7
Plant, Cell and Environment (1997) 20, 1193-1198 Salinity resistance and plant growth revisited p. NEUMANN Plant Phy.siology Lahoraloiy, Lowdennilk t'\icutiy of Agricultural Engineering, Tcctinion tIT, Haifa 32(K)0, tsract ABSTRACT Tliis iirlicle reconsiders a recent hypothesis coiiccrnin}» Ihc physiolojiy of jjrovvtii inhibition by salinity and its relc- vaiice to the breeding of salt-resistant crops (Mnnns 1993, Plant, Cell and Environment 16, pp. 15-24). The hypothesis slates tliat the osmotic elTects of salinity on water avail- ability will strongly and equally inhibit the growth of related species and varieties. The genotypic diversity needed lor breedin;^ increased resistance lo growth inliibi- tion by sulinity is only expected lo appear aller week,s or months. Higher rates of sail acciimuliilion in more sensi- tive varieties then lead to accelerated leafsenescence. This lurther inhibils new growlli, as C(>ni|)arecl with more resi,s- tant varieties. Accordingly, breeders aiming to increase crop growth under salinity should locus efforts on manip- ulating genes which can decrease rales of salt accumula- tion. However, the osmolic inhibition of growth by salinily appears lo involve regnlatory physio* ;icnl changes. Thus, some si^notypic diversity might be expected. Clear evi- dence is i)resented for genotypic diversity in early growth I espouses to salt or PECJ-indnced osmotic stress, in .several species and varieties. The conclusion is thai development of plants with increased resistance to inhibition of growUi by the osmolic effects of external salinity (in addition to increiised resistance lo salt accumulation) is bolh feasible and desirable. Key-words: breeding: diversity: gt-owlh: it-rigalioii: tiiecha- ttisitis: osmolic: r-fsistance: salinity: toxic: yield. INTRODUCTION Excessive soil salirtily can t-esult IVotu rialut-al pt-occsses, or IVom ct-op irrigation wilh saline itrigalioti waler utider poor dt-airiage condilioirs. Excessive soil salir-rily occuts in matiy semi-atid to arid r-cgions of the world where it inhibits the gr-owth and yields of crop planls (Gt-eetiway & Mutiiis 1980: Tatiji 1990). The physiology of plant t-esponses lo salinity and Ihcir relation to salinity t-esislairce have been much tcsear-ched and IVequcnlly reviewed in t-eccnt yeats (eg, Pasletnak & Pielro 1985: Cheeseman 1988: Liiuchli 1990: Rengel 1992: Munrts 1993; Neumann 1995a), Otie common theme is Ihal plants with incteased salinity tesis- lancc are expected to tnaintain higher t-ates of gr-owlh than less tcsislant planls, under equivalent levels of salinily. Corrcspimdencc: P. Neumann. F<i.\: 972 4 S22152'): e-mail: agpelcrn @ leclumi.wlechnion.ac. il Unlor-lututlcly, the irilt-(->ducliot-t of moi-c salitiily-tesistatil ct-ops has bcet-t a t-elatively slow ptocess, and this fact has geticr-aled r-titich r-cceni debate atnongsl physiologists, br-eedet-s atid genetic cngineer-s aboul lhe physiological tnechanisms involved it-t salinily t-esislance atid the best way lo pt-occed wilh fulut-e bt-eeditig cffor-ts (e.g. Wyn Jones & Gotham 1986: Bkttn 1988: Noble & Rogers 1992; Munns 1993: Richatds 1993: Flowers & Yeo 1995: Bohnetl & Jensen 1996), Clearly, lhe I'it-st step is lo idetilify pat-cnl platils with tt-aits which at-e hcr-ilable atid conlributc to salinily t-esis- laticc. One pt-obletn is that ihct-c is slill no clear consensus coiicernitig the physiological trails thai at-e primarily t-csponsiblc for gr-owlh itihibilion by salinity. However-, pr-omising ttaits cati be idctilified by: (a) sct-eettitig for appt-opriale diversity in t-cspotises lo salitiily among tnod- et-n cullivat-s or t-elaled wild species (e.g, Blum 1988: Flower-s & Yeo 1995): (b) lt-ealmctil wilh mutagetis itt ot-der lo pt-odtrce r-tnttants which show hypet-sensitive or t-educed t-esponses to salinily as compat-cd with the wild type (e.g. Zhartg el al. 1995: Wu ct at. 1996): (c) cngineet-- ing tt-atisgcttic platits which expr-ess one or r-tior-e Ibt-cign genes which ate expected to irtct-ease cellttlar t-csistance to salinity (e.g. Bohnert & Jensen 1996). Another pt-oblctn is ihal completely dilTet-cnt gr-owlh r-cspottses tnay be appt-opriale for dilTcietil types of tar-get eirvit-onments. For example, when plat-tls at-e gr-owri in semi-arid t-cgioiis, under low-it-iput conditions whet-e com- biiralions of soil salinily and lerrninal drought ate expected, early onset of sall-itiduccd t-eductions in leaf gt-owlh tales may r-cpt-esctil an adaptive t-csponso. Tints, eat-ly gt-owlh inhibition, by litniling lr-an,spir-alional losses and pr-olotiging lhe availabilily of limited soil watcr r-eser-ves, could pt-olotig sur-vival during the dt-y summer- months lor long enough to allow allaintnctil of sotne tepr-o- duclivc yield (cf Richards 1993: Ncutnanti 1995b), Cotivetsely, Ibrhigh-itipul croj-js ptodttced ttndei- itilermil- tet-tt ir-t-igation with ttiodcr-ately saline water, strrvival is tiot trsually in question artd yield is llic main concetn. In this case, early otisel of inhibilioti ofgr-owlh r-alcs by lhe build tip of soil salinity could diteclly limit plant size and yield, Mot-eovet-, ongoing irihibitiort of leaf gt-owth also dect-eases Ihc volume of new leaf tissues into which excess salt iot-is (which ate ir-arispot-led IVom the soil to the leaves via lhe tt-anspit-atioti slt-eatn) can be safely accumulaled. Cotitinuous sail accutntrlalioti combit-ted with litniled ptoduclion of new leaf volume could then lead to eatlier build ttp of excess (toxic) levels of sail. This might fut-lher accelet-alc the otiset of leaf setiescencc atid necrosis (Munr-ts 1993). © 1997 Blackwell Science Ltd 1193

Salinity resistance and plant growth revisited

Embed Size (px)

Citation preview

Page 1: Salinity resistance and plant growth revisited

Plant, Cell and Environment (1997) 20, 1193-1198

Salinity resistance and plant growth revisited

p. NEUMANN

Plant Phy.siology Lahoraloiy, Lowdennilk t'\icutiy of Agricultural Engineering, Tcctinion tIT, Haifa 32(K)0, tsract

ABSTRACT

Tliis iirlicle reconsiders a recent hypothesis coiiccrnin}» Ihcphysiolojiy of jjrovvtii inhibition by salinity and its relc-vaiice to the breeding of salt-resistant crops (Mnnns 1993,Plant, Cell and Environment 16, pp. 15-24). The hypothesisslates tliat the osmotic elTects of salinity on water avail-ability will strongly and equally inhibit the growth ofrelated species and varieties. The genotypic diversityneeded lor breedin;^ increased resistance lo growth inliibi-tion by sulinity is only expected lo appear aller week,s ormonths. Higher rates of sail acciimuliilion in more sensi-tive varieties then lead to accelerated leafsenescence. Thislurther inhibils new growlli, as C(>ni|)arecl with more resi,s-tant varieties. Accordingly, breeders aiming to increasecrop growth under salinity should locus efforts on manip-ulating genes which can decrease rales of salt accumula-tion. However, the osmolic inhibition of growth by salinilyappears lo involve regnlatory physio* ;icnl changes. Thus,some si^notypic diversity might be expected. Clear evi-dence is i)resented for genotypic diversity in early growthI espouses to salt or PECJ-indnced osmotic stress, in .severalspecies and varieties. The conclusion is thai developmentof plants with increased resistance to inhibition of growUiby the osmolic effects of external salinity (in addition toincreiised resistance lo salt accumulation) is bolh feasibleand desirable.

Key-words: breeding: diversity: gt-owlh: it-rigalioii: tiiecha-ttisitis: osmolic: r-fsistance: salinity: toxic: yield.

INTRODUCTION

Excessive soil salirtily can t-esult IVotu rialut-al pt-occsses, orIVom ct-op irrigation wilh saline itrigalioti waler utider poordt-airiage condilioirs. Excessive soil salir-rily occuts in matiysemi-atid to arid r-cgions of the world where it inhibits thegr-owth and yields of crop planls (Gt-eetiway & Mutiiis1980: Tatiji 1990). The physiology of plant t-esponses losalinity and Ihcir relation to salinity t-esislairce have beenmuch tcsear-ched and IVequcnlly reviewed in t-eccnt yeats(eg, Pasletnak & Pielro 1985: Cheeseman 1988: Liiuchli1990: Rengel 1992: Munrts 1993; Neumann 1995a), Otiecommon theme is Ihal plants with incteased salinity tesis-lancc are expected to tnaintain higher t-ates of gr-owlh thanless tcsislant planls, under equivalent levels of salinily.

Corrcspimdencc: P. Neumann. F<i.\: 972 4 S22152'): e-mail:agpelcrn @ leclumi.wlechnion.ac. il

Unlor-lututlcly, the irilt-(->ducliot-t of moi-c salitiily-tesistatilct-ops has bcet-t a t-elatively slow ptocess, and this fact hasgeticr-aled r-titich r-cceni debate atnongsl physiologists,br-eedet-s atid genetic cngineer-s aboul lhe physiologicaltnechanisms involved it-t salinily t-esislance atid the bestway lo pt-occed wilh fulut-e bt-eeditig cffor-ts (e.g. WynJones & Gotham 1986: Bkttn 1988: Noble & Rogers 1992;Munns 1993: Richatds 1993: Flowers & Yeo 1995:Bohnetl & Jensen 1996),

Clearly, lhe I'it-st step is lo idetilify pat-cnl platils withtt-aits which at-e hcr-ilable atid conlributc to salinily t-esis-laticc. One pt-obletn is that ihct-c is slill no clear consensuscoiicernitig the physiological trails thai at-e primarilyt-csponsiblc for gr-owlh itihibilion by salinity. However-,pr-omising ttaits cati be idctilified by: (a) sct-eettitig forappt-opriale diversity in t-cspotises lo salitiily among tnod-et-n cullivat-s or t-elaled wild species (e.g, Blum 1988:Flower-s & Yeo 1995): (b) lt-ealmctil wilh mutagetis ittot-der lo pt-odtrce r-tnttants which show hypet-sensitive ort-educed t-esponses to salinily as compat-cd with the wildtype (e.g. Zhartg el al. 1995: Wu ct at. 1996): (c) cngineet--ing tt-atisgcttic platits which expr-ess one or r-tior-e Ibt-cigngenes which ate expected to irtct-ease cellttlar t-csistance tosalinity (e.g. Bohnert & Jensen 1996).

Another pt-oblctn is ihal completely dilTet-cnt gr-owlhr-cspottses tnay be appt-opriale for dilTcietil types of tar-geteirvit-onments. For example, when plat-tls at-e gr-owri insemi-arid t-cgioiis, under low-it-iput conditions whet-e com-biiralions of soil salinily and lerrninal drought ateexpected, early onset of sall-itiduccd t-eductions in leafgt-owlh tales may r-cpt-esctil an adaptive t-csponso. Tints,eat-ly gt-owlh inhibition, by litniling lr-an,spir-alional lossesand pr-olotiging lhe availabilily of limited soil watcrr-eser-ves, could pt-olotig sur-vival during the dt-y summer-months lor long enough to allow allaintnctil of sotne tepr-o-duclivc yield (cf Richards 1993: Ncutnanti 1995b),

Cotivetsely, Ibrhigh-itipul croj-js ptodttced ttndei- itilermil-tet-tt ir-t-igation with ttiodcr-ately saline water, strrvival is tiottrsually in question artd yield is llic main concetn. In thiscase, early otisel of inhibilioti ofgr-owlh r-alcs by lhe build tipof soil salinity could diteclly limit plant size and yield,Mot-eovet-, ongoing irihibitiort of leaf gt-owth also dect-easesIhc volume of new leaf tissues into which excess salt iot-is(which ate ir-arispot-led IVom the soil to the leaves via lhett-anspit-atioti slt-eatn) can be safely accumulaled. Cotitinuoussail accutntrlalioti combit-ted with litniled ptoduclion of newleaf volume could then lead to eatlier build ttp of excess(toxic) levels of sail. This might fut-lher accelet-alc the otisetof leaf setiescencc atid necrosis (Munr-ts 1993).

© 1997 Blackwell Science Ltd 1193

Page 2: Salinity resistance and plant growth revisited

1194 P. Neumann

Sail-induced inhibition of leaf gt-owlh can also slowcanopy closur-e during seedling establishmenl. This tnaydect-ease seedling water use efficiency, since tnot-c soilwater is lost via dir-ect evapor'ation IVom the soil surfacethan via the leaves (cf. Richards 1993; Van den Boogaat-dct al. 1996). Finally, salinily can tapidly inhibit rootgr-owth and hence capacity for uptake of waler and essen-tial tninetal nutrients from the soil (Ncutnann 1995a).

Clearly, ther-elbt-e, the dit-ect gt-owth inhibitory effects ofsalinity are undesit-able during high-input ctop production.This article ar-gues that effor-ts at inct-easing plant capacityto continuously tnaintain high r-ates of vegetative andreproductive growth under saline irrigation could helpitnpt-ove ct-op yields in setni-arid regions. It criticallyteconsiders a recent hypothesis (Munns 1993) which sug-gests that efforts at inct-easing salinity resistance should beuniquely focused on t-estricting the toxic effects on gt-owthof excessive salt accumulation within the plant,

WHICH PHYSIOLOGICAL MECHANISMSUNDERLAY VARIETAL DIFFERENCES INGROWTH INHIBITION BY SALINITY?

There is genet-al agr-eement that whole-plant growthresponses to salinity at-e tnultigenic and that a better know-ledge of the underlying physiology is tequir-ed in ot-der tounderstand why some plant species and varieties at-e tnot-csalt-r-esistant than others. This is a eotnplex task since plantgt-owth r-esponses to salinity can var'y with: (1) the degr'eeof stress encountet-ed (tnild, tnodet-ate or sevet-e); (2) theplant ot-gan, variety or species which is investigated; (3)the plant developtnental stage and the dut-ation of theslt-ess. Mot-eover-, lhe gt-owlh inhibitot-y ellecls of salinitycan also be alTected by variation in the activity of calciutnor potassiutn ions in the saline t-oot mediutn (Lauchli 1990;Rengel 1992; Neumann 1995a: Wu e/«/. 1996),

Tht-ce physiological tnechanisms have often been con-sidet-ed to be pritnarily t-esponsible for the growth inhibi-tion induced by salinily: (I) tutgor pressut-e r-eductions inthe expanding tissues; (2) t-eductions in the photosystemactivity of leaf cells, and (3) dit-ect effects of accutnulatedsalt on critical tnetabolic steps in dividing and expandingcells. However, Munns (1993) ihor-oughly r'eviewed thesepossibilities and cited nurnerxurs experitnental findingswhich indicate that these particular mechanisms are not thepr'itnar-y factors responsible for growth inhibition undersaline conditions.

As an alternative, Munns hypothesized that plant gr-owthis initially inhibited (phase 1) by cellular t-esponses to theostnotic elTects of external salt, i,e, by responses to thedeer-eased availability of soil water. In a later, secondt-esponse (phase 2), gt-owth is fut-ther inhibited by the toxicelTects of excessive salt accumulation within the plant.According to this two-phase hypothesis, there is littlespecies or varietal diversity in the degree to which growthis inhibited by the osmotic compotienl ol salinity. Varietaldivet-sity in plant growth t-esponses is only expected toappear afler Iong-tertn exposut-e to salinity (i,e, when phase

2 commences, after weeks or mor-tlhs). Higher t-atcs of sailaecutnulation in the tnatute leaves of tnor-c sall-setisilivevarieties then lead to toxic effects, i,e, accelet-aled leafsenescence and/or nect-osis. The acceler-ated loss of viableleaf ar-ea, as a result of this senescence, should then reducephotosynthesis, and levels of essential hormones, logt-owth-limiting levels (i,c, new growth will be fur-ther-itihibited).

In suppott of the two-phase hypothesis, Munns el al.(1995) showed that diffetences in the degt-ee of gt-owthinhibition, atnong several varieties of wheat and barley,only appeared in phase 2, i,e, alter c. I tnonth of saliniza-tion, when differ-ential r-ates of leaf senescence wer-e initi-ated. These dilTer-cnces tended lo coincide wilh salt accu-mulation t-ates and with field r-atings of varietal salinityr-esistance, Sitnilar t-esults wet-e obtained in a cotnparisonof two maize cullivar-s known lo differ in salt uptake r-ates(Forttneier & Schubet-l 1995),

Munns el al. (1995) consideted sotne contr-adictor-ycases wher-e early (within days) varietal dilTct-ences ingr-owth r-esponses to salinity wet-e r-epor-ted. These casessuggested thai genolypic vat-iability also existed in theosmotic inhibition of gr-owth. However, they ar-gued that,in these cases, sail uptake was accelet-ated by high gt-owingtetnperatut-es; this further accelet-ated onset of leaf senes-cence and additional gt-owlh inhibition, in the tnor-e sensi-tive eultivars. In sumniar-y, the two-phase hypothesis sug-gests that any varietal diver-sily in plant gt-owth respotisesto salinity will only appear slowly and will be caused bygenotypic dilfet-ences in rates of salt accumulation.

The long-term toxic elTects of sail accumulation ar-eundoubtedly of great impor-tance to both vegetative andr-epr-oductive development (cf Khatun & Flowers 1995),Moreover, the two-phase hypothesis has focused attetitionon leaf senescence r-ate, a whole-plant trail which is easy lomeasur-e and which tnay act as a useful phenotypic mar-ker-tbr varietal divet-sity in salt aecutnulation r-ates. However-,this hypothesis also claitns that salt-induced t-eductions inleaf growth will be sitnilar in salt-sensilive and sall-r-esis-lant varieties, during lhe fir-st weeks or months after salin-ization, when only the ostnotic phase of gt-owth inhibitionis opet-ative. Thus, selectioti and bteeding lor incteasedresistance should be focused exclusively on r-ales of saltaccumulation within the leaves. This is a lar--r'eaching con-clusion since, if it is correct, it dooms to lailur-e the processof selection and br-eeding lor incr-eases in salinity resis-tance on the basis of early varietal diffetences in osmoti-cally induced gt-owth responses.

In this context, it is itnpot-latit to r-emember that theostnolie effects of salinity on water availabilily and gt-owlhmay be maintained thrxjughout plant development. Thus,even if new varieties with t-educed t-ates of salt aecutnula-tion and delayed leaf senescence cati be pr-oduced, theirlong-term rates of gt-owth under saline conditions couldr-etnain inhibited. Reductions in bolh osmotic and toxiclitnitations to gt-owth tnay thet-elot-e be tequir-ed in order loobtain significant incr-eases in r-esistance to gr-owth inhibi-tion by salinity. Breeding lor resistance to osmotic inhibi-

© 1997 Blackwell Scieitce Ltd, Plant. Cell and Enviromncnl, 20, I 193-1 198

Page 3: Salinity resistance and plant growth revisited

Salinity resistance and ptant growth 1195

tion of gtowth will depetui on (he idenlificatioti of parentalvarieties showitig diversity in growth itihibitory lesponsesto ostnotic stress. However, such diversity is specificallyexcluded by Ihe two-phase hypoihesi.s.

IS THERE REALLY NO VARIETAL DIVERSITYIN OSMOTICALLY INDUCED GROWTHRESPONSES TO SALINITY?

In this sectioti I will first argue that the respotises of gfow-itig tissues to ostnotic stress are highly regulated, so thatsome genetic diversity in (his trait tnight be expected. 1 willthen teview several reports which clearly indicate thai vari-etal diversity, i.e, genotypic differences in osmoticallyinduced growth itthibition by salinity, does exist in a num-ber of species.

EARLY GROWTH RESPONSES TOMODERATE SALINITY ARE HIGHLYREGULATED

The effects of moderate (tioti-lethal) external salitiity ongrowth are rapidly established aud can be expected to con-f inue for as long as an excess of salts are present in the t ootzone. What are the specific inechanistns by which sail-induced decreases iti soil water avai\abvHly (i.e. tnove nega-tive soil waler potentials) inhibit plant growth?

Plant growth is ultimately the direct result of massiveand rapid expansion of the young cells produced by meris-feinafic divisions. Moreover, cell expansion in both tootsand leaves can be inhibited by salinity (Kurth et al. 1986;Zidan et al. 1990; Neumann 1995a). Much progress hasf">een made in idetitifying atid measuring the biophysicalparameters wliicli directly control rates of cell expansion.The ptocess depends on an inwatdly directed water poten-tial gradient which generates turgor pressure and cell wateruptake (i.e. volutne inctease). The cell expatision ptocessalso depends on the hydraulic conductivity of the wateruptake pathway, up(ake of" so/utes (o tnaintaiu ostuoticpotentials, and the yielding of the surrounding cell walls(e.g. Cosgrove 1993; Neumanti 1995b). Each of llte.scparameters tnay iti turn be tegulated by tnetabolic activities(e.g. o.smolic adjii.stmeiit, Bernstein 1961; Blutn 1988);

salinity could inhibit growth by directly or indirectlyan'ecting any of tlietn.

However, ostnotic potetUial gradients, hydtaufic con-ductivity and cell turgor pressures in the cell expansionzone, al the tip of growing cereal roots, becatne equivalentto control levels after 2 d of exposure to mckierate salinity,even though growth remained inhibited (cf. Pritchatd1994: Neutnann et al. 1994). Sitnilarly, the long-term inhi-bilioti of cereal leaf growth by salinity did not appear lo becaused by decteased turgor in the cell expansion zone ofgrowing cereal leaves (e.g. Thiel et al. 1988; Cramer 1992;Munns 1993).

In contrast, salinity-induced reductions in growth haveoften been related to measured decreases in the plasticextensibility of the growing cell walls in root and leafexpansion zones (Cramer 1992; Pritchard et al. 1993;Neutnann 1993; Neutiianti el al. 1994). Eor example, theplasticity of expanding cell walls in maize seedling leavesdeereased within minutes of addition of growth inhibitorylevels of NaCl or non-ionic ostnolytes (Neutnann 1993;Chazen & Neumann 1994). The NaCl-iiiduced reductionsin leaf plasticity could be maintained for weeks and wereonly reversed after stress retnoval. Sitnilai'reductions inthe plasticity of cell walls in leaf expansion zones wereinduced by gfowlh inhibitory nutrient deficiencies, or bygrowth inhibilory levels of abscisic acid (Kutschera &Schopfer 1986; Snir & Neutnann 1997). Eitially, itiducedchanges in cell wall plasticity appear to be metabolicallytegulated and closely related to gtowth tates (Cleland1971; Taiz 1984; Rayle & Cleland 1992; Co.sgrove 1993).Il therefore seems that Ihe inhibitioti of plant growth,which is induced by the osmotic effects of external salinity,involves regulated cellular events. Although it may not bea cotninon occurrence, some genotypic variability iti theostnoticaify induced inhibition of growth by safinity tnigfitIhereibi'e be expected.

Genotypic variability in growth responses toosmotic stress

Titble 1 summarizes several reports showing that salittitytreattnents, or treatnients with the non-ionic osmolyte PEG(polyetliyletie glycol), can fesult in varietal (i.e. genotypic)

Plant

Bra.ssica, shootArabidopsis, root

and shootMaize, sboolMaize, root and shoot

Wheat, root and slioolWheat, shoot

Rice, root and shoot

Trealmeiil

80 mol 111 ' NaCl23 mol ni ' NaCl

-80 mol ni ' NaCIl70molnr'NaCl(orPEiG)

20% PEG~ UK) mol nr'NaCl

50 mol t ir ' NaCl

Days

1

91

47

U)

Reference

Hc&CnmKv(!993)Wu et al. (1996)

Cratncr ('/<;/. (1994)Mladcnova(l990)

I?kim(l98())Kingsbury <'/((/. (1984)

Moons <'/(i/. (1995)

Table 1, Reports of varietal dilTcrcnc'cs inroot or shoot growth responses So osmoticsttess, as caused fty salinity or PEG additionsto the root medium. Days refer to time toappcat ancc of differences in growth amongtwo or more varieties. T<i facilif;i(ccomparison ol" t)ic salinity treatments, theyhave all been expressed in units ofeoneentniiion

© 1997 Blackwell Seience Ltd, Plant. Cell atid Environiiiem. 20, 1193-1198

Page 4: Salinity resistance and plant growth revisited

1196 P. Neumann

involving sail loxicils

i'or example early v^ariclal dH'tcrcrc-;[)(>ttscs U) saiinii\ wcvc dcK'ctod la

Bras'vica varieties. Dcspile ihe dilTcrc3 J. lc\'els ol' Na and Cl in the lca\cs

were fhe same (He &: Caunc] 19'-}}K Mteaves in ihese iwu vaiielic^ of B

ous!} shown lo respond lo drouL'hi stilerences in growUi. iluis. dilTereniiaf'pