42
Sarah Gallagher (UCLA) Sarah Gallagher (UCLA) January 2007 January 2007 Stratified Quasar Winds Stratified Quasar Winds Revealed Revealed Urry & Padovani 1995)

Sarah Gallagher (UCLA) January 2007 Stratified Quasar Winds Revealed (Urry & Padovani 1995)

  • View
    214

  • Download
    0

Embed Size (px)

Citation preview

Sarah Gallagher (UCLA) Sarah Gallagher (UCLA) January 2007January 2007

Stratified Quasar WindsStratified Quasar WindsRevealedRevealed

(Urry & Padovani 1995)

The Quasar Epoch: z=2-3The Quasar Epoch: z=2-3

(Richards et al. 2006a; Nagamine et al. 2006)

Normal QuasarNormal Quasar

LyCIV MgII H H

voutflow ~ (0.03-0.2)c

Broad Absorption Lines(P Cygni profiles)

Quasars with Outflows: BAL Quasars with Outflows: BAL QuasarsQuasars

Ly/NV SiIV CIV

`torus’`torus’1-10 pc1-10 pc

`big blue bump’`big blue bump’lt dayslt days

`corona’`corona’~AUs~AUs

NASA/CXC

Infrared Infrared Optical-UV Optical-UV X-rayX-ray

A Model for A Model for AllAll Radio-Radio-Quiet QuasarsQuiet Quasars

(Gallagher et al. 2002a: Adapted from Königl & Kartje 1994; Murray et al. 1995)

X-ray continuum X-ray continuum sourcesource

~light hrs (10~light hrs (1014-15 14-15 cm)cm)UV/optical continuum UV/optical continuum sourcesource

~light hrs-days (10~light hrs-days (101616 cm) cm)

UV emission lines

~light yr (1017 cm)

Two Views Through the Two Views Through the WindWind

UVX-ray

shielding shielding gasgas

BAL WindBAL Wind

Does it exist?

Broad Absorption Line (BAL) Quasars

X-ray Properties of X-ray Properties of QuasarsQuasars

oxox = 0.384 log (f = 0.384 log (f2 keV2 keV / f / f2500 Å2500 Å))

2 keV2500 Å

(Laor et al. 1997)(Laor et al. 1997)

fainter in X-rays

228 SDSS Quasars with ROSAT228 SDSS Quasars with ROSAT (Strateva et (Strateva et al. 2005)al. 2005)

UV Luminosity vs.UV Luminosity vs. oxox

brighter in X-brighter in X-raysrays

Define:

oxox = oxox - ox ox (L(Luvuv))

log(Luv) (ergs s-1 Hz-

1)

BAL Quasars

55 BQS Quasars with z<0.555 BQS Quasars with z<0.5 (Data from Brandt, (Data from Brandt, Laor, & Wills 2000)Laor, & Wills 2000)

oxX-ray weak

(400x)X-ray normal

Bright Quasar Survey z<0.5 Bright Quasar Survey z<0.5 SampleSample

= 2

X-ray Absorption by Neutral Gas

NH

=

(assuming solar metallicity)

almost optically thick to Compton

scattering

PG 2112+059 (PG 2112+059 (zz=0.466): =0.466): First BAL Quasar X-ray SpectraFirst BAL Quasar X-ray Spectra

= = 1.97±0.25; N1.97±0.25; NHH ~ 10 ~ 102222 cm cm-2 -2

(Gallagher et al. 2001) (Gallagher et al. 2001)

X-ray Spectroscopy of X-ray Spectroscopy of ~12 RQ BAL Quasars ~12 RQ BAL Quasars

normal underlying X-ray continuanormal underlying X-ray continua significant intrinsic absorptionsignificant intrinsic absorption

• NNHH = (0.1-5.0) x 10 = (0.1-5.0) x 102323 cm cm-2-2

from >5 keV continuum:from >5 keV continuum:• normal normal oxox (UV/X-ray flux ratio) (UV/X-ray flux ratio)

not just simple absorptionnot just simple absorption• partial coverage and/or ionized gaspartial coverage and/or ionized gas

(e.g., Gallagher et al. 2002b; (e.g., Gallagher et al. 2002b; Chartas et al. 2002, 2003; Chartas et al. 2002, 2003; Aldcroft & Green 2003; Grupe et al. 2003; Aldcroft & Green 2003; Grupe et al. 2003;

Page et al. 2005; Shemmer et al. 2005)Page et al. 2005; Shemmer et al. 2005)

PG 2112+059 Revisited: PG 2112+059 Revisited: Dramatic Spectral VariabilityDramatic Spectral Variability

PG 2112+059:PG 2112+059: ASCA ASCA Oct 1999;Oct 1999; ChandraChandra Sep 2002Sep 2002(Gallagher et al., 2004)(Gallagher et al., 2004)

