64
Sponsored by: Participating Experts: Jeffrey Conn, Ph.D. Vanderbilt University Medical Center Nashville, TN Michel Bouvier, Ph.D. Institute for Research in Immunology and Cancer (IRIC) University of Montreal Montreal, Canada Brian Kobilka, M.D. Stanford University School of Medicine Stanford, CA Brought to you by the Science/AAAS Business Office Webinar Series Webinar Series Science Science Advances in GCPR Research Advances in GCPR Research 17 June, 2008 17 June, 2008

Science Webinar Series · N S. N. H. 2. H. N. O. C. l. rM1 0 0 20 40 60 80 100 120 vehicle 10uM DO12-12-11-10 -9 -8 -7 -6 -5 -4 Log [ACh] M Normalized Fluorescence (% Max ACh Response)

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Science Webinar Series · N S. N. H. 2. H. N. O. C. l. rM1 0 0 20 40 60 80 100 120 vehicle 10uM DO12-12-11-10 -9 -8 -7 -6 -5 -4 Log [ACh] M Normalized Fluorescence (% Max ACh Response)

Sponsored by:

Participating Experts:Jeffrey Conn, Ph.D.Vanderbilt University Medical CenterNashville, TN

Michel Bouvier, Ph.D. Institute for Research in Immunology and Cancer (IRIC)University of MontrealMontreal, Canada

Brian Kobilka, M.D. Stanford University School of MedicineStanford, CA

Brought to you by the Science/AAAS

Business Office

Webinar SeriesWebinar SeriesScienceScienceAdvances in GCPR ResearchAdvances in GCPR Research

17 June, 200817 June, 2008

Page 2: Science Webinar Series · N S. N. H. 2. H. N. O. C. l. rM1 0 0 20 40 60 80 100 120 vehicle 10uM DO12-12-11-10 -9 -8 -7 -6 -5 -4 Log [ACh] M Normalized Fluorescence (% Max ACh Response)

Allosteric

Potentiators

of GPCRs

as a Novel Approach to Treatment of CNS Disorders

P. Jeffrey Conn

Department of PharmacologyVanderbilt Program in Drug Discovery

Vanderbilt University School of MedicineNashville, Tennessee USA

Page 3: Science Webinar Series · N S. N. H. 2. H. N. O. C. l. rM1 0 0 20 40 60 80 100 120 vehicle 10uM DO12-12-11-10 -9 -8 -7 -6 -5 -4 Log [ACh] M Normalized Fluorescence (% Max ACh Response)

GPCRs

Largest class of cell-surface receptors; three major subclasses.

Critical roles in virtually every organ system

Activated by a diverse range of ligands, (hormones, neurotransmitters, ions, odorants, and photons of light)

Couple to a host of G proteins and activate a wide range of signaling molecules and effector

systems

Involved in multiple human disease states.

Targets of approximately 50% of all modern drugs

Encoded by >1,000 genes yet synthetic ligands

exist for only a small fraction of these

Page 4: Science Webinar Series · N S. N. H. 2. H. N. O. C. l. rM1 0 0 20 40 60 80 100 120 vehicle 10uM DO12-12-11-10 -9 -8 -7 -6 -5 -4 Log [ACh] M Normalized Fluorescence (% Max ACh Response)

Recent Advances and Directions of GPCR Research

Major advances in understanding of GPCR structure and associated

function

Increasing appreciation of roles of homo-

and heterodimers

Increased understanding of complex signaling pathways, including

G protein-independent signaling mechanisms.

Discovery of drug-like allosteric

modulators that provide high selectivity and novel modes activity at GPCRs.

Page 5: Science Webinar Series · N S. N. H. 2. H. N. O. C. l. rM1 0 0 20 40 60 80 100 120 vehicle 10uM DO12-12-11-10 -9 -8 -7 -6 -5 -4 Log [ACh] M Normalized Fluorescence (% Max ACh Response)

Schizophrenia

• Positive symptoms: paranoia, hallucinations, delusions, thought disorder.

• Negative symptoms: loss of motivation, blunted affect, withdrawal, anhedonia.

• Cognitive disturbances: impaired attention, executive function, working memory

Activation of mGluR5 for treatment of Schizophrenia

Glu

GluGlu

GluT

(+)

mGluR5M1mAChR

AMPA/KAINATE

NMDA

Glu Glu

Glu GlyGly

GlyT

GlyGlu

(+)

GPCR

GluGlu

GluGlu

GluT

(+)

mGluR5M1mAChR

AMPA/KAINATE

NMDA

GluGlu GluGlu

Glu GlyGly

GlyT

GlyGlu

(+)

GPCR

Page 6: Science Webinar Series · N S. N. H. 2. H. N. O. C. l. rM1 0 0 20 40 60 80 100 120 vehicle 10uM DO12-12-11-10 -9 -8 -7 -6 -5 -4 Log [ACh] M Normalized Fluorescence (% Max ACh Response)

Allosteric

potentiators

of mGluR5

Page 7: Science Webinar Series · N S. N. H. 2. H. N. O. C. l. rM1 0 0 20 40 60 80 100 120 vehicle 10uM DO12-12-11-10 -9 -8 -7 -6 -5 -4 Log [ACh] M Normalized Fluorescence (% Max ACh Response)

NN NH

ON

-9 -8 -7 -6 -5 -4

0

20

40

60

80

100

1 μM CDPPB 0.1 μM CDPPB

Vehicle 0.01 μMCDPPB

Log [Glutamate] (M)N

orm

aliz

ed F

luor

esce

nce

(%M

ax_G

lu)

CDPPB is a Novel Systemically Active Allosteric Potentiator of mGluR5

- Highly selective for mGluR5

- Potentiates

effects of endogenous glutamate on in CNS neurons

- Has antipsychotic-like effects in animal models

M u ltip le W e ll A v e r a g e

10 μM DFB plus 300 nM Glutamate

0.67% DMSO plus 300 nM Glutamate

Page 8: Science Webinar Series · N S. N. H. 2. H. N. O. C. l. rM1 0 0 20 40 60 80 100 120 vehicle 10uM DO12-12-11-10 -9 -8 -7 -6 -5 -4 Log [ACh] M Normalized Fluorescence (% Max ACh Response)

