58
Sambasivarao Kotha, Enugurthi Brahmachary and Kakali Lahiri Department of Chemistry Eur. J. Org. Chem. 2005, 47414767 (215 citations)

Sambasivarao Kotha, Enugurthi Brahmachary and …Sambasivarao Kotha, Enugurthi Brahmachary and Kakali Lahiri Department of Chemistry Eur. J. Org. Chem. 2005, 4741–4767 (215 citations)

  • Upload
    others

  • View
    14

  • Download
    0

Embed Size (px)

Citation preview

Sambasivarao Kotha, Enugurthi Brahmachary and Kakali Lahiri

Department of Chemistry

Eur. J. Org. Chem. 2005, 4741–4767 (215 citations)

2

Our research topics

-Amino AcidsAcc. Chem. Res. 2003, 342

Synlett. 2010, 337

Suzuki-Metathesis

Chem. Asian J. 2009, 354

MetathesisIndian J. Chem. 2001,763

Synlett 2007, 2767

Chem. Soc. Rev. 2009, 2065

Org. Biomol. Chem. 2011, 5597

Suzuki CouplingTetrahedron 2002, 58, 9633

Eur. J. Org. Chem. 2007, 1221

PolycyclicsTetrahedron 2001, 57, 625

Tetrahedron 2008, 64, 10775

Synthesis 2009, 165

Peptide Modifications

Curr. Med. Chem. 2005, 12, 849

[2+2+2] CycloadditionEur. J. Org. Chem. 2005, 4741

Chem. Rev 2011, 000Rongalite

TROUBLESHOOTING

PRODUCT

EXECUTION(TECHNIQUE)

STRATEGY(REACTIONS)

DESIGNOPTIONS(CONNECTIVITY)

PRIORITIES &CONSTRAINTS

SYNTHESIS STAR

IDEALLY......PRIORITIES & CONSTRAINTS

TROUBLE-SHOOTING

• Readily available starating materials

• One step

• 100% yield

• Operationally simple

• Fast, Safe

• Environmentally acceptable

• Resource efficacious

Change in

• Conditions

• Mechanism

• Reactants

• Strategy

• Personnel

1. Organic Synthesis

Solvent free

Conditions

Aqueous

ConditionsIonic Liquid

Conditions

Supercritical

Conditions

2. Synthetic Efficiency

Tandem

Process

Multicomponent

Reactions

Multidirectional

Synthesis

3. Synthetic Methodology

Generation of molecular

Diversity

Suitable for Combinatorial

Synthesis

4. Catalytic Processes

Asymmetric synthesis

Using small molecules

Environmentally Friendly

Processes

Salt Free Processes

5. Organometallics in Organic Synthesis

59/9/2011

ORGANIC SYNTHESIS

Target Oriented

(Total Synthesis)Methods Oriented

Natural

Products

Designed

MoleculesReagents Catalysts Synthetic

Strategies

Synthetic

Tactics

Material Science

Interesting

Molecules

Biologically

Interesting

Molecules

Theoretically

Interesting

Molecules

Medically

Interesting

Molecules

Nicolaou, K. C.; Sorensen, E. J. Classics in Total Synthesis, VCH, Weinheim, Germany, 1996.

Amongst the top ten most downloaded articles in

Eur. J. Org. Chem.: November 2005

[2+2+2] cycloaddition reaction

Eur. J. Org. Chem. Among most cited article during 2005-2006

Applications of Amino Acids

Amino Acids

Pharmaceuticals

Pharmaceutical

Intermediates

Food

Additives

Feed

Additives

Technical

Applications Media for

Fermentation

and Cell Culture

Peptides

Taste and

Aroma

Enhancers

Cosmetics

Pesticides

The Building Block approach to unusual -Amino Acid

derivatives and Peptides

S. Kotha Acc. Chem. Res. 2003, 36, 342.

List of constrained Phe analogues (the thick line indicate Phe moiety)

NH2

CO2H

NH2

CO2H

NH2

CO2HCO2H

NH2 NH

CO2H

CO2H

NH2

NTs

E

NTs

E

OAc

NHAc

EtO2C

NHAc

CO2Et

NHAc

CO2Et

NHAc

CO2Et

NHAc

CO2Et

X

NHR

CO2Et

NHAc

CO2Et

NHAc

CO2Et

I

I

NTs

E

NTs

E

AAA Building Blocks

A B C D E F G FinalTarget

A B C D

W X Y Z

Final Target

Linear and convergent synthetic approaches

A B C D BB

Final Target (T1)

Final Target (T2)

Final Target (T3)

Synthetic strategy involving building block (BB) approach

Ethyl isocyanoacetate as a glycine equivalent

EtO2C NC

NH2

CO2Et

N

NNH2

CO2Et

NHAc

CO2Et

NHAcEtO2C

NHAc

CO2Et

AcHNCO2Et

EtO2C NHAc

OOCO2Et

NHAc

CO2Et

NHAc

NHBoc

CO2Et

R

R

NHAc

CO2Et

O

O

O

NHCOtBu

CO2Et

NHAc

CO2Et

NHAc

CO2Et

NHAc

CO2Et

CO2Et

NHAc

EtO2C

AcHN

NHAc

CO2Et

Kotha, S. Halder, S. Synlett 2010, 337

[2+2+2] Cycloadditions

Rh(PPh3)3Cl CpCo(CO)2

Wilkinson’s catalyst Vollhardt catalyst

O

O

NHAc

CO2Et

N

C

OE = CO2Et

NTS

E

N

R1

R2

R3

R4

+CO2Et

Ts

NTs

CO2Et

R1

R4

R3

R2

Rh(PPh3)3Cl

Kotha, S.; Sreenivasachary, N. Eur. J. Org. Chem. 2001, 18, 3375.

CO2Et

NHAc

R

R

+Rh(PPh3)3Cl

CO2Et

NHAcR

R

Kotha, S.; Brahmachary, E. Tetrahedron Lett. 1997, 38, 3561.

NHBoc

O

XxxOMe

OH

OH

Rh(PPh3)3Cl NHBoc

OH

OH

O

XxxOMe

+

Kotha, S.; Mohanraja, K.; Durani, S. Chem. commun. 2000, 1909.

O

O R

R

+Rh(PPh3)3Cl

O

O

R

R

Kotha, S.; Manivannan, E. J. Chem. Soc., Perkin Trans. 1 2001, 2543.

NC

CO2Et

1. Propragyl bromide,K2CO3, CH3CN,

TBAHSNHAc

CO2Et

(Ph3P)3RhCl

2-butyn-1,4-diol2. HCl, EtOH, RT CO2Et

NHAc

OH

OH3. Ac2O, DCM, RT

A new entry to indane-based amino acid derivatives

Kotha, S.; Ghosh, A. K. Tetrahedron 2004, 60, 10833.

Kotha, S.; Ghosh, A. K. Tetrahedron Lett. 2004, 45, 2931.

CO2Et

NHAc

Br

Br

CO2Et

NHAc

CO2Et

NHAcS

O

O

a

c, d

Reaction conditions: a) PBr3, DCM, rt, b)Rongalite, Bu4NBr,

DMF, 0 oC, 72%, c) DMAD, toluene, 120 oC, d) DDQ, benzene,

80 oC, 78%

CO2Et

NHAcMeO2C

MeO2C

OH

OH

CO2Et

NHAc

b

Preparation of benzoannulated indane-based amino acid derivatives

Rongalite

HO SO2Na.2H2O

Sodium hydroxymethanesulfinate or

Sodium formaldehydesulfoxylate

Decolorizing agent in textile industry

Inexpensive, commercially available

Benzoannulated indane-based amino acid derivatives

CO2Et

NHAc

CO2Et

NHAc

CO2Et

NHAc

O

O

CO2Et

NHAc

O

O

CO2Et

NHAc

O

O

78% 43%

90%

89%

92%

MeO2C

MeO2C

MeO2C

Various AAA building blocks failed to react with C60

CO2Et

NHAcAcHN

EtO2C

+ C60

NiCl2(PPh3))2

Zn, PPh3

Toluene, 120oC

X

AcHN

EtO2C

C60

Toluene, 120oCX+

CO2Et

NHAc

Br

Br

C60

PTC

X+

AcHN

EtO2C CO2Et

NHAc

Sultine undergoes DA reaction with C60:

