16
Santa Clara Valley Chapter, CPMT Society www.cpmt.org/scv/ February 8, 2006 Page 1 ELECTRONICS MANUFACTURING SERVICES © 2006 Sanmina-SCI Corporation. Sanmina-SCI is a trademark of Sanmina-SCI Corporation. All trademarks and registered trademarks are the property of their respective owners. Impedance Characterization and Design Optimization of PCB Embedded Passive Components Presented at the Feb. 8 2006 meeting, Santa Clara Valley Chapter, CPMT Society – www.cpmt.org/scv/ Nick Biunno and Franz Gisin Sanmina-SCI, Corp San Jose, CA Embedded Resistor Technology Drivers High density component packages Form factor reduction Faster signal speed Improved Signal Integrity noise margins Weight reduction

Santa Clara Valley Chapter, CPMT Society February 8, 2006 …ewh.ieee.org/soc/cpmt/presentations/cpmt0602a.pdf · 2006-02-09 · Bellcore/Telcordia Exception TR-NWT-000078 N/A Granted

  • Upload
    others

  • View
    22

  • Download
    0

Embed Size (px)

Citation preview

Santa Clara Valley Chapter, CPMT Societywww.cpmt.org/scv/

February 8, 2006

Page 1

ELECTRONICS MANUFACTURING SERVICES

© 2006 Sanmina-SCI Corporation. Sanmina-SCI is a trademark of Sanmina-SCI Corporation. All trademarks and registered trademarks are the property of their respective owners.

Impedance Characterization and Design Optimization of PCB Embedded Passive ComponentsPresented at the Feb. 8 2006 meeting, Santa Clara Valley Chapter, CPMT Society – www.cpmt.org/scv/

Nick Biunno and Franz GisinSanmina-SCI, CorpSan Jose, CA

Embedded Resistor Technology Drivers

High density component packages

Form factor reduction

Faster signal speed

Improved Signal Integrity noise margins

Weight reduction

Santa Clara Valley Chapter, CPMT Societywww.cpmt.org/scv/

February 8, 2006

Page 2

Embedded Passives Now All About Infrastructure

• CAD/CAM Design Support (what to embedded?)

• Cost Modeling

• Design Input and Design Rules

• Embedded Component Impedance Characterization

• Signal Integrity and Component Simulation

• NPI Proto-Typing and Volume Manufacturing

• Test and Reliability

• Standards

Future

Embedded Passive Technology Portfolio

C Capacitor L Inductor (Planar Magnetics)R Resistor

Embedded Passives

Discrete Networks DistributedBuried Capacitance®

C LR R C RCPower Distribution

NetworksDigital and AnalogApplications Low, High & Band Pass Filters

Resistive Networks

Santa Clara Valley Chapter, CPMT Societywww.cpmt.org/scv/

February 8, 2006

Page 3

Resistor Analysis for Embedded Conversion

Value Total Power Surface Embed Circuit Resistor Buried Buried Sheet(ohms) Qty. (watts) Tolerance Style Priority Tolerance Application Configuration Layer Quantity Resistance

20 60 0.063 1% 0402 ?? s R A 6033 9 0.063 5% 0402 s R A 933 3 0.063 5% 0603 s R A 3

33.2 31 0.100 1% RM0705 s R A 3175 81 0.063 1% 0402 s R A 81

Total 184

1K 30 5% 16 pin QSOP gnd(D) A B 301K 56 0.100 1% RM0705 gnd(D) A B 562K 6 0.100 1% RM0705 gnd(D) R B 6

4.75K 1 0.100 1% RM0705 gnd(D) R B 14.7K 15 5% 16 pin QSOP gnd(D) R B 15

Total 108

1K 2 0.063 5% 0402 2.5 V C11K 1 0.100 1% RM0705 2.5 V C12K 50 5% 16 pin QSOP 2.5 V C12K 4 0.100 1% RM0705 2.5 V C1

3.3K 0.063 5% 0603 2.5 V C13.32K 0.100 1% RM0705 2.5 V C14.75K 0.100 1% RM0705 2.5 V C14.7K 5% 16 pin QSOP 2.5 V C110K 4 0.063 5% 0603 2.5 V C110K 12 0.100 1% RM0705 2.5 V C1

