019 Section 02 Review of Probability and Statistics

http://slidepdf.com/reader/full/section-02-review-of-probability-and-statistics 176/183

decision to accept H0 is made.)

and let C denote the critical region for the test

(all values x = ( x1 , x2 , x3 , ... ,  xn) of such that the

decision to reject H0 is made.).

Then the test is said to be of size if 

and allfor )|( w   θxθxx

d  f C  P 

w   0oneleastatfor )|( θxθxxC 

d  f C  P 

Defn (Power) Let x = ( x1 , x2 , x3 , ... , xn) denote the vector of 

observations having joint density f (x| q) where the

Page 177: Section 02 Review of Probability and Statistics

7/28/2019 Section 02 Review of Probability and Statistics

http://slidepdf.com/reader/full/section-02-review-of-probability-and-statistics 177/183

unknown parameter vector  q  W.

Consider testing the the Null Hypothesis

H0: q  w

against the alternative hypothesis

H1: q  w.

where w is any subset of  W. Then the Power of the test for  

q  w is defined to be:

C  d  f C  P  xθxxθ )|(

Defn (Uniformly Most Powerful (UMP) test of 

size ) 

Page 178: Section 02 Review of Probability and Statistics

7/28/2019 Section 02 Review of Probability and Statistics

http://slidepdf.com/reader/full/section-02-review-of-probability-and-statistics 178/183

Let x = ( x1 , x2 , x3 , ... , xn) denote the vector of observations having joint density f (x| q) where theunknown parameter vector  q  W.

Consider testing the the Null HypothesisH0: q  w

against the alternative hypothesis

H1: q  w.where w is any subset of  W.

Let C denote the critical region for the test . Thenthe test is called the UMP test of size  if : 

Let x = ( x1 , x2 , x3 , ... , xn) denote the vector of 

Page 179: Section 02 Review of Probability and Statistics

7/28/2019 Section 02 Review of Probability and Statistics

http://slidepdf.com/reader/full/section-02-review-of-probability-and-statistics 179/183

observations having joint density f (x| q) where theunknown parameter vector  q  W.

Consider testing the the Null Hypothesis

H0: q  w

against the alternative hypothesis

H1: q  w.

where w is any subset of  W.

Let C denote the critical region for the test . Thenthe test is called the UMP test of size  if : 

and allfor )|( w   θxθxxC 

d  f C  P 

Page 180: Section 02 Review of Probability and Statistics

7/28/2019 Section 02 Review of Probability and Statistics

http://slidepdf.com/reader/full/section-02-review-of-probability-and-statistics 180/183

w   0oneleastatfor )|( θxθxx

C d  f C  P 

and for any other critical region C* such that: 

and allfor )|(*

*

w  

θxθxx

d  f C  P 

w   0

*

 oneleastatfor )|(* θxθxxC 

d  f C  P 

then

.allfor )|()|(*

w  θxθxxθxC C 

d  f d  f 

Theorem (Neymann-Pearson Lemma)Let x = ( x1 , x2 , x3 , ... , xn) denote the vector of observations having

 joint density f (x| q) where the unknown parameter vector  q  W =

( )

Page 181: Section 02 Review of Probability and Statistics

7/28/2019 Section 02 Review of Probability and Statistics

http://slidepdf.com/reader/full/section-02-review-of-probability-and-statistics 181/183

(q0, q1).

Consider testing the the Null Hypothesis

H0: q = q0 

against the alternative hypothesis

H1: q = q1.

Then the UMP test of size  has critical region:

 f 

 f C 

)|(

)|(

1

0

θx

θxx

where K is chosen so that  C 

d  f  xθx )|( 0

Defn (Likelihood Ratio Test of size  )Let x = ( x1 , x2 , x3 , ... , xn) denote the vector of observations having

 joint density f (x| q) where the unknown parameter vector  q  W.

C id i h h N ll H h i

Page 182: Section 02 Review of Probability and Statistics

7/28/2019 Section 02 Review of Probability and Statistics

http://slidepdf.com/reader/full/section-02-review-of-probability-and-statistics 182/183

Consider testing the the Null Hypothesis

H0: q  w

against the alternative hypothesis

H1: q  w.

where w is any subset of  W Then the Likelihood Ratio (LR) test of size a has critical region:

where K is chosen so that

W

 K  f 

 f C 

)|(max

)|(max

θx

θxx

θ

θ w 

and allfor )|( w   θxθxxC 

d  f C  P 

w   0oneleastatfor )|( θxθxx

C

d  f C  P 

Theorem (Asymptotic distribution of 

Likelihood ratio test criterion) Let x = ( x1 , x2 , x3 , ... , xn) denote the vector of observations having

Page 183: Section 02 Review of Probability and Statistics

7/28/2019 Section 02 Review of Probability and Statistics

http://slidepdf.com/reader/full/section-02-review-of-probability-and-statistics 183/183

 joint density f (x| q) where the unknown parameter vector  q  W.

Consider testing the the Null Hypothesis

H0: q  w

against the alternative hypothesis

H1: q  w.where w is any subset of  W 

Then under proper regularity conditions on U = 2ln(x)

)|(max

)|(maxLet

θx

θxx

θ

θ

 f 

 f 

W

w