22
Ö·MQ¬=·Qú W[ SAXS Fµ«ê ¾4AŕŪŝŐíXÍ |ëÐŮčōŜŨŏŬ&ö@³ºůŘŎŒŚŊú{J 0ÑB Ēlatter & Kratky (1982) Small Angle X-ray Scattering, Academic Press ʤ KEK÷¬¥Q³ºœŪŕŬÎė&×ĎÎćŮ2010ů Ā÷¬¥Q, ¼!¤Ů2.3ę XÍ |ĚÛ¬ů

SAXS Fµ«êiq! ⋅r! dV f i e iq! ⋅r! i ∑ ⎧ ⎨ ⎪ ⎩ ⎪ I(q!)=F(q!)F*(q!) nøË 9H6 o nL.O"O 9H6 o SAXS«ê 8 % G N"O 1. SAXS 4 : N 9 OTc 5 9\ n Q j Z f R Z o Jà 3 G −

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: SAXS Fµ«êiq! ⋅r! dV f i e iq! ⋅r! i ∑ ⎧ ⎨ ⎪ ⎩ ⎪ I(q!)=F(q!)F*(q!) nøË 9H6 o nL.O"O 9H6 o SAXS«ê 8 % G N"O 1. SAXS 4 : N 9 OTc 5 9\ n Q j Z f R Z o Jà 3 G −

SAXS

4 X

•  latter & Kratky (1982) Small Angle X-ray Scattering,

Academic Press •  KEK 2010

, 2.3 X

Page 2: SAXS Fµ«êiq! ⋅r! dV f i e iq! ⋅r! i ∑ ⎧ ⎨ ⎪ ⎩ ⎪ I(q!)=F(q!)F*(q!) nøË 9H6 o nL.O"O 9H6 o SAXS«ê 8 % G N"O 1. SAXS 4 : N 9 OTc 5 9\ n Q j Z f R Z o Jà 3 G −

X X SAXS

• 

• 

• 

•  • 

Page 3: SAXS Fµ«êiq! ⋅r! dV f i e iq! ⋅r! i ∑ ⎧ ⎨ ⎪ ⎩ ⎪ I(q!)=F(q!)F*(q!) nøË 9H6 o nL.O"O 9H6 o SAXS«ê 8 % G N"O 1. SAXS 4 : N 9 OTc 5 9\ n Q j Z f R Z o Jà 3 G −

SAXS

X-ray camera length

Sample in cuvette

q =4πsinθ/λ q h 2θ λ X

I(q) q �

(1 − 2 m)

0

0.5

1

0 0.1 0.2 0.3h ( A-1)

I (h)

Page 4: SAXS Fµ«êiq! ⋅r! dV f i e iq! ⋅r! i ∑ ⎧ ⎨ ⎪ ⎩ ⎪ I(q!)=F(q!)F*(q!) nøË 9H6 o nL.O"O 9H6 o SAXS«ê 8 % G N"O 1. SAXS 4 : N 9 OTc 5 9\ n Q j Z f R Z o Jà 3 G −

=

2πλ

s!⋅r!− s0"!⋅r!( )

=2π s!− s0"!( )

λ⋅r!

= q!⋅r!

q!≡2π s!− s0"!( )

λ, q ≡ q

!= 4π sinθ

λ

1

F(q!) = ρ(r

!)

V∫ eiδ dV = ρ(r!)

V∫ eiq!⋅r!

dV

s!

s0!"!

r!

s!⋅r!

s0!"!⋅r"

o�

p�

q!

θθ

XV �

s0!"!, s"

ρ(r!)

Page 5: SAXS Fµ«êiq! ⋅r! dV f i e iq! ⋅r! i ∑ ⎧ ⎨ ⎪ ⎩ ⎪ I(q!)=F(q!)F*(q!) nøË 9H6 o nL.O"O 9H6 o SAXS«ê 8 % G N"O 1. SAXS 4 : N 9 OTc 5 9\ n Q j Z f R Z o Jà 3 G −

i(q!) = F(q

!)F*(q!)

N

I(q!) ≈ N ⋅ i(q

!)

F(q!) = ρ(r

!)