Allosteric

potentiators

of mAChRs

III

III

IV

V

VI

VII

Acetylcholine (orthosteric) binding site

Putative allostericbinding site(s)

III

III

IV

V

VI

VII

Acetylcholine (orthosteric) binding site

Putative allostericbinding site(s)

III

III

IV

V

VI

VII

Acetylcholine (orthosteric) binding site

Putative allostericbinding site(s)

Page 9: Science Webinar Series · N S. N. H. 2. H. N. O. C. l. rM1 0 0 20 40 60 80 100 120 vehicle 10uM DO12-12-11-10 -9 -8 -7 -6 -5 -4 Log [ACh] M Normalized Fluorescence (% Max ACh Response)

VU10010 is an Allosteric

Potentiator

of the M4 Muscarinic

Receptor

- Increases ACh affinity and efficiency of coupling to G proteins- Selectively potentiates M4 responses at specific synapses- Related compounds have efficacy in animal models of antipsychotic activity.

N S

NH2

HN

O

Cl

rM1

00

20

40

60

80

100

120

vehicle10uM DO12

-12 -11 -10 -9 -8 -7 -6 -5 -4Log [ACh] M

Nor

mal

ized

Flu

ores

cenc

e(%

Max

AC

h R

espo

nse)

rM2-Gqi5

00

20

40

60

80

100

120

-12 -11 -10 -9 -8 -7 -6 -5 -4Log [ACh] M

Nor

mal

ized

Flu

ores

cenc

e(%

Max

AC

h R

espo

nse)

rM3

00

20

40

60

80

100

120

-12 -11 -10 -9 -8 -7 -6 -5 -4Log [ACh] M

Nor

mal

ized

Flu

ores

cenc

e(%

Max

AC

h R

espo

nse)

rM5

00

20

40

60

80

100

120

-12 -11 -10 -9 -8 -7 -6 -5 -4Log [ACh] M

Nor

mal

ized

Flu

ores

cenc

e(%

Max

AC

h R

espo

nse)

rM1 rM2-Gqi5

rM3 rM5

rM1

00

20

40

60

80

100

120

vehicle10uM DO12

-12 -11 -10 -9 -8 -7 -6 -5 -4Log [ACh] M

Nor

mal

ized

Flu

ores

cenc

e(%

Max

AC

h R

espo

nse)

rM2-Gqi5

00

20

40

60

80

100

120

-12 -11 -10 -9 -8 -7 -6 -5 -4Log [ACh] M

Nor

mal

ized

Flu

ores

cenc

e(%

Max

AC

h R

espo

nse)

rM3

00

20

40

60

80

100

120

-12 -11 -10 -9 -8 -7 -6 -5 -4Log [ACh] M

Nor

mal

ized

Flu

ores

cenc

e(%

Max

AC

h R

espo

nse)

rM5

00

20

40

60

80

100

120

-12 -11 -10 -9 -8 -7 -6 -5 -4Log [ACh] M

Nor

mal

ized

Flu

ores

cenc

e(%

Max

AC

h R

espo

nse)

rM1 rM2-Gqi5

rM3 rM5

00

25

50

75

100

125

150

175vehicle

-12 -11 -10 -9 -8 -7 -6 -5 -4

10uM DO12

log [ACh] M

Nor

mal

ized

Flu

ores

cenc

e(%

Max

AC

h R

espo

nse)

rM4-Gqi5

VU10010

00

25

50

75

100

125

150

175vehicle

-12 -11 -10 -9 -8 -7 -6 -5 -4

10uM DO12

log [ACh] M

Nor

mal

ized

Flu

ores

cenc

e(%

Max

AC

h R

espo

nse)

rM4-Gqi5

VU10010

Page 10: Science Webinar Series · N S. N. H. 2. H. N. O. C. l. rM1 0 0 20 40 60 80 100 120 vehicle 10uM DO12-12-11-10 -9 -8 -7 -6 -5 -4 Log [ACh] M Normalized Fluorescence (% Max ACh Response)

-11 -10 -9 -8 -7 -6 -5 -4-10

10

30

50

70

90

110

130

VU0152099

Vehicle

Log [Carbachol] (M)

% M

ax R

espo

nse

M4

mAChR5HT2A

-11 -10 -9 -8 -7 -6 -5 -4-10

0102030405060708090

100110

VU0152099Vehicle

Log [α-Methyl-5HT] (M)

% M

ax R

espo

nse

5HT2C

-11 -10 -9 -8 -7 -6 -5 -4-10

0102030405060708090

100110120130

VU0152099

Vehicle

Log [α-Methyl-5HT] (M)

% M

ax R

espo

nse

Dopamine D1

-11 -10 -9 -8 -7 -6 -5 -4-10

0102030405060708090

100110120

VU0152099

Vehicle

Log [A68930] (M)

% M

ax R

espo

nse

Adenosine A2B

-11 -10 -9 -8 -7 -6 -5 -4-10

0102030405060708090

100110

VU0152099

Vehicle

Log [NECA] (M)%

Max

Res

pons

e

Histamine H2

-11 -10 -9 -8 -7 -6 -5 -4-10

0102030405060708090

100110

VU0152099

Vehicle

Log [Amthamine] (M)

% M

ax R

espo

nse

Millipore GPCR Profile -

Selectivity Across Family A GPCRs

Family A GPCRs

tested:

Muscarinic

M1 –

M5Adrenergic α1A

, α2A

, α2BDopamine D1, D2, D5Histamine H1

, H2, H3Serotonin 5HT1A

, 5HT2A

, 5HT2B,

5HT2cWeak serotonin 5HT2B

antagonist

Page 11: Science Webinar Series · N S. N. H. 2. H. N. O. C. l. rM1 0 0 20 40 60 80 100 120 vehicle 10uM DO12-12-11-10 -9 -8 -7 -6 -5 -4 Log [ACh] M Normalized Fluorescence (% Max ACh Response)

Properties of Allosteric

Ligands

Allosteric

modulators of multiple GPCRs

have been identified.