PG 2112+059 Revisited: PG 2112+059 Revisited: Comparison of ModelsComparison of Models

(Gallagher et al. 2004)(Gallagher et al. 2004)

FeK

Major Change Major Change Increased Increased NNHH

Chandra

ASCA

++

Partial-covering absorber Partial-covering absorber modelmodel

Little Variability in UV Little Variability in UV BALsBALs

Observed Wavelength (Å)

f(erg cm2 s1 Å)

O VI

ChandraChandra BAL Quasar Survey BAL Quasar Survey

35 luminous BAL quasars35 luminous BAL quasars z = 1.4—2.9z = 1.4—2.9 MMBB ~ -26.1 to -28.4 ~ -26.1 to -28.4 UV spectra for all (from literature) UV spectra for all (from literature)

4—7 ks exploratory 4—7 ks exploratory observationsobservations

35 observed; 27 detected (77%)35 observed; 27 detected (77%)

Large, well-defined sample

(Gallagher et al. 2006)(Gallagher et al. 2006)

Collaborators: Niel Brandt, George Chartas, Gordon Garmire (Penn State), Robert Priddey (Hertfordshire), & Rita Sambruna (Goddard)

Rough continuum shape: Rough continuum shape: HRHR

• from hardness ratio: from hardness ratio: (hard-soft)/(hard+soft)(hard-soft)/(hard+soft)

(analogous to (analogous to B-VB-V spectral index) spectral index)

Relative UV-to-X-ray power: Relative UV-to-X-ray power: oxox

Exploratory Surveys: Exploratory Surveys: X-ray DataX-ray Data

Spectral Shape vs. X-ray Weakness: Spectral Shape vs. X-ray Weakness: X-ray Faint X-ray Faint X-ray Hard X-ray Hard

Fainter

Harder(more absorbed)

Softer(less absorbed)

Brighteroxox

AllAll RQ BAL quasars show evidence for X-ray RQ BAL quasars show evidence for X-ray absorption absorption

(complex with N(complex with NHH ~ (1—80)x10 ~ (1—80)x102222 cm cm-2-2))

% covered

normal RQ quasars:

= 2.0 ± 0.25

ox = 0.0 ± 0.15

BAL Quasars

55 BQS Quasars with z<0.555 BQS Quasars with z<0.5 (Data from Brandt, (Data from Brandt, Laor, & Wills 2000)Laor, & Wills 2000)

oxX-ray weak

(400x)X-ray normal

Bright Quasar Survey z<0.5 Bright Quasar Survey z<0.5 SampleSample

oxox

BQS + Chandra BAL QuasarsBQS + Chandra BAL Quasars

Chandra BALQs

No correlation for BAL quasars.No correlation for BAL quasars.

UV Spectra:UV Spectra:X-ray Bright vs. X-ray X-ray Bright vs. X-ray

WeakWeakCIV CIV

SiIV SiIV

X-ray BRIGHT X-ray FAINT

vvmaxmax vs. vs. oxox

oxoxHigh velocity appears to require large High velocity appears to require large

NNHH..

ee~~11

(Gallagher et al. 2006)(Gallagher et al. 2006)

Conclusions I:Conclusions I: X-ray ObservationsX-ray Observations

compact & thick ‘X-ray—only’ compact & thick ‘X-ray—only’ absorbersabsorbers• X-ray & UV absorption not consistentX-ray & UV absorption not consistent

NNHH and variability properties and variability properties

• some may be Compton-thick!some may be Compton-thick! ((ee ~ 1; N ~ 1; NHH~1.5x10~1.5x102424 cm cm22))

X-ray and UV Continua X-ray and UV Continua Emitting Regions Are Not Emitting Regions Are Not

CospatialCospatial

Implied by Implied by Compton-thick Compton-thick X-ray X-ray absorption.absorption.

Consistent with Consistent with results from results from gravitational gravitational micro-lensing.micro-lensing.(Kochanek et al. 2006)(Kochanek et al. 2006)

(Gallagher et al. 2006)(Gallagher et al. 2006)

Conclusions I:Conclusions I: X-ray ObservationsX-ray Observations

compact & thick ‘X-ray—only’ absorberscompact & thick ‘X-ray—only’ absorbers• X-ray & UV absorption not consistentX-ray & UV absorption not consistent• some may be Compton-thick!some may be Compton-thick!

((ee ~ 1; N ~ 1; NHH~1.5x10~1.5x102424 cm cm22)) likely correlation of vlikely correlation of vmaxmax & & oxox

•firstfirst UV/X-ray correlation found UV/X-ray correlation found supports supports radiative drivingradiative driving of UV of UV outflowsoutflows

vterm ~ (GMBH/Rlaunch)1/2

Link Between Shielding Gas and Link Between Shielding Gas and vvmaxmax

smaller Rlaunch higher vtermlarger Rlaunch lower vterm

thicker shield more X-ray weakthinner shield less X-ray weak

(cf. Chelouche & Netzer 2000; Everett 2005)(cf. Chelouche & Netzer 2000; Everett 2005)

(Gallagher et al. 2006; Gallagher & Everett 2007)(Gallagher et al. 2006; Gallagher & Everett 2007)

`torus’`torus’1-10 pc1-10 pc

`big blue bump’`big blue bump’<1 pc<1 pc

`corona’`corona’~AUs~AUs

NASA/CXC

IR IR Opt-UV Opt-UV X-rayX-ray

disk wind from here

The Dusty OutflowThe Dusty Outflow

(Adapted from Königl & Kartje 1994)

The inner radius of the dusty The inner radius of the dusty outflow is set by the temperature outflow is set by the temperature at which dust sublimates:at which dust sublimates: r=1.3(Lr=1.3(Luvuv/10/104646))½½(T/1500)(T/1500)-2.8 -2.8 pcpc

Sample SEDs of Non-BAL QuasarsSample SEDs of Non-BAL Quasars mid-infrared optical

spectral indices (L~ ): ,ir ,opt

8 m 5000 Å

IR-Luminous Quasars Typically IR-Luminous Quasars Typically Have Have SteeperSteeper Spectral Slopes Spectral Slopes

(Gallagher et al., submitted)(Gallagher et al., submitted)

IR-Luminous Quasars IR-Luminous Quasars Show Spectral CurvatureShow Spectral Curvature

Sample ‘Hot Bump’Sample ‘Hot Bump’

((Rodríguez-Ardila& Mazzalay 2006)& Mazzalay 2006)

1200 K black body

(Å)

F

(e

rg s

-1 c

m-2 H

z-1)

Changing Shape of Dusty Changing Shape of Dusty Outflow?Outflow?

More LuminousLess Luminous

silicatessilicates

BAL Quasar IRS SpectraBAL Quasar IRS Spectra

(Gallagher et al. in prep; see also Shi et al. 2006)(Gallagher et al. in prep; see also Shi et al. 2006)

(Urry & Padovani 1995)

Clouds and a TorusClouds and a Torus

Multiwavelength Multiwavelength Synthesis: Synthesis:

The Stratified Wind The Stratified Wind PicturePicture

Physical Parameters of the Physical Parameters of the Stratified WindStratified Wind

WindWind

ComponentComponentR R (cm)(cm)

ffcovcov

(erg cm)(erg cm)

NNH H

(cm(cm-2-2))

v v (km/(km/s)s)

X-rayX-ray 101015-1615-16 >f>fUVUV

~100~100(O(OVIIVII//OOVIIIVIII))

101022-2422-24 ??????

UltravioUltravioletlet

101017-1817-18

(R(RBLRBLR))

0.2(1-0.2(1-ffQSO2QSO2))

~1~1(C(CIV/IV/OOVIVI))

101021-2221-22 10103-43-4

Mid-IRMid-IR >1pc>1pc ffQSO2QSO2 neutralneutral ...... 101022

Stratified Wind Stratified Wind Driving MechanismsDriving Mechanisms

UV BAL windUV BAL wind• Radiation pressure on UV resonance Radiation pressure on UV resonance lineslines

Dusty OutflowDusty Outflow• Radiation pressure on dustRadiation pressure on dust

Shielding GasShielding Gas• Continuum radiation pressureContinuum radiation pressure• Magneto-hydrodynamic driving?Magneto-hydrodynamic driving?

Future WorkFuture Work1. Accepted Spitzer Cycle 3 theory 1. Accepted Spitzer Cycle 3 theory

project.project. Illuminating the Dusty Wind: 3D Modeling of Illuminating the Dusty Wind: 3D Modeling of

Quasar Silicate EmissionQuasar Silicate Emission Collaborators: Collaborators: John Everett (Wisconsin) & Dean Hines (SSC) John Everett (Wisconsin) & Dean Hines (SSC)

2. 2. ChandraChandra follow-up of v follow-up of vmaxmax vs. vs. oxox correlation.correlation.

3. 3. SuzakuSuzaku (10-30 keV) follow-up of (10-30 keV) follow-up of nearby Compton-thick BAL quasars. nearby Compton-thick BAL quasars.

4. Long term: 4. Long term: Constellation-X Constellation-X spectroscopy of X-ray outflows in spectroscopy of X-ray outflows in absorption.absorption.

Resolving the Resolving the Shielding Gas with Shielding Gas with Constellation-XConstellation-X

Model: Two component outflow with different Model: Two component outflow with different ionization states, velocities, and velocity ionization states, velocities, and velocity dispersions. dispersions.

(Flux matches BAL quasar PG1115+080.) (Flux matches BAL quasar PG1115+080.)