V∫ eiq!⋅r!

dV1

*

Page 6: SAXS Fµ«êiq! ⋅r! dV f i e iq! ⋅r! i ∑ ⎧ ⎨ ⎪ ⎩ ⎪ I(q!)=F(q!)F*(q!) nøË 9H6 o nL.O"O 9H6 o SAXS«ê 8 % G N"O 1. SAXS 4 : N 9 OTc 5 9\ n Q j Z f R Z o Jà 3 G −

F(q!) = ρ(r

!)

V∫ eiq!⋅r!

dV

I(q!) = F(q

!)F*(q!) = ρ(r1

"!)

V1∫ eiq!⋅r1"!

dV1 ρ(r2"!)

V2∫ e− iq!⋅r2"!"

dV2

= ρ(r1"!)

V2∫ ρ(r2"!)eiq!⋅(r1"!−r2"!") dV1 dV2V1∫ r

!≡ r1"!− r2"!

I(q!) = ρ(r2

"!+ r!)

V2∫ ρ(r2"!)eiq!⋅r!

dV dV2V∫= ρ(r2

"!)ρ(r2"!+ r!)dV2V2∫( )eiq!⋅r! dVV∫

γ (r!) ≡ ρ(r2

"!)ρ(r2"!+ r!)dV2V2∫

I(q!)= γ (r

!)eiq!⋅r!

dVV∫ ⇔ γ (r

!) = 1(2π )3

I(q!)e− iq

!⋅r!

dq!

V*∫Fourier

Page 7: SAXS Fµ«êiq! ⋅r! dV f i e iq! ⋅r! i ∑ ⎧ ⎨ ⎪ ⎩ ⎪ I(q!)=F(q!)F*(q!) nøË 9H6 o nL.O"O 9H6 o SAXS«ê 8 % G N"O 1. SAXS 4 : N 9 OTc 5 9\ n Q j Z f R Z o Jà 3 G −

I(q!)= γ (r

!)eiq!⋅r!

dVV∫

I(q) ≡ I(q

!) Ω=

14π

I(q!)dΩ∫

dV = r2 sinθdθdϕdr = r2dωdr r!= (r,θ ,ϕ )

ω

x�

y�

z�

r!

ϕ

θ

= 14π

dr0

∫ dω0

∫ γ (r!)eiq⋅"!r!

r2∫ dΩ

= r2 dr0

∫ γ (r!)dω

0

∫14π

eiq⋅"!r!

dΩ∫= r2 dr

0

∫ 4πγ (r) sin(qr)qr

= 4π r2γ (r) sin(qr)qr

dr0

∫↑

2

Page 8: SAXS Fµ«êiq! ⋅r! dV f i e iq! ⋅r! i ∑ ⎧ ⎨ ⎪ ⎩ ⎪ I(q!)=F(q!)F*(q!) nøË 9H6 o nL.O"O 9H6 o SAXS«ê 8 % G N"O 1. SAXS 4 : N 9 OTc 5 9\ n Q j Z f R Z o Jà 3 G −

I(q) = 4π r2γ (r) sin(qr)qr

dr0

∫p(r) ≡ r2γ (r)

I(q)= 4π p(r) sin(qr)qr

dr0

∫ ⇔ p(r) = 12π 2 I(q)qr sin(qr)dq

0

∫Fourier

Debye

I(q) = I(q

!)

Ω= ρ(r1

"!)

V2∫ ρ(r2"!)eiq!⋅r!

dV1 dV2V1∫ Ω

r ≡ r!= r1"!− r2"!

= ρ(r1

!")

V2∫ ρ(r2!") sin(qr)

qrdV1 dV2V1∫

Page 9: SAXS Fµ«êiq! ⋅r! dV f i e iq! ⋅r! i ∑ ⎧ ⎨ ⎪ ⎩ ⎪ I(q!)=F(q!)F*(q!) nøË 9H6 o nL.O"O 9H6 o SAXS«ê 8 % G N"O 1. SAXS 4 : N 9 OTc 5 9\ n Q j Z f R Z o Jà 3 G −

uinier

Debye

I(q) = ρ(r1

!")

V2∫ ρ(r2!") sin(qr)

qrdV1 dV2V1∫

sin(qr)qr

= 1− (qr)2

3!+ (qr)

4

5!−! Taylor

I(q) ≈ ρ(r1

!")