1K 0.063 5% 0402 3.3 V C21K 12 0.100 1% RM0705 3.3 V C22K 5% 16 pin QSOP 3.3 V C22K 17 0.100 1% RM0705 3.3 V C2

3.3K 0.063 5% 0603 3.3 V C23.32K 0.100 1% RM0705 3.3 V C24.75K 20 0.100 1% RM0705 3.3 V A C2 204.7K 45 5% 16 pin QSOP 3.3 V A C2 4510K 1 0.063 5% 0603 3.3 V C210K 52 0.100 1% RM0705 3.3 V C2

1K 0.063 5% 0402 5.0 V C31K 9 0.100 1% RM0705 5.0 V C32K 5% 16 pin QSOP 5.0 V C32K 0.100 1% RM0705 5.0 V C3

3.3K 96 0.063 5% 0603 5.0 V A C3 963.32K 5 0.100 1% RM0705 5.0 V A C3 54.75K 0.100 1% RM0705 5.0 V C34.7K 15 5% 16 pin QSOP 5.0 V A C3 1510K 0.063 5% 0603 5.0 V C310K 22 0.100 1% RM0705 5.0 V C3

Total 659 Total 181

Basic Circuit Design Buried R-EP Design

25-50 ohms-sq.

50K ohm-sq.

50K ohm-sq.

10K ohm- sq.

50K ohm-sq.

Buried Capacitance® Drivers

Decreased Plane Inductances & Improves Broad Band Impedance

Reduced Size or Increased Functionality at Same Size

Lower Assembly Costs & Higher Reliability

Fewer Components = Less Solder Joints

Active Component

Gnd

PwrI & Z C

No BC™

Active Device

Decoupling Capacitors

Active Device

Decoupling Capacitors

With BC™

Santa Clara Valley Chapter, CPMT Societywww.cpmt.org/scv/

February 8, 2006

Page 4

Buried Capacitance® Product Family

Plane C

apac

itance

pf/in2

(pf/cm

2 )

BC12, BC16, BC8, BC16T, BC12T are all trademarks of Oak Mitsui TechnologiesHK-04 is a trademark of DuPont Electronic Materials

1000 (155) BC24™ & ZBC1000™1.0 mil (25µ)1600 (233) BC16™0.6 mil (16 µ)

1900 (310) BC12™0.5 mil (12 µ)

3100 (481) BC8™0.3 mil (8 µ)

11,000 (1,705) BC16T™0.6 mil (16 µ)

500 (78) ZBC2000®2.0 mil (50µ)

4500 (698) BC12TM™0.5 mil (12 µ)

800 (124) HK-04™1.0 mil (25µ)

Unsupported Laminate Material Characteristics

Property Units BC24 BC16 BC12 BC8* BC16T* BC12TM*

HK-04

Dielectric Thickness (µ)

Nominal 24 16 12 8 16 12 25

Peel Strength lbs/in 8 8 8 8 6 4 9.0

Dielectric Strength

KV/mil 5.3 7.3 5 5 2.8 6.2 6-7

Tensile Strength

Mpa (kpsi)

152 (22.0)

164 (23.8)

194 (28.2)

126 (18.3)

NA 110 (16.0)

>345 (>50)

Elongation % 18.5 16.5 11.5 8.5 NA 6.0 >50

Hi-Pot Test DC Volts 500 500 500 500 100 500 500

Thermal Shock

-35°C/125°C 400 Cycles

Pass Pass Pass TBD TBD TBD Pass: -65°C to 125°C- 100

Cycles Thermal

Stress (20Sec @ 288°C)

# Times >10 >10 >10 >10 >10 >10 Pass: 10 sec @ 288°C

Electro Migration

85C/85%RH, 35VDC

>1000 Hours

>1000 Hours

>1000 Hours

>1000 Hours

>1000 Hours >1000 Hours

1000 Hours @ 100VDC

Flammability Temp Rating

UL-94/ UL-746

V0 130°C

V0 130°C

V0 130°C

V0 130°C

Provisional V0 130°C

V0

Double sided core process Sequential Lamination

Double Sided Core Process

Santa Clara Valley Chapter, CPMT Societywww.cpmt.org/scv/

February 8, 2006

Page 5

Supported Laminate Material Characteristics

Property Condition Unit ZBC-2000® ZBC-1000™Dielectric Resin ---- ---- FR-4 FR-4 Dielectric Reinforcement ---- ---- e-glass e-glass

Hi-Pot Test DC Volts Volts (DC) 500 500

Electro-migration 85°C/85%

RH (DC Volts)

Hours @ (Volts) 2000 (50) 2000 (50)

Thermal Shock -35°C /

125°C 400 cycles

N/A Pass Pass

Peel Strength As received Ib/in2 >6.0 >6.0 Dielectric Breakdown 1 kV/sec Volts (DC) >2500 >2500

UL Rating ---- ---- 94-V0 94-V0 Bellcore/Telcordia Exception

TR-NWT-000078 N/A Granted In progress

BC™ Laminates Impedance

Capacitance increases as dielectric thickness decreasesNoise improves as the impedance is reduced

0.001

0.01

0.1

1

10

1 10 100 1000 10000

Frequency (MHz)

Self

Impe

danc

e (o

hms)

ZBC-2000

ZBC-1000

BC 24 micron

BC 16 micron

BC 8 micron

BC 12TM

BC 16T

Santa Clara Valley Chapter, CPMT Societywww.cpmt.org/scv/

February 8, 2006

Page 6

BC™ Laminate Inductive Impedance

Plane inductance is reduced as dielectric thickness decreases

Plane resonances are reduced as dielectric thickness decreases

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0Frequency (GHz)

Self

Impe

danc

e (o

hms)

ZBC-2000ZBC-1000FaradFlex BC24FaradFlex BC16FaradFlex BC12TMFaradFlex BC8FaradFlex BC16T

Representative ZBC Design Examples(Plane Resonance Reduction)

W/O ZBC

With BC-24 With ZBC-2000® With BC-12TM

Santa Clara Valley Chapter, CPMT Societywww.cpmt.org/scv/

February 8, 2006

Page 7

PDS Capacitor Estimator Electrical Model

PDS Capacitor Estimator Features:- Inductance calculation based on PCB construction- Estimates amount of surface capacitance needed- Choose either Zbank or Zcarpet Impedance Model

Lvia inside

Lvia above

LZBC

L/Nvia above

L/Nvia inside

Ccap

Rcap

Lcap

F

S

P

S

S

P

PBCTM Core

BCTM CoreP

P

P

S

S

S

F

⎟⎟

⎜⎜

⎛+++++= LLLN

LNRZ ZBCviaabovevaiabove

cap

cap

cap

capBank 22jω

jωωC1

Ncap

ZBank

Zbank Impedance Model

PDS Capacitor Estimator Physical Model

S2

Ground

Power

H1

D

H2

H3

S1

R2 R1

Physical Model Inputs• Information About Board Construction• Information About Cap Chip and IC Package Placement

Santa Clara Valley Chapter, CPMT Societywww.cpmt.org/scv/

February 8, 2006

Page 8

BCTMSpreading Inductance Calculation

Inductance Decreases as Plane Spacing Decreases

0

10

20

30

40

50

60

70

0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4

Radius IC to Cap Centers (in.)

"Spr

eadi

ng"

Indu

ctan

ce (p

H)

0.008

0.004

0.002

0.001

0.0005

Representative ZBC Design Examples(Capacitor Elimination)

Product# Caps Before # Caps After % Eliminated

ZBC 200048 17 64 %

BC 2448 13 72 %

BC 1648 12 74 %

BC 1248 11 75 %

BC 848 10 77 %

Based on 1156 Pin BGA Array, 3.3 V Power Distribution, 603 Style Bypass Caps

Santa Clara Valley Chapter, CPMT Societywww.cpmt.org/scv/

February 8, 2006

Page 9

Capacitive Coupling Test Board

Capacitive Dielectric8 micron FaradFlex BC8TM

Other Dielectrics In Test- FaradFlex BC12TM- Screen Printed PTF

Capacitor Dimensions1) .020” x .020”2) .040” x .040”3) .080” x .080”4) .160” x .160”5) .020” x .040”6) .080” x .040”7) .160” x .040”8) .320” x .040”9) .040” x .020”

10) .040” x .080”11) .040” x .160”12) .040” x .320”13) .020” x .020”14) .080” x .080”15) .160” x .160”16) .320” x .320”17) .080” x .080” ½ stub18) .080” x .080” 2x stub19) .160” x .160” 3x stub20) .160” x .160” 4x stub

2.000”50 ohm

.006”

Measurement Setup

Bit Pattern Test for Circuits 1-4 Pattern a

.020” x .020”

.040” x .040”

.080” x .080”

.160” x .160”

Santa Clara Valley Chapter, CPMT Societywww.cpmt.org/scv/

February 8, 2006

Page 10

Bit Pattern Test for Circuits 3,17,18 Pattern a

.080” x .080” ½ Stub

.080” x .080”

.080” x .080” 2x Stub

Bit Pattern Test for Circuit 12 Pattern (a) & (b)

.040” x .320” Capacitor Bit Pattern (b)

.040” x .320” Capacitor Bit Pattern (a)

Santa Clara Valley Chapter, CPMT Societywww.cpmt.org/scv/

February 8, 2006

Page 11

Eye Diagrams for Circuit 12 Pattern (a) & (b)

3.125 Gb/s 6.25 Gb/s 12.5 Gb/s

3.125 Gb/s 6.25 Gb/s 12.5 Gb/s

25 Bit Pattern (a)

25 Bit Pattern (b)

Resistor Impedance Measure Test Board

Two Objectives of Resistor Impedance Measurements are;1. Characterize by Geometry2. Characterize by Board Construction and Application

1 2 3

45

6

Sheet Resistance = 100 ohm-sq.

PTF Film Thickness = 0.007”

Rectangular Resistor Parameters

210.040”.120”6 -

140.040”.080”5 -

70.040”.040”4 -

420.020”.120”3 -

290.020”.080”2 -

160.020”.040”1 -OhmsWidthLength

Annular Resistor Parameters

Sheet Resistance = 1000 ohm-sq.

PTF Film Thickness = 0.007”

70.035”.045”Ohms

Inner Diameter

Outer Diameter

Santa Clara Valley Chapter, CPMT Societywww.cpmt.org/scv/

February 8, 2006

Page 12

PTF Resistor Design

B

L

B

L

RR

ttRRR ⎟

⎞⎜⎝

⎛=×= ρρ

B

L

S RRRR= NRR S×=or

ρ = Resistivity (ohm-unit length)t = Resistor film thickness RL = Length in direction of current flowRB = WidthRs = Sheet resistance (Ω/ ) N = The number of series squares

⎟⎟⎠

⎞⎜⎜⎝

⎛=DD

tR1

2ln2πρ

R = Resistor value (ohms)ρ = Resistivity (ohm-unit length)t = Resistor average thickness D1 = Resistor inner pad diameterD2 = Resistor outer ring diameter

RL

RB

Ohms

Ohms

D1

D2

D1

D2

Z(resistive) Measurement Set Up

Port Connections to the Annular Resistor are Asymmetric

Port 1 Port 2

Port 1 Port 2

.032”

Measurement Setup for AnnualrAnd Rectangular Resistors

Port Connections to Rectangular Resistors

Santa Clara Valley Chapter, CPMT Societywww.cpmt.org/scv/

February 8, 2006

Page 13

S21 Measurements for Rectangular Resistors

• Impedance Predictable to 7 GHz• Z Response Above 7 GHz Not Well Understood

-35

-30

-25

-20

-15

-10

-5

0

1 3 5 7 9 11 13 15

Frequency (GHz)

Loss

(dB

)

(4) 70 ohms (5) 140 ohms (6) 210 ohms (3) 420 ohms

S21 Measurement for Annular Geometry

• Impedance Predictable to 7 GHz• Z Response Above 7 GHz Not Well Understood

-40

-35

-30

-25

-20

-15

-10

-5

0

5

1 2 3 4 5 6 7 8

Frequency (GHz)

Loss

(dB

)

Rectangular 70 Ohms

Annular 70 Ohms

Santa Clara Valley Chapter, CPMT Societywww.cpmt.org/scv/

February 8, 2006

Page 14

Design Options Showing Rectangular & Annular Designs

Design Options for Array Resistor Patterns

RectangularPattern

AnnularPattern

Annular Design – Inner Layer

Power Plane Layer with 95 3.3K ohm Pull-up Resistors

Before

After

Santa Clara Valley Chapter, CPMT Societywww.cpmt.org/scv/

February 8, 2006

Page 15

Annular Design Surface Area Gain

Gained Surface Area ~ 38% of Area Shown

Before Design Conversion

After Design Conversion

Mentor Graphics Supermax CAD Software

(Provided by Mentor Graphics)

Hierarchical Rules: design level, by component, by net or net class, by pin or pad stack, by layer, between layers

The Supermax technology provides an effective platform for design of embedded passive components – resistors, capacitors, inductors and transformers

Santa Clara Valley Chapter, CPMT Societywww.cpmt.org/scv/

February 8, 2006

Page 16

Conclusion (What we are doing this year)

• Work in Progress to Support CAD/CAM Design

• Continue Work on Component Impedance Measurements

Develop New Test Structures and Methods of Measurement Extraction

Increase Range of Resistor Values to Cover Several Decades

Design Test Structures for Combined Passive (RC, RL and RCL) Elements

• Confirm Impedance Measurements with Component Simulation Modeling

Thank YouThank You