Entry to fullerene based amino acids

C60Toluene, 120oCS

O

O

CO2Et

NHAc

CO2Et

NHAc

CO2Et

NHAcEtO2C

AcHN

49%

12%

+

Entry to polysubstituted benzene derivative

CO2Me

CO2Me

Rh(PPh3)3Cl

CO2MeMeO2C

MeO2C

MeO2C

MeO2C

MeO2C

CO2Me

CO2Me

CO2Me

CO2Me

+Ethanol, Reflux

+

Kotha, S.; Khedkar, P. Eur. J. Org. Chem. 2009, 730.

CO2Me

CO2MeCO2Me

CO2Me

Rh(PPh3)3Cl

+

Ethanol, Reflux

Expected

CO2MeMeO2C

MeO2C

MeO2C

CO2MeMeO2C

MeO2C

MeO2C

CO2MeMeO2C

MeO2C

MeO2C

CO2MeMeO2C

MeO2C

MeO2C

DiynePolysubstituted benzene

derivative obtainedYield (%)

37

22

52

60

Wilkinson’s catalyst: Bringing two DMAD and

one diyne molecule together

Ruthenium catalyst: Bringing two DMAD and

one diyne molecule together

CO2MeMeO2C

MeO2C

MeO2C

CO2MeMeO2C

MeO2C

MeO2C

CO2MeMeO2C

MeO2C

MeO2C

CO2MeMeO2C

MeO2C

MeO2C

DiynePolysubstituted benzene

derivative obtainedYield (%)

32

25

42

37

Two o-quinodimethane precursors of similar reactivity

24

Two competing o-quinodimethane precursors built in a one molecule.

The difference in their reactivity may be exploited towards the synthesis of unsymmetrical polycyclic compounds.

(a) Kotha, S.; Khedkar, P. J. Org. Chem. 2009, 74, 5667.

(b) Kotha, S.; Chavan, A. S. J. Org. Chem. 2010, 75, 4319.

Two o-quinodimethane precursors of Differential

Reactivity!!!

Rongalite: Providing a simple access to novel BCB derivative

containing sultine moiety in its molecular frameworkb

(a) Hillard, R. L.; Volhardt, K. P. C. J. Am. Chem. Soc. 1977, 89, 4058.

(b) Kotha, S.; Khedkar, P. J. Org. Chem. 2009, 74, 5667 .

Preparation of diester and diol derivatives

OH

OH

Diyne Cyclotrimerised product

(benzocycloalkane diester)Yield

(%)Yield

(%)

Benzocycloalkane diol

obtained

CO2Me

CO2Me

CO2Me

CO2Me

OH

OH

CO2Me

CO2Me

OH

OH

CO2Me

CO2Me

OH

OH

37

13

34

20

86

50

49

52

Preparation of dibromo and sultine deivatives

HO

HO

Benzocycloalkane

dibromide

Yield

(%)

a) The dibromides are prepared under NaBr-BF3.OEt2/acetonitrile conditions.

b) The reagent used for these conversions is PBr3.

Yield

(%)

HO

HO

HO

HO

HO

HO

Br

Br

Br

Br

Br

Br

Br

Br

Benzocycloalkane

diol

Benzocycloalkane

sultine

O

S

O

S

O

S

O

O

O

55a

90b

98b

94b

75

79

70

66

S

O

O

Preparation of Diels-Alder adducts

CO2Me

CO2Me

CO2Me

CO2Me

CO2Me

CO2Me

CO2Me

CO2Me

O

S

O

O

S

O

O

S

O

O

S

O

SO2

SO2

SO2

SO2

Yield (%)

a) The conversion is acheived by heating sultine at 100 oC in toluene.

b) The conversion is effected by using microwave irradiations (power:100%,

time: has to be standardized, solvent: o-dichlorobenzene).