V2∫ ρ(r2!")dV1 dV2V1∫ − q

2

6ρ(r1!")

V2∫ ρ(r2!")r2 dV1 dV2V1∫

= ρ(r1!")

V2∫ ρ(r2!")dV1 dV2V1∫ 1−

q2 ρ(r1!")

V2∫ ρ(r2!")r2 dV1 dV2V1∫

6 ρ(r1!")

V2∫ ρ(r2!")dV1 dV2V1∫

⎝⎜⎜

⎠⎟⎟

= I(0) 1− q2

3⋅

ρ(r1!")

V2∫ ρ(r2!")r2 dV1 dV2V1∫

2 ρ(r1!")

V2∫ ρ(r2!")dV1 dV2V1∫

⎝⎜⎜

⎠⎟⎟

Page 10: SAXS Fµ«êiq! ⋅r! dV f i e iq! ⋅r! i ∑ ⎧ ⎨ ⎪ ⎩ ⎪ I(q!)=F(q!)F*(q!) nøË 9H6 o nL.O"O 9H6 o SAXS«ê 8 % G N"O 1. SAXS 4 : N 9 OTc 5 9\ n Q j Z f R Z o Jà 3 G −

= I(0) 1− q2

3⋅

ρ(r!1)

V1∫ r12dV1

ρ(r!1)

V1∫ dV1

⎝⎜⎜

⎠⎟⎟= I(0) 1− q

2

3Rg2⎛

⎝⎜⎞⎠⎟

← 1

I(q) ≈ I(0)e−Rg

2q2

3

e−Rg

2q2

3 = 1− Rg2q2

3+ 12!

Rg2q2

3⎛⎝⎜

⎞⎠⎟

2

−! Taylor

ln I(q) ≈ ln I(0)− Rg2

3q2

!Guinier

I(0) = ρ(r1

!")

V2∫ ρ(r2!")dV1 dV2V1∫ = ρ(r

"1)

V1∫ dV1( )2 = (ρV )2

Page 11: SAXS Fµ«êiq! ⋅r! dV f i e iq! ⋅r! i ∑ ⎧ ⎨ ⎪ ⎩ ⎪ I(q!)=F(q!)F*(q!) nøË 9H6 o nL.O"O 9H6 o SAXS«ê 8 % G N"O 1. SAXS 4 : N 9 OTc 5 9\ n Q j Z f R Z o Jà 3 G −

Guinier lnI(q) vs. q2

0

2

4

6

8

10

0 0.0005 0.001 0.0015 0.002

1.4 mg/ml ln

I(q)

q 2 (A -2 )

→Rg I(0) Guinier ��Rg q < 1.3 Guinier Rg: I(0)

r

Rg2 =ρ(r!)

V∫ r2dV

ρ(r!)

V∫ dV=4πρ r4 dr

0

∫ρ 43πr3

= 35r2 Rg = 3

5r ≈ 0.775r

Page 12: SAXS Fµ«êiq! ⋅r! dV f i e iq! ⋅r! i ∑ ⎧ ⎨ ⎪ ⎩ ⎪ I(q!)=F(q!)F*(q!) nøË 9H6 o nL.O"O 9H6 o SAXS«ê 8 % G N"O 1. SAXS 4 : N 9 OTc 5 9\ n Q j Z f R Z o Jà 3 G −

I(0) = (ρV )2 ∝ cM c mg/mL M

Zimm

cI(0,c)

= 1K

1M

(1+ 2A2 Mc)

I(0)cM

= Ist (0)cstMst

K A2

I(0)c

Page 13: SAXS Fµ«êiq! ⋅r! dV f i e iq! ⋅r! i ∑ ⎧ ⎨ ⎪ ⎩ ⎪ I(q!)=F(q!)F*(q!) nøË 9H6 o nL.O"O 9H6 o SAXS«ê 8 % G N"O 1. SAXS 4 : N 9 OTc 5 9\ n Q j Z f R Z o Jà 3 G −

Rg = p(r) ⋅r 2 dr

0

Dmax

∫ 2 p(r)dr0

Dmax

1. 2

→ Dmax

p(r)