Different allosteric

modulators can act at distinct sites on a single receptor.

Allosteric

modulators can act by regulating agonist affinity or by altering ability to couple to G proteins.

Allosteric

modulators can have a range of activities from antagonist to potentiator

and can include neutral ligands.

It is possible to develop “partial antagonists”

by targeting allosteric

sites.

Allosteric

modulators can differentially regulate coupling of mGluR5 to different signaling pathways.

Allosteric

modulators for multiple GPCR have robust activity in vivo.

Page 12: Science Webinar Series · N S. N. H. 2. H. N. O. C. l. rM1 0 0 20 40 60 80 100 120 vehicle 10uM DO12-12-11-10 -9 -8 -7 -6 -5 -4 Log [ACh] M Normalized Fluorescence (% Max ACh Response)

Vanderbilt Program in Drug DiscoveryP. Jeffrey Conn, Director

HTS LabDave Weaver

Emily DaysDaniel Dorset

Christopher FarmerMichelle LewisKate Lornsen

Dehui MiTasha Nalywajko

Rey RedhaMichael Williams

Carrie Jones*Jennifer AyalaRandy BarrettAshley Brady*

Yelin ChenThomas EkmanAlexis Hammond

Mark GrierDonna Ingram

Paulianda JonesCherry LuoJoy Marlo

Colleen NiswenderNicole MillerKari Johnson

Alice Rodriguez Doug ShefflerJana Shirey*

Analisa ThompsonDaryl Venable

Zixiu XiangMeng Xianzhang

Alex Kane

Pharmacology/Neuroscience Med ChemCraig Lindsley*

Tom BridgesGraeme DennisPhil Kennedy*Evan LeBois

Stacey LindsleyUyen

LeKwangho

KimMatt Mulder

Tomas dePaulisDarren Orton*

Sameer SharmaLyndsey WilliamsRichard Williams

Sandra Zhu

Supported by NINDS, NIMH, MJFF, NARSAD, and Stanley Foundation,NIH MLSCN Network.

DMPKSatyawan

Jadhav*Huiyong

Yin*Usha

Menon*Vanderbilt Metabolic Core

Page 13: Science Webinar Series · N S. N. H. 2. H. N. O. C. l. rM1 0 0 20 40 60 80 100 120 vehicle 10uM DO12-12-11-10 -9 -8 -7 -6 -5 -4 Log [ACh] M Normalized Fluorescence (% Max ACh Response)

Sponsored by:

Brought to you by the Science/AAAS

Business Office

Webinar SeriesWebinar SeriesScienceScienceAdvances in GCPR ResearchAdvances in GCPR Research

17 June, 200817 June, 2008

Participating Experts:Jeffrey Conn, Ph.D.Vanderbilt University Medical CenterNashville, TN

Michel Bouvier, Ph.D. Institute for Research in Immunology and Cancer (IRIC)University of MontrealMontreal, Canada

Brian Kobilka, M.D. Stanford University School of MedicineStanford, CA

Page 14: Science Webinar Series · N S. N. H. 2. H. N. O. C. l. rM1 0 0 20 40 60 80 100 120 vehicle 10uM DO12-12-11-10 -9 -8 -7 -6 -5 -4 Log [ACh] M Normalized Fluorescence (% Max ACh Response)

Michel BouvierDepartment of Biochemistry,

Institute for Research inImmunology and Cancer, Drug Discovery Group,Université de Montréal

Detecting GPCR Ligand-Biased Signalling

Page 15: Science Webinar Series · N S. N. H. 2. H. N. O. C. l. rM1 0 0 20 40 60 80 100 120 vehicle 10uM DO12-12-11-10 -9 -8 -7 -6 -5 -4 Log [ACh] M Normalized Fluorescence (% Max ACh Response)

Conventional GPCR Signaling

N

C

I II III IV V VI VII

α γβ

AdenylateCyclase

Ca++

ChanelPhospholipase C

Etc…

Page 16: Science Webinar Series · N S. N. H. 2. H. N. O. C. l. rM1 0 0 20 40 60 80 100 120 vehicle 10uM DO12-12-11-10 -9 -8 -7 -6 -5 -4 Log [ACh] M Normalized Fluorescence (% Max ACh Response)

Agonist

InverseAgonist

Antagonist

full

partial

full

partial

Log [ligand]

Act

ivity

0

Ligands Efficacy

Page 17: Science Webinar Series · N S. N. H. 2. H. N. O. C. l. rM1 0 0 20 40 60 80 100 120 vehicle 10uM DO12-12-11-10 -9 -8 -7 -6 -5 -4 Log [ACh] M Normalized Fluorescence (% Max ACh Response)

GPCR as Signaling Networks or Signalosomes

AdenylateCyclase

Ca++

ChanelPhospholipase C

C

N

IIIIIIIVVVIVII

N

C

I II III IV V VI VII

PDZ NHERF

PDZ cNOS

pPRONck

Grb2

pPROhomer

βarr

PP

ARFRho

SH3

SH3

SH2PLCγ1

T/S-x-V/I/L C

T/S-x-V/I/L

YIPPSHP-2α γβ

etc

Page 18: Science Webinar Series · N S. N. H. 2. H. N. O. C. l. rM1 0 0 20 40 60 80 100 120 vehicle 10uM DO12-12-11-10 -9 -8 -7 -6 -5 -4 Log [ACh] M Normalized Fluorescence (% Max ACh Response)

β2

AR signalling

to Adenylyl

Cyclase

and MAPK

AC activity

0

20

40

60

80

100

% o

f bas

al a

ctiv

ity(c

AM

P ac

cum

ulat

ion)

-100

-75

-50

-25

0

cAM

P ac

cum

ulat

ion

(% o

f FK

inhi

bitio

n)

Met Bis AtPropBuc Carv

Iso Lab

ERK1/2 activity

Iso Lab Buc Carv Prop Met Bis At Basal

0102030405060708090

100

% o

f is

opro

tere

nol

resp

onse

Galandrin et al. Mol. Pharm. 2006

Page 19: Science Webinar Series · N S. N. H. 2. H. N. O. C. l. rM1 0 0 20 40 60 80 100 120 vehicle 10uM DO12-12-11-10 -9 -8 -7 -6 -5 -4 Log [ACh] M Normalized Fluorescence (% Max ACh Response)

AC activity

0

20

40

60

80

100

% o

f bas

al a

ctiv

ity(c

AM

P ac

cum

ulat

ion)

-100

-75

-50

-25

0

cAM

P ac

cum

ulat

ion

(% o

f FK

inhi

bitio

n)

Met Bis AtPropBuc Carv

Iso Lab

ERK1/2 activity

Iso Lab Buc Carv Prop Met Bis At Basal

0102030405060708090

100

% o

f is

opro

tere

nol

resp

onse

-75

-50

-25

0

% o

f PM

A in

hibi

tion

Met Bis At

PMA + + + +-Met Bis At

PMA

Galandrin et al. Mol. Pharm. 2006

β2

AR

Page 20: Science Webinar Series · N S. N. H. 2. H. N. O. C. l. rM1 0 0 20 40 60 80 100 120 vehicle 10uM DO12-12-11-10 -9 -8 -7 -6 -5 -4 Log [ACh] M Normalized Fluorescence (% Max ACh Response)

ERK1/2 activity

Pluridimensional

Efficacy Pattern of the β2

ΑR

AC activity

Iso

AC activity

Two-State Model Theoretical efficacy

AC

Inv- ERKAgo

AC

Ago- ERKInv

AC

Ago- ERKAgo

AC

Inv- ERKInv

ERK1/2 activity

Iso

Lab

Buc

CarvProp

At

MetBis(-)

(+)

(+)

(-)

Page 21: Science Webinar Series · N S. N. H. 2. H. N. O. C. l. rM1 0 0 20 40 60 80 100 120 vehicle 10uM DO12-12-11-10 -9 -8 -7 -6 -5 -4 Log [ACh] M Normalized Fluorescence (% Max ACh Response)

Pathway Linking β2AR to ERK1/2 Activation

β2AR

Iso

ERK1/2

βarr

c-Src

Gs

βγGi/o

β2AR

ICIProp

ERK1/2

βarr

c-Src

Gs

βγGi/o

Page 22: Science Webinar Series · N S. N. H. 2. H. N. O. C. l. rM1 0 0 20 40 60 80 100 120 vehicle 10uM DO12-12-11-10 -9 -8 -7 -6 -5 -4 Log [ACh] M Normalized Fluorescence (% Max ACh Response)

Monitoring βarrestin

Recruitment

by BRET

Bio

lum

ines

cenc

e

Wavelength

(nm)400 500

Bio

lum

ines

cenc

e

Wavelength

(nm)400 500

βarrestinRluc

GFP

GFPβarrestinRluc

Activation

0.00

0.02

0.04

0.06

0.08

0.10

BR

ET

rat

io

β2

AR-GFP

* **

**

#

Basal ICI Pro Iso Iso+Pro

Page 23: Science Webinar Series · N S. N. H. 2. H. N. O. C. l. rM1 0 0 20 40 60 80 100 120 vehicle 10uM DO12-12-11-10 -9 -8 -7 -6 -5 -4 Log [ACh] M Normalized Fluorescence (% Max ACh Response)

Read out X

Read out Z

Read out Y

(3,2,-2)

(a)

(b)

Coordinates of efficacy:

(RE x, RE

y

, RE

z

)

The number of compound classes with distinct efficacy profiles detected (C) increases exponentially with the number of read out considered (n)

such that

C = 2n

Fig.2

Page 24: Science Webinar Series · N S. N. H. 2. H. N. O. C. l. rM1 0 0 20 40 60 80 100 120 vehicle 10uM DO12-12-11-10 -9 -8 -7 -6 -5 -4 Log [ACh] M Normalized Fluorescence (% Max ACh Response)

Ligand 1 Ligand 3Ligand 2

G protein

dependent

signallingEndocytosis

Gαs

Gαq/11

A

R

C B

R

Gαi/o

(a)

βarr

GRK

AP2

PDZ proteins

Jak

βarr

DynPKCPKA

Clathrin

G protein dependent signalling

Desensitization Endocytosis

G protein independent signalling

A

R

B

R

Endocytosis

Gα12/13

βarr

GIP

G protein

dependent

signallingG protein

independent

signalling

Page 25: Science Webinar Series · N S. N. H. 2. H. N. O. C. l. rM1 0 0 20 40 60 80 100 120 vehicle 10uM DO12-12-11-10 -9 -8 -7 -6 -5 -4 Log [ACh] M Normalized Fluorescence (% Max ACh Response)

BRET based Biosensor EPAC

RLuc

GFP2

RLuc

GFP2

cAMP

cAMP

binding domain of EPAC fused to Luciferase

and GFP2

δOR

0.29

0.30

0.31

0.32

0.33

- -15 -12 -9 -6 -3∞

Forskolin

(10 uM)PBS

[SNC] (M)

BR

ET

2

V2R

-18 -15 -12 -9 -6 -3

0.3

0.4

0.5

EC50

= 0.025 nM

ForskolinePBS

BR

ET

2

0 5 10 15 20 25 300.18

0.20

0.22

0.24

0.26

0.28

0.30

PBSForskolin

(100 μM)

Time (min)

BR

ET2

[AVP] (M)

Page 26: Science Webinar Series · N S. N. H. 2. H. N. O. C. l. rM1 0 0 20 40 60 80 100 120 vehicle 10uM DO12-12-11-10 -9 -8 -7 -6 -5 -4 Log [ACh] M Normalized Fluorescence (% Max ACh Response)

CaCa2+2+

Biosensor: Biosensor: ObelinObelin

Obelin

is a Ca2+-dependent luciferase, more responsive to variations in Ca2+

levels and less affected by Mg2+

levels than Aequorin.

GABAb

receptorObeline

Ca2+

Ca2+

Ca2+

Coelenterazine

O2

Light

Emission (Fig 1.)

Obelia

Longissima

VéhiculeGABA 1 mM

0 10 20 30 40 50 60 70 80 900

10000

20000

30000

40000

50000No PTU73122U73343

Time (s)

RLU

Page 27: Science Webinar Series · N S. N. H. 2. H. N. O. C. l. rM1 0 0 20 40 60 80 100 120 vehicle 10uM DO12-12-11-10 -9 -8 -7 -6 -5 -4 Log [ACh] M Normalized Fluorescence (% Max ACh Response)

DeepBlueC 510nmβ1

αi1γ2GFP

hRLuc510 nm

αi1β1

γ2GFP

Luc

IsoBuc Prop

-0.01

0.00

0.01

0.02

0.03

ligan

d-pr

omot

edB

RET

Monitoring Ligand-biased efficacy

Gαi1

-91hRluc/β1

AR-GFP10 Gαi1

-91hRluc/GFP-Gγ2

Liga

nd-p

rom

oted

BR

ET Iso

BucProp

-0

075

-0.050

-0.025

-0.000

0.025

ERK1/2

AC

Iso BucProp

0

20

40

60

80

100

-100

-80

-60

-40

-20cAM

Pac

cum

ulat

in(

Iso Buc Prop0

10

20

30

4050

100

ERK

1/2

activ

atio

n

Page 28: Science Webinar Series · N S. N. H. 2. H. N. O. C. l. rM1 0 0 20 40 60 80 100 120 vehicle 10uM DO12-12-11-10 -9 -8 -7 -6 -5 -4 Log [ACh] M Normalized Fluorescence (% Max ACh Response)

xCELLigence

technologyN

orm

alis

ed C

IN

orm

alis

ed C

I

Histamine H1 receptor (Gq)

Nor

mal

ised

CI

Dopamine 1 receptor (Gs)

5HT1 receptor (Gi)

SKF 38393

1nMSKF 38393

100nM

SKF 38393 0.1nMCTR

His 30nMHis 30μM

His 30pMCTR

8-OH-DPAT

18nM8-OH-DPAT 100nM

8-OH-DPAT 0.1nM

www.roche-applied-science.com

CTR

Page 29: Science Webinar Series · N S. N. H. 2. H. N. O. C. l. rM1 0 0 20 40 60 80 100 120 vehicle 10uM DO12-12-11-10 -9 -8 -7 -6 -5 -4 Log [ACh] M Normalized Fluorescence (% Max ACh Response)

Collaborators

Mounia AzziGraciela PineyroPascale CharestSégolène GalandrinGeneviève Oligny LongpréKoji OgawaHélène BoninCéline GalésMireille HogueMartin AudetMonique Lagacé

Bouvier Lab

Guy RousseauSacré-Cœur Hospital Montreal

Duke UniversityTrudy KohoutRobert. J. Lefkowitz

INSERM U388 (Toulouse)Hervé

ParisFunding

Page 30: Science Webinar Series · N S. N. H. 2. H. N. O. C. l. rM1 0 0 20 40 60 80 100 120 vehicle 10uM DO12-12-11-10 -9 -8 -7 -6 -5 -4 Log [ACh] M Normalized Fluorescence (% Max ACh Response)

Sponsored by:

Webinar SeriesWebinar SeriesScienceScienceAdvances in GCPR ResearchAdvances in GCPR Research

17 June, 200817 June, 2008

Participating Experts:Jeffrey Conn, Ph.D.Vanderbilt University Medical CenterNashville, TN

Michel Bouvier, Ph.D. Institute for Research in Immunology and Cancer (IRIC)University of MontrealMontreal, Canada

Brian Kobilka, M.D. Stanford University School of MedicineStanford, CA

Brought to you by the Science/AAAS

Business Office

Page 31: Science Webinar Series · N S. N. H. 2. H. N. O. C. l. rM1 0 0 20 40 60 80 100 120 vehicle 10uM DO12-12-11-10 -9 -8 -7 -6 -5 -4 Log [ACh] M Normalized Fluorescence (% Max ACh Response)

Structure and Dynamics of the Human β2

Adrenoceptor

Brian KobilkaStanford University 

Page 32: Science Webinar Series · N S. N. H. 2. H. N. O. C. l. rM1 0 0 20 40 60 80 100 120 vehicle 10uM DO12-12-11-10 -9 -8 -7 -6 -5 -4 Log [ACh] M Normalized Fluorescence (% Max ACh Response)

•Mediates cadiovascular

and smooth muscle response to adrenaline and noradrenaline

•Signals through Gs, Gi

and arrestin

•Resides in specific plasma membrane microdomains

with other signaling molecules 

•Undergoes agonist‐induced internalization and trafficking to different cellular compartments

•Exists in homo‐

and hetero‐oligomeric

forms in the plasma membrane

•Exhibits a moderate level of basal, agonist independent activity

•Available ligands

exhibit a spectrum of efficacies ranging from full agonists to inverse agonists

The β2

AR is a versatile signaling molecule

Page 33: Science Webinar Series · N S. N. H. 2. H. N. O. C. l. rM1 0 0 20 40 60 80 100 120 vehicle 10uM DO12-12-11-10 -9 -8 -7 -6 -5 -4 Log [ACh] M Normalized Fluorescence (% Max ACh Response)

Chimeric

receptors and site‐directed mutagenesis

Identify domains involved in ligand binding and G protein coupling specificity

Protein crystallography

Determine the three‐dimensional structure of an inactive state of the β2

AR

Fluorescence spectroscopy

Characterize conformational changes induced by agonists and partial agonists

Characterize the dynamic properties of the receptor

Approaches to characterize the structural basis  for the functional behavior of the β2

AR

Page 34: Science Webinar Series · N S. N. H. 2. H. N. O. C. l. rM1 0 0 20 40 60 80 100 120 vehicle 10uM DO12-12-11-10 -9 -8 -7 -6 -5 -4 Log [ACh] M Normalized Fluorescence (% Max ACh Response)

Enabling β2

AR Crystallization

Modifications to limit 

heterogeneity

Page 35: Science Webinar Series · N S. N. H. 2. H. N. O. C. l. rM1 0 0 20 40 60 80 100 120 vehicle 10uM DO12-12-11-10 -9 -8 -7 -6 -5 -4 Log [ACh] M Normalized Fluorescence (% Max ACh Response)

Enabling β2

AR Crystallization

Deglycosylate

Modifications to limit 

heterogeneity

Page 36: Science Webinar Series · N S. N. H. 2. H. N. O. C. l. rM1 0 0 20 40 60 80 100 120 vehicle 10uM DO12-12-11-10 -9 -8 -7 -6 -5 -4 Log [ACh] M Normalized Fluorescence (% Max ACh Response)

Enabling β2

AR Crystallization

DeglycosylateCarboxyl terminal truncation

Modifications to limit 

heterogeneity

Page 37: Science Webinar Series · N S. N. H. 2. H. N. O. C. l. rM1 0 0 20 40 60 80 100 120 vehicle 10uM DO12-12-11-10 -9 -8 -7 -6 -5 -4 Log [ACh] M Normalized Fluorescence (% Max ACh Response)

Enabling β2

AR Crystallization

DeglycosylateCarboxyl terminal truncationStabilize dynamic interface

Modifications to limit 

heterogeneity

Page 38: Science Webinar Series · N S. N. H. 2. H. N. O. C. l. rM1 0 0 20 40 60 80 100 120 vehicle 10uM DO12-12-11-10 -9 -8 -7 -6 -5 -4 Log [ACh] M Normalized Fluorescence (% Max ACh Response)

Enabling β2

AR Crystallization

DeglycosylateCarboxyl terminal truncationStabilize dynamic interface

Modifications to limit 

heterogeneity

Carazolol

(inverse agonist)

Page 39: Science Webinar Series · N S. N. H. 2. H. N. O. C. l. rM1 0 0 20 40 60 80 100 120 vehicle 10uM DO12-12-11-10 -9 -8 -7 -6 -5 -4 Log [ACh] M Normalized Fluorescence (% Max ACh Response)

Enabling β2

AR Crystallization

DeglycosylateCarboxyl terminal truncationStabilize dynamic interface

Modifications to limit 

heterogeneity

Carazolol

(inverse agonist)

Fab

or T4lysozyme fusion

Page 40: Science Webinar Series · N S. N. H. 2. H. N. O. C. l. rM1 0 0 20 40 60 80 100 120 vehicle 10uM DO12-12-11-10 -9 -8 -7 -6 -5 -4 Log [ACh] M Normalized Fluorescence (% Max ACh Response)

Enabling β2

AR Crystallization

DeglycosylateCarboxyl terminal truncationStabilize dynamic interface

Modifications to limit 

heterogeneity

β2

AR β2

AR

T4LysozymeFAb5

Carazolol

(inverse agonist)

Fab

or T4lysozyme fusion

Page 41: Science Webinar Series · N S. N. H. 2. H. N. O. C. l. rM1 0 0 20 40 60 80 100 120 vehicle 10uM DO12-12-11-10 -9 -8 -7 -6 -5 -4 Log [ACh] M Normalized Fluorescence (% Max ACh Response)

β2

AR β2

AR

Enabling β2

AR Crystallization

DeglycosylateCarboxyl terminal truncationStabilize dynamic interface

Modifications to limit 

heterogeneity

T4LysozymeFAb5

Carazolol

(inverse agonist)

Fab

or T4lysozyme fusion

Page 42: Science Webinar Series · N S. N. H. 2. H. N. O. C. l. rM1 0 0 20 40 60 80 100 120 vehicle 10uM DO12-12-11-10 -9 -8 -7 -6 -5 -4 Log [ACh] M Normalized Fluorescence (% Max ACh Response)

β2

AR‐Fab5 β2

AR‐T4L

2.4Å3.4‐3.7Å

Wild‐type antagonist binding affinity

Wild‐type agonist affinity Increased agonist affinity

Functional Properties

Undergo agonist‐induced conformational changes

Page 43: Science Webinar Series · N S. N. H. 2. H. N. O. C. l. rM1 0 0 20 40 60 80 100 120 vehicle 10uM DO12-12-11-10 -9 -8 -7 -6 -5 -4 Log [ACh] M Normalized Fluorescence (% Max ACh Response)

β2

ARRhodopsin

ECL2

Comparison of β2

AR and Rhodopsin

Carazolol Retinal

ECL2

Page 44: Science Webinar Series · N S. N. H. 2. H. N. O. C. l. rM1 0 0 20 40 60 80 100 120 vehicle 10uM DO12-12-11-10 -9 -8 -7 -6 -5 -4 Log [ACh] M Normalized Fluorescence (% Max ACh Response)

β2

ARRhodopsin

ECL2

Comparison of β2

AR and Rhodopsin

Carazolol Retinal

Open accessRestricted 

access ECL2

Page 45: Science Webinar Series · N S. N. H. 2. H. N. O. C. l. rM1 0 0 20 40 60 80 100 120 vehicle 10uM DO12-12-11-10 -9 -8 -7 -6 -5 -4 Log [ACh] M Normalized Fluorescence (% Max ACh Response)

Rhodopsin

ER

TM3

TM5

TM6

E

Y

Cytoplasmic

face

•Conserved E/DRY sequence                 

Family A GPCRs.  

•Stabilizes inactive state of       

rhodopsin.

Ionic Lock

Page 46: Science Webinar Series · N S. N. H. 2. H. N. O. C. l. rM1 0 0 20 40 60 80 100 120 vehicle 10uM DO12-12-11-10 -9 -8 -7 -6 -5 -4 Log [ACh] M Normalized Fluorescence (% Max ACh Response)

β2

AR‐T4L

Rhodopsin

E268

R131

TM3

TM5

TM6

D130

Cytoplasmic

face

Ionic Lock – open in β2

AR

ER

E

Page 47: Science Webinar Series · N S. N. H. 2. H. N. O. C. l. rM1 0 0 20 40 60 80 100 120 vehicle 10uM DO12-12-11-10 -9 -8 -7 -6 -5 -4 Log [ACh] M Normalized Fluorescence (% Max ACh Response)

β2

AR‐Fab

β2

AR‐T4L

Rhodopsin

E268

R131

TM3

TM5

TM6

D130

E268

Cytoplasmic

face

Ionic Lock – open in β2

AR

ER

E

Page 48: Science Webinar Series · N S. N. H. 2. H. N. O. C. l. rM1 0 0 20 40 60 80 100 120 vehicle 10uM DO12-12-11-10 -9 -8 -7 -6 -5 -4 Log [ACh] M Normalized Fluorescence (% Max ACh Response)

β2

AR‐Fab

β2

AR‐T4L

Rhodopsin

E268

R131

TM3

TM5

TM6

D130

E268

Cytoplasmic

face

Ionic Lock – open in β2

AR

ER

E

•Artifact of crystallography?•Carazolol‐specific conformation?•One of several basal conformations?

Page 49: Science Webinar Series · N S. N. H. 2. H. N. O. C. l. rM1 0 0 20 40 60 80 100 120 vehicle 10uM DO12-12-11-10 -9 -8 -7 -6 -5 -4 Log [ACh] M Normalized Fluorescence (% Max ACh Response)

Structural determinants of β1

AR and β2

AR  binding specificity

Carazolol

binding pocket

Page 50: Science Webinar Series · N S. N. H. 2. H. N. O. C. l. rM1 0 0 20 40 60 80 100 120 vehicle 10uM DO12-12-11-10 -9 -8 -7 -6 -5 -4 Log [ACh] M Normalized Fluorescence (% Max ACh Response)

Carazolol

binding pocket

Amino acids 

differences 

between β1

AR 

and β2

AR

Structural determinants of β1

AR and β2

AR  binding specificity

Page 51: Science Webinar Series · N S. N. H. 2. H. N. O. C. l. rM1 0 0 20 40 60 80 100 120 vehicle 10uM DO12-12-11-10 -9 -8 -7 -6 -5 -4 Log [ACh] M Normalized Fluorescence (% Max ACh Response)

Amino acids 

differences 

between β1

AR 

and β2

AR

Carazolol

binding pocket

Structural determinants of β1

AR and β2

AR  binding specificity

Page 52: Science Webinar Series · N S. N. H. 2. H. N. O. C. l. rM1 0 0 20 40 60 80 100 120 vehicle 10uM DO12-12-11-10 -9 -8 -7 -6 -5 -4 Log [ACh] M Normalized Fluorescence (% Max ACh Response)

Rhodopsin

β2

AR

W6.48D2.50

N7.49

Y7.53

Role of Conserved 

Water Pocket

P6.50

Signal transduction:coupling agonist 

binding to G protein  activation

Page 53: Science Webinar Series · N S. N. H. 2. H. N. O. C. l. rM1 0 0 20 40 60 80 100 120 vehicle 10uM DO12-12-11-10 -9 -8 -7 -6 -5 -4 Log [ACh] M Normalized Fluorescence (% Max ACh Response)

W6.48

I2.43

S3.39

D2.50

S7.46

N7.45

N7.49

I6.40

Y7.53

N1.50

Hydrogen bonding network in water pocket

TM7

TM6TM3

TM2

TM2

Page 54: Science Webinar Series · N S. N. H. 2. H. N. O. C. l. rM1 0 0 20 40 60 80 100 120 vehicle 10uM DO12-12-11-10 -9 -8 -7 -6 -5 -4 Log [ACh] M Normalized Fluorescence (% Max ACh Response)

W6.48

I2.43

S3.39

D2.50

S7.46

N7.45

N7.49

I6.40

Y7.53

N1.50

TM7

TM6TM3

TM2

TM2

Agonist

G protein

Hydrogen bonding network in water pocket

Page 55: Science Webinar Series · N S. N. H. 2. H. N. O. C. l. rM1 0 0 20 40 60 80 100 120 vehicle 10uM DO12-12-11-10 -9 -8 -7 -6 -5 -4 Log [ACh] M Normalized Fluorescence (% Max ACh Response)

Challenges in obtaining an active structure

Agonists – low affinity, chemically 

unstable

Activating mutations enhance agonist 

affinity, but are often  associated with 

biochemical instability

There may be multiple “active states”

Agonists and partial agonists induce 

conformational heterogeneity

Fully active β2

AR may require G protein

β2

AR:Gs 1:1 or 2:1?

Page 56: Science Webinar Series · N S. N. H. 2. H. N. O. C. l. rM1 0 0 20 40 60 80 100 120 vehicle 10uM DO12-12-11-10 -9 -8 -7 -6 -5 -4 Log [ACh] M Normalized Fluorescence (% Max ACh Response)

Fluorescence SpectroscopyTrp

quenching of Bimane

Ligand‐induced conformational changes

Bimane

Tryptophan

15 Å

5 6

3

33

6655

Page 57: Science Webinar Series · N S. N. H. 2. H. N. O. C. l. rM1 0 0 20 40 60 80 100 120 vehicle 10uM DO12-12-11-10 -9 -8 -7 -6 -5 -4 Log [ACh] M Normalized Fluorescence (% Max ACh Response)

Fluorescence SpectroscopyTrp

quenching of Bimane

Ligand‐induced conformational changes

Bimane

Tryptophan

15 Å

5 6

3

33

6655•Site‐specific labeling of single 

reactive cysteines

with Bimane

Page 58: Science Webinar Series · N S. N. H. 2. H. N. O. C. l. rM1 0 0 20 40 60 80 100 120 vehicle 10uM DO12-12-11-10 -9 -8 -7 -6 -5 -4 Log [ACh] M Normalized Fluorescence (% Max ACh Response)

Fluorescence SpectroscopyTrp

quenching of Bimane

Ligand‐induced conformational changes

Bimane

Tryptophan

15 Å

5 6

3

33

6655 W•Site‐specific labeling of single 

reactive cysteines

with Bimane

•Site‐specific addition of 

tryptophan

Page 59: Science Webinar Series · N S. N. H. 2. H. N. O. C. l. rM1 0 0 20 40 60 80 100 120 vehicle 10uM DO12-12-11-10 -9 -8 -7 -6 -5 -4 Log [ACh] M Normalized Fluorescence (% Max ACh Response)

Fluorescence SpectroscopyTrp

quenching of Bimane

Ligand‐induced conformational changes

Bimane

Tryptophan

15 Å

33

6655 W•Site‐specific labeling of single 

reactive cysteines

with Bimane

•Site‐specific addition of 

tryptophan

•Tryptophan

quenches bimane

within 5‐15Å

radius

•Conformational changes 

detected by changes in bimane

intensity and lifetime

•Fluorescence lifetime of 

bimane

experiments provides 

information about number and 

distribution of distinct 

conformational states 

33

6655W

Page 60: Science Webinar Series · N S. N. H. 2. H. N. O. C. l. rM1 0 0 20 40 60 80 100 120 vehicle 10uM DO12-12-11-10 -9 -8 -7 -6 -5 -4 Log [ACh] M Normalized Fluorescence (% Max ACh Response)

Agonist‐induced movement of TM3, 5 and 6

Increase distance

Decrease distance

TM6

TM3

A271

H269

V222

T136

A226

I135

TM5

F223

Fluorescence lifetime 

experiments:1. Provide evidence that 

the β2

AR exists in more 

than one conformational 

state in the absence and 

presence of agonists.

2. Agonists and partial 

agonists induce/stabilize 

distinct conformational 

states.

BimaneTryptophan

Page 61: Science Webinar Series · N S. N. H. 2. H. N. O. C. l. rM1 0 0 20 40 60 80 100 120 vehicle 10uM DO12-12-11-10 -9 -8 -7 -6 -5 -4 Log [ACh] M Normalized Fluorescence (% Max ACh Response)

Generating diffraction quality crystals of the β2

AR required:

•Structural modifications to minimize heterogeneity

•An antibody or T4Lysozyme insertion to stabilize the receptor and increase polar 

surface area

•Lipid environment (bicelles

and lipidic

cubic phase)

•Microfocus

crystallography

β2

AR crystal structures•Similarities with rhodopsin

•Overall topology•Overlapping binding site•Conserved water pocket

•Notable differences•Second extracellular

loop (access to ligand

binding pocket)

•Open “ionic lock”•Crystal structures do not inform us about active state or unstructured sequences

Fluorescence spectroscopy studies

•Reveals ligand‐specific movement of transmembrane

domains

•Demonstrate multiple conformations in equilibrium.

Summary

Page 62: Science Webinar Series · N S. N. H. 2. H. N. O. C. l. rM1 0 0 20 40 60 80 100 120 vehicle 10uM DO12-12-11-10 -9 -8 -7 -6 -5 -4 Log [ACh] M Normalized Fluorescence (% Max ACh Response)

Kobilka

LabDan RosenbaumSoren

RasmussenFoon

Sun ThianTong Sun KobilkaJuan Jose FungXiao Jie

YaoMike BokochPeter DaySebastien

Granier

CollaboratorsStanford

Bill WeisHee-Jung Choi

MRC, CambridgeGebhard SchertlerPat Edwards

ID-13 ESRFManfred Burghammer

GM/CA-CAT APSJanet SmithRuslan

SanishviliRobert Fischetti

ScrippsRay StevensVadim CherezovMike Hanson

U. MichiganRoger SunaharaMatthew Whorton

OHSUDavid Farrens

Universitat Autonoma de BarcelonaXavier Deupi

Financial SupportNIH ‐NINDSNIGMS

Gifts from:Lundbeck7TM Pharma

LCP technologyMartin Caffrey

Bicelle technologyN Salem FahamJames Bowie

Page 63: Science Webinar Series · N S. N. H. 2. H. N. O. C. l. rM1 0 0 20 40 60 80 100 120 vehicle 10uM DO12-12-11-10 -9 -8 -7 -6 -5 -4 Log [ACh] M Normalized Fluorescence (% Max ACh Response)
Page 64: Science Webinar Series · N S. N. H. 2. H. N. O. C. l. rM1 0 0 20 40 60 80 100 120 vehicle 10uM DO12-12-11-10 -9 -8 -7 -6 -5 -4 Log [ACh] M Normalized Fluorescence (% Max ACh Response)

Look out for more webinars in the series at:

www.sciencemag.org/webinar

For related information on this webinar topic, go to:

www.xcelligence.roche.com

To provide feedback on this webinar, please e‐mail

your comments to [email protected]

Sponsored by:

Webinar SeriesWebinar Series17 June, 200817 June, 2008

ScienceScienceAdvances in GCPR ResearchAdvances in GCPR Research

Brought to you by the Science/AAAS

Business Office

Science Signaling Call for Papers:www.sciencesignaling.org