DA adductYield (%)

Sultine derivative

Sulfone derivative

40a

21b

33b

33b

52

38

57

44

Aromatization of DA adducts using with MnO2

CO2Me

CO2Me

CO2Me

CO2Me

CO2Me

CO2Me

CO2Me

CO2Me

DA adduct Yield

(%)Aromatized product

CO2Me

CO2Me

CO2Me

CO2Me

CO2Me

CO2Me

CO2Me

CO2Me

99

96

98

98

H2N CO2Me CO2Et

NHAc

CO2Et

NHCHO

Br

Br

CO2Me

CO2Me

CO2Me

CO2Me

OH

OH

[2+2+2]

reactionLAH

BF3.Et2O

HCHO/HBr NBSHCHO/HBr

Brx x

NaBr

Br

Br

CO2Me

CO2Me

CO2Me

CO2Me

OH

OH

[2+2+2]

reactionreduction

bromination

HCHO/HBr

Br

Br

CO2Et

NCCO2Et

NH2

CO2Et

NHAc(i) (ii) (iii)

n = 1 5an = 2 5bn = 3 5cn = 4 5d

n n n n

NC

CO2Et

n = 1 7an = 2 7bn = 3 7cn = 4 7d

n = 1 3an = 2 3bn = 3 3cn = 4 3d

Reagent and condition: (i) EICA, K2CO3, TBAHS, CH3CN, 12 h, reflux; (ii) ethanol, dil. HCl, RT, 12 h;

(iii) Ac2O, DMAP, DCM, RT, 10 h

Kotha, S. Krishna, N. G. Misra, S. Khedkar, P. Synthesis 2011 (DOI: 10.1055/s-0030-1260145)

List of various benzocycloalkane AAAs prepared

Entry Substrate Product Yield (%)a

Br

Br

NHAc

CO2Et

Br

Br

NHAc

CO2Et

42

35

Br

Br

Br

Br

NHAc

CO2Et

25

36

1

2

3

4

NHAc

CO2Et

34

Synthesis of Dialkenyl Based Peptides

EtOOC

CN

EtOOC

CN

2

a

1

b EtOOC

H2N

3

EtOOC

RHN

HOOC

RHN

c

de

RHN

HN

O

COOMe

5 (R=Boc)6 (R=Boc)

H

95% 94%

4 (R=Boc) 82%

Reagents and conditions: (a) Propargyl bromide, K2CO3, TBAHS, CH3CN, reflux, 16 h; (b) EtOH/HCl, rt, 2

h; (c) (Boc)2O, CH3Cl, reflux, 36 h (5a), Ac2O, DCM, rt, 3 h (5b); (d) 2N NaOH, dioxane, rt, 24 h (6a), 2N

NaOH, MeOH, rt, 24 h (6b); (e) DCC, HOBt, THF, NMM, DMF, rt, 24 h

Kotha, S.; Mohanraja, K.; Durani, S. Chem. commun. 2000, 1909.

35

[2+2+2] Cycloaddition of Dialkenyl Based Peptides

RHN

HN

O

COOMe

6a (R=Boc)

H

BocHNHN

OCOOMe

H

70%

OHHO

a

Reagents and conditions: (a) 1,4-butynediol/EtOH, Wilkinson's catalyst, reflux 4 days

CO Leu OMe

NHBoc

OH

OH

CO D-Val OMe

NHBoc

OH

OH

CO D-Leu NHMe

NHBoc

OH

OH

CO D-Val Leu OMe

NHBoc

OH

OH

CO Leu Ala NHMe

NHBoc

OH

OH

(Ph3P)3RhCl

2-butyn-1,4-diolK2CO3, CH3CN NTs

CO2Et

NTs

CO2EtHO

HO

NTs

CO2EtBr

Br

PBr3, benzene

Rongalite

DMF

RT

TsHN CO2Et

Br

NTs

CO2EtO

SO

Kotha, S.; Banerjee, S. Synthesis 2007, 1015

New entry to tetrahydroisoquinoline (Tic)

amino acid derivatives

N

R

R Ts

CO2EtR

R

+

1. Toluene, ref lux

2. MnO2, DioxaneNTs

CO2EtO

SO

NTs

CO2Et

O

O

NTs

CO2Et

O

NTs

CO2EtMe

Me

O

O

NTs

CO2Et

O

O

O

NTs

CO2Et

NTs

CO2EtMeO2C

71% 72%

77%

82%

70%

MeO2C

Various (Tic) amino acid derivatives prepared

40

Synthesis of O- Propargylated Compounds

OHO

propargylbromide,acetone

K2CO3,reflux

R = 4-CO2Et, H, 4-Me, 4-OMe, 4-tBu

RR

1 2

Entry

Table I - Preparation of substituted phenylpropargyl ether 2a-2e

1 2

a R = 4-CO2Et R = 4-CO2Et 27 98

b R = H R = H 23 97

c R = 4-Me R = 4-Me 22 72

d R = 4-OMe R = 4-OMe 22 87

e R = 4-tBu R = 4-tBu 22 95

Time(h) Yield(%)

41

Alkyne Trimerization of O-Propargylated Precursors

O O

O

O

O

O

O

+

Cl2(PPh3)2Ru=CHPh

toluene, 80 °C

R = 4-CO2Et, H,4-Me, 4-OMe, 4-tBu

R

R

R

R

R

R

R

+

OH

R

23 4 1

Entry

Table II - Preparation of 1,3,5- & 1,2,4-triaryloxymethylbenzenes 3a-3e, 4a-4e & depropargylated

product 1a-1e

a 4-CO2Et 7.5 54 60 37 1.6:1 1.3:1

b H 5.0 27 37 25 1.5:1 1.3:1

c 4-Me 5.0 26 33 13 2.6:1 1.4:1

d 4-OMe 5.0 24 71 - - 1.2:1

e 4-tBu 5.0 50 24 22 1.1:1 1.4:1

Time(h)G-I(mol%)

Yield(%)3&4

Yield(%)1

3&4:1 4:3R

42

Independent synthesis of 1,3,5-Triarylbenzene derivatives

Entry

Table III - Preparation of 1,3,5-triaryloxymethylbenzenes3a-3e from 6 and 1

1 3 Yield(%)

a R = 4-CO2Et R = 4-CO2Et 7 87

b R = H R = H 5 100

c R = 4-Me R = 4-Me 5 99

d R = 4-OMe R = 4-OMe 5 84

e R = 4-tBu R = 4-tBu 8 95

Time(h)

Br

Br

Br

OH

+

R = 4-CO2Et, H, 4-Me, 4-OMe, 4-tBu

acetone, K2CO3

reflux

O

O

O

316R

R

R

R

43

Identification of Regioisomers

1H NMR spectrum of trimerized product (benzylic protons are shown)

LC-Mass spectral studies

Figure 1 Figure 2 Figure 3

635.2611.5

O

O

O

EtO2C

CO2Et

EtO2C

O

O

O

O

O

O

EtO2C

CO2Et

EtO2C

CO2Et

CO2Et

EtO2C

CO2Me

CO2Me

CO2Me

CO2Me

G-I

Tolueneref lux

X

X

XX

+

Kotha, S. Vittal, S. Mobin, S. Synthesis 2011, 1581

CO2Me

CO2Me

Cl

Cl

CO2Me

CO2Me

Br

Br

CO2Me

CO2Me

I

I

CO2Me

CO2Me

MeO

MeO

Ruthenium-Mediated [2+2+2] Cyclotrimerization

45

What is Suzuki Coupling reaction?

Recent application of the Suzuki-Miyaura cross-coupling

reaction in organic synthesis

Kotha S.; Lahiri, K.; Kashinath, D. Tetrahedron 2002, 58, 9633.(814 citations)

Most requested documents-chemistry and related science

CAS Science Spotlight 2003 & 2004http://www.cas.org/spotlight

Best review paper award 2005 : I. I. T., Bombay

X

R1

B(OH)2

R2

+R1 R2

X=I, Br, OTfz

Pd(0)

a) Miyaura, N.; Suzuki, A. JCS. Chem. Commun. 1979, 866

b) Miyaura, N.; Yamada, K.; Suzuki, A. Tetrahedron Lett. 1979, 3437.

c) Miyaura, N.; Yanagi, T.; Suzuki, A. Synth. Commun. 1981, 513.

CO2Me

CO2Me

X

X

CO2Me

CO2Me

Y

Y

X = Br, I

Suzuki coupling

CO2Me

CO2Me

OHC

OHC

CO2Me

CO2Me

H3COC

H3COC

CO2Me

CO2Me

MeO

MeO

Reaction conditions: 4-YC6H4B(OH)2, Pd(PPh3)4 (5–9 mol%), THF–toluene–H2O (1:1:1),

Na2CO3, 90 C.

Publications in [2+2+2] area

S. Kotha, N. Sreenivasachary

Synthesis of 1, 2, 3, 4-tetrahydroioquinoline-3-carboxylic acid (Tic) derivatives by

cycloaddition approaches.

Eur. J. Org. Chem. 3375, 2001.

S. Kotha, E. Manivannan

Synthesis of spiro-indanes by cycloaddition strategy.

J. Chem. Soc. Perkin Trans. 1, 2543, 2001.

S. Kotha, N. Sreenivasachary

A new synthetic approach to 1, 2, 3, 4-tetrahydroisoquinoline-3-carboxylic acid (Tic) derivatives

via a [2+2+2] cycloaddition reaction.

Bioorg. Med. Chem. Lett. 10, 1413, 2000

S. Kotha, K. Mohanraja, S. Durani

Constrained phenylalanine peptides via a [2+2+2]-cycloaddition strategy

Chem. Commun. 1909, 2000.

S. Kotha, E. Brahmachary

Synthesis of unusual α-amino acids via a [2+2+2] cycloaddition strategy.

Tetrahedron Lett. 38, 3561, 1997

1

2

3

4

5

S. Kotha, E. Brahmachary

Synthesis of constrained phenylalanine derivatives via a [2+2+2] cycloaddition strategy.

Bioorg. Med. Chem. 10, 2291, 2002.

S. Kotha

The building block approach to unusual -amino acid derivatives and peptides.

Acc. Chem. Res. 36, 342, 2003

S. Kotha, K. Lahiri

Application of the Suzuki–Miyaura cross-coupling reaction for the modification of

phenylalanine peptides.

Biopolymers 69, 517, 2003

S. Kotha, E. Brahmachary

Synthesis and reactions of silicon containing cyclic α-amino acid derivatives.

J. Organomet. Chem. 689, 158, 2004.

S. Kotha, A. Ghosh

Cycloaddition approach to indane based α-amino acid derivatives.

Tetrahedron 60, 10833, 2004

S. Kotha, N. Sreenivasachary.

Synthetic approaches to tetrahydroisoquinoline-3-carboxylic acid derivatives.

J. Indian. Inst. Sci. 81, 277, 2001

6

7

8

9

10

11

S Kotha, S. Misra, S. Halder

Benzannulation.

Tetrahedron 10775, 64, 2008.

S. Kotha, E. Brahmachary, K. Lahiri

Tansition metal-catalyzed [2+2+2] cycloaddition and application in organic synthesis.

Eur. J. Org. Chem. 4741, 2005.

S. Kotha, S. Banerjee

Synthesis of Novel 1, 2, 3, 4-tetrahydroioquinoline-3-carboxylic acid (Tic) derivatives through

the application of Rongalite: A Synergetic Combination of [2+2+2] and [4+2]-Cycloaddition Reactions.

Synthesis 1015, 2007

S. Kotha, A. Deb, K. Lahiri, E. Manivannan

Recent synthetic approaches to spirocyclics.

Synthesis 165, 2009

S. Kotha, A. Ghosh

A Diels–Alder approach for the synthesis of highly functionalized benzo-annulated indane-based

α-amino acid derivatives via sultine intermediate.

Tetrahedron Lett. 45, 2931, 2004.

12

13

14

15

16

S. Kotha, N. G. Krishna, S. Misra, P. Khedkar

Synthesis of linearly and angularly fused constrained alpha amino acid derivatives.

Synthesis (accepted)

S. Kotha, V. Seema, S. M. Mobin

Synthesis of biaryl derivatives by using ruthenium mediated [2+2+2] cyclotrimerization and

Suzuki-Miyaura cross-coupling as key steps.

Synthesis 2011, 1581.

S Kotha, P. Khedkhar

A diversity oriented approach to diphenylalkane derivatives by strategic utilization of [2+2+2]

Cyclotrimerization, cross–enyne metathesis and Diels–Alder reaction.

Eur. J. Org. Chem. 730, 2009.

S. Kotha, D. Bansal, R. Vinodkumar

Synthesis of symmetrical and unsymmetrical trisubstituted benzene derivtives through ring-closing

alkyne metathesis strategy and depropargylation under various catalyst conditions.

Indian. J. Chem. 225, 2009.

S Kotha, P. Khedkhar

Differential reactivity pattern of hybrid o-quinodimethane precursors: Strategic expansion to

annulated benzocycloalkanes via Rongalite

J. Org. Chem. 5667, 74, 2009.

17

18

19

20

21

Ph. D students

1. Dr. E. Brahmachary

2. Dr. N. S. Chary

3. Dr. R. Sivakumar

4. Dr. E. Manivannan

5. Dr. S. Halder

6. Dr. (Ms). K. Lahiri

7. Dr. K. Mohanraja

8. Dr. M. Behera

9. Dr. A. Ghosh

10. Dr. A. C. Deb

11. Dr. D. Kasinath

12. Dr. K. Mandal

13. Dr. S. Banerjee

14. Dr. K. Singh

15. Dr. V. Shah

16. Dr. (Ms). P. Khedkar

17. Dr. M. K. Dipak

18. Mr. S. Vittal

19. Ms. S. Misra

20. Ms. A. Tiwari

21. Ms. N. G. Krishanan

22. Mr. A. S. Chavan

23. Ms. D. Bansal

24. Mr. M. P. Meshram

25. Mr. G. Waghule

26. Mr. M. Shirbhate

27. Mr. R. Ali

28. Mr. Ch. Ajaykumar

1. Mr. S. A. Jothi

2. Mr. G. Giridharan

3. Ms. R. Deshpande

4. Ms. M. S. Subhashi

5. Mr. S. R. Subbaiah

6. Mr. A. Mehta

7. Mr. C. Chatterjee

8. Mr. AP. Suresh Babu

9. Ms. S. Bhattacharjee

10. Mr. P. Charkrabarty

11. Mr. T. Kesharwani

12. Mr. A. Singh

13. Mr. V. Rane

14. Mr. A. Pal

15. Mr. T.T. Rao

16. Mr. M. Banik

17. Mr. R. K. Das

18. Mr. V. Shukla

19. Mr. U. Basu

20. Mr. K. Raju

21. Ms. G. Rama

22. Mr. P. K. Shee

23. Ms. B. Mandal

M. Sc. students

1. Dr. T. Ganesh

2. Dr. R. Vinod. Kumar

3. Dr. S. Kumar

4. Dr. (Ms). K. Lahiri

5. Dr. D. Nagaraju

6. Dr. (Ms). P. Khedkar

7. Dr. T. Niranjan

8. Dr. Venu Srinivas

Post-doctoral students

Project/Summer students

1. Mr. S. M. Husian

2. Mr. M. J. Rihan

3. Ms. M. Sridevi

4. Mr. A. Pradeesh

5. Ms. B. V. Lakshmi

Acknowledgements

DST(SERC)

DST(Nano)

DST(J. C. Bose Fellowship)

CSIR

IRCC-IITB

SAIF

Chemistry Department