2. Guinier

p(r) = 0r > Dmax

3. p(r)p(r) = 1

2π 2 I(q)qr sin(qr)dq0

∫i) termination effectp(r) ripple

ii) interparticle interference

iii) Fourier Δq ≤ π Dmax

Page 14: SAXS Fµ«êiq! ⋅r! dV f i e iq! ⋅r! i ∑ ⎧ ⎨ ⎪ ⎩ ⎪ I(q!)=F(q!)F*(q!) nøË 9H6 o nL.O"O 9H6 o SAXS«ê 8 % G N"O 1. SAXS 4 : N 9 OTc 5 9\ n Q j Z f R Z o Jà 3 G −

1. imm

Guinier Rg I(0) Rg I(0)

Rg I(0)

2. SAXS

backgroud scattering Ibg

→ Porod Luzzati

limq→∞

I(q) = 1π

SV

Qq4 + Ibg

SV specific surface Q invariant

Page 15: SAXS Fµ«êiq! ⋅r! dV f i e iq! ⋅r! i ∑ ⎧ ⎨ ⎪ ⎩ ⎪ I(q!)=F(q!)F*(q!) nøË 9H6 o nL.O"O 9H6 o SAXS«ê 8 % G N"O 1. SAXS 4 : N 9 OTc 5 9\ n Q j Z f R Z o Jà 3 G −

1. SAXS

2

SVD 2.

F(q!) =

ρ(r!)

V∫ eiq!⋅r!

dV

fi eiq!⋅r!

i∑

⎧⎨⎪

⎩⎪ I(q!) = F(q

!)F*(q!)

Page 16: SAXS Fµ«êiq! ⋅r! dV f i e iq! ⋅r! i ∑ ⎧ ⎨ ⎪ ⎩ ⎪ I(q!)=F(q!)F*(q!) nøË 9H6 o nL.O"O 9H6 o SAXS«ê 8 % G N"O 1. SAXS 4 : N 9 OTc 5 9\ n Q j Z f R Z o Jà 3 G −

SAXS1. SAXS

− =

ρ Δρ = ρ − ρ01.0g / cm3 = 0.334e / A3

ρρ0

Δρ

2. SAXS

3 1.1

Page 17: SAXS Fµ«êiq! ⋅r! dV f i e iq! ⋅r! i ∑ ⎧ ⎨ ⎪ ⎩ ⎪ I(q!)=F(q!)F*(q!) nøË 9H6 o nL.O"O 9H6 o SAXS«ê 8 % G N"O 1. SAXS 4 : N 9 OTc 5 9\ n Q j Z f R Z o Jà 3 G −

SAXS

Page 18: SAXS Fµ«êiq! ⋅r! dV f i e iq! ⋅r! i ∑ ⎧ ⎨ ⎪ ⎩ ⎪ I(q!)=F(q!)F*(q!) nøË 9H6 o nL.O"O 9H6 o SAXS«ê 8 % G N"O 1. SAXS 4 : N 9 OTc 5 9\ n Q j Z f R Z o Jà 3 G −

c M(1) mol/L(2) 2

I(0)∝ cMcM I(0)∝ cMM

2

I(0)

Page 19: SAXS Fµ«êiq! ⋅r! dV f i e iq! ⋅r! i ∑ ⎧ ⎨ ⎪ ⎩ ⎪ I(q!)=F(q!)F*(q!) nøË 9H6 o nL.O"O 9H6 o SAXS«ê 8 % G N"O 1. SAXS 4 : N 9 OTc 5 9\ n Q j Z f R Z o Jà 3 G −

(1) c(mg /mL) = c(g / L) = cM (mol / L) ⋅M (g /mol)I(0)∝ cMM( )M = cMM

2

( ) A2 → 2AI(0)

A2 cM� 2M cM(2M)2 = 4cMM2

A 2cM M (2cM)M2 = 2cMM2

I (0)

I(0) = (1−α )Idimer (0)+α Imonomer (0)∝ (1−α )4cMM

2 +α (2cMM2 ) = 2(2 −α )cMM

2

A2! 2A 2(1−α ) :α Keq =

α1−α

⎛⎝⎜

⎞⎠⎟

Page 20: SAXS Fµ«êiq! ⋅r! dV f i e iq! ⋅r! i ∑ ⎧ ⎨ ⎪ ⎩ ⎪ I(q!)=F(q!)F*(q!) nøË 9H6 o nL.O"O 9H6 o SAXS«ê 8 % G N"O 1. SAXS 4 : N 9 OTc 5 9\ n Q j Z f R Z o Jà 3 G −

Guinier

1.

I(q) = ρ(r1!")

V2∫ ρ(r2!") sin(qr)

qrdV1 dV2V1∫ = ρ(r1

!")

V2∫ ρ(r2!") 1− (qr)

2

3!+ (qr)

4

5!−#

⎛⎝⎜

⎞⎠⎟dV1 dV2V1∫

= ρ(r1!")

V2∫ ρ(r2!")dV1 dV2V1∫ − q

2

6ρ(r1!")

V2∫ ρ(r2!")r2 dV1 dV2V1∫ +#

≈ ρ(r1!")

V2∫ ρ(r2!")dV1 dV2V1∫ 1−

q2 ρ(r1!")

V2∫ ρ(r2!")r2 dV1 dV2V1∫

6 ρ(r1!")

V2∫ ρ(r2!")dV1 dV2V1∫

⎝⎜⎜

⎠⎟⎟= I(0) 1− q

2

3⋅

ρ(r1!")

V2∫ ρ(r2!")r2 dV1 dV2V1∫

2 ρ(r1!")

V2∫ ρ(r2!")dV1 dV2V1∫

⎝⎜⎜

⎠⎟⎟#�

r = r!= r1"!− r2"!

rG!"!

ρ(r1!")

V2∫ ρ(r2!")r2 dV1 dV2V1∫

2 ρ(r1!")

V2∫ ρ(r2!")dV1 dV2V1∫

=ρ(r1!")

V2∫ ρ(r2!") r1!"− r2!" 2

dV1 dV2V1∫2 ρ(r1

!")

V2∫ ρ(r2!")dV1 dV2V1∫

=ρ(r1!")

V2∫ ρ(r2!") (r1!"− rG!"!)− (r2!"− rG!"!)2dV1 dV2V1∫

2 ρ(r1!")dV1 V2∫ ρ(r2

!")dV2V1∫

=ρ(r1!")

V2∫ ρ(r2!") r1!"− rG!"! 2

+ r2!"− rG!"! 2

− 2(r1!"− rG!"!) ⋅(r2!"− rG!"!)( )dV1 dV2V1∫

2V1∫ ρ(r1!")dV1( )2

∵V1∫ ρ(r1!")dV1 = V2∫ ρ(r2

!")dV2( )

=ρ(r1!")

V2∫ ρ(r2!") r1!"− rG!"! 2

dV1V1∫ dV2 + ρ(r1!")

V2∫ ρ(r2!") r2!"− rG!"! 2

dV1V1∫ dV2 − 2 ρ(r1!")

V2∫ ρ(r2!")(r1!"− rG!"!) ⋅(r2!"− rG!"!)dV1V1∫ dV2

2V1∫ ρ(r1!")dV1( )2

=ρ(r1!") r1!"− rG!"! 2

dV1V1∫ V2∫ ρ(r2!")dV2 + V1∫ ρ(r1

!")dV1 ρ(r2

!") r2!"− rG!"! 2

dV2V2∫ − 2 ρ(r1!")(r1!"− rG!"!)dV1V1∫( ) ⋅ V2∫ ρ(r2

!") ⋅(r2!"− rG!"!)dV2( )

2V1∫ ρ(r1!")dV1( )2

rG!"!

≡ρ(r"1)r1!"dV1V1∫

ρ(r"1)dV1V1∫

ρ(r1!")(r1!"− rG!"!)dV1V1∫ = 0

" r2!"

=2 ρ(r1

!") r1!"− rG!"! 2

dV1V1∫ V1∫ ρ(r1!")dV1 − 2 0

"⋅0"( )

2V1∫ ρ(r1!")dV1( )2

=ρ(r1!") r1!"− rG!"! 2

dV1V1∫V1∫ ρ(r1!")dV1

= Rg2 r1!"− rG!"!

I(q) ≈ I(0) 1− q2

3Rg2⎛

⎝⎜⎞⎠⎟

Page 21: SAXS Fµ«êiq! ⋅r! dV f i e iq! ⋅r! i ∑ ⎧ ⎨ ⎪ ⎩ ⎪ I(q!)=F(q!)F*(q!) nøË 9H6 o nL.O"O 9H6 o SAXS«ê 8 % G N"O 1. SAXS 4 : N 9 OTc 5 9\ n Q j Z f R Z o Jà 3 G −

2.

1

r = r12 + r2

2 − 2r1r2 cosθ12

ρ(r1!")

V2∫ ρ(r2!")r2 dV1 dV2V1∫

2 ρ(r1!")

V2∫ ρ(r2!")dV1 dV2V1∫

=ρ(r1!")

V2∫ ρ(r2!")(r1

2 + r22 − 2r1r2 cosθ12 )dV1 dV2V1∫

2 ρ(r1!")

V2∫ ρ(r2!")dV1 dV2V1∫

=ρ(r1!")

V2∫ ρ(r2!")r1

2 dV1 dV2V1∫ + ρ(r1!")

V2∫ ρ(r2!")r2

2 dV1 dV2V1∫ − 2 ρ(r1!")

V2∫ ρ(r2!")r1r2 cosθ12 dV1 dV2V1∫

2 ρ(r1!")dV1 V2∫ ρ(r2

!")dV2V1∫

=ρ(r1!")r1

2 dV1 ρ(r2!")dV2V2∫V1∫ + ρ(r1

!")dV1 V2∫ ρ(r2

!")r2

2 dV2V1∫ − 2 ρ(r1!")

V2∫ ρ(r2!")r1r2 cosθ12 dV1 dV2V1∫

2V1∫ ρ(r1!")dV1( )2

=2 ρ(r1

!")r1

2 dV1 ρ(r1!")dV1V1∫V1∫ − 2 ρ(r1

!")

V2∫ ρ(r2!")r1r2 cosθ12 dV1 dV2V1∫

2V1∫ ρ(r1!")dV1( )2

=ρ(r1!")r1

2 dVV1∫V1∫ ρ(r1!")dV1

−ρ(r1!")

V2∫ ρ(r2!")r1r2 cosθ12 dV1 dV2V1∫

V1∫ ρ(r1!")dV1

#�

ρ(r1!")

V2∫ ρ(r2!")r1r2 cosθ12 dV1 dV2V1∫

1) r1r2 cosθ12 = r1!"⋅r2!"

r1, r2 r1!", r2!"

2) 1) r1!", r2!"

r1!", r2!"

θ12 r1!", r2!"

1

0

1 O

= Rg2 − 0 = Rg2

Page 22: SAXS Fµ«êiq! ⋅r! dV f i e iq! ⋅r! i ∑ ⎧ ⎨ ⎪ ⎩ ⎪ I(q!)=F(q!)F*(q!) nøË 9H6 o nL.O"O 9H6 o SAXS«ê 8 % G N"O 1. SAXS 4 : N 9 OTc 5 9\ n Q j Z f R Z o Jà 3 G −

2

14π

eiq!⋅r!

dΩ∫ = sin(qr)qr

q!⋅r!= qr cosθqr

14π

eiq!⋅r!

dΩ∫ = 14π

eiqr cosθqr dΩ∫

eiqr cosθqr dΩ∫ r!

q = q!

eiq!⋅r!

1 r!

z q!

eiq!⋅r!

eiqr cosθqr dΩ∫ = dϕ0

∫ eiqr cosθqr sinθqr dθqr0

π

∫ = 2π eiqr cosθ sinθ dθ0

π

u = cosθ

2π eiqr cosθ sinθ dθ0

π

∫ = 2π eiqru du−1

1

∫ = 2π eiqru

iqr⎡

⎣⎢

⎦⎥−1

1

= 2πiqr

eiqr − e− iqr( )

eiqr = cosqr + isinqr Euler

2πiqr

eiqr − e− iqr( ) = 2πiqr ⋅2isinqr =4π sinqr

qr

14π

eiq!⋅r!

dΩ∫ = 14π

4π sinqrqr

= sinqrqr

14π

eiq!⋅r!

dΩ∫ =eiq!⋅r!

dΩ∫dΩ∫

= eiq!⋅r!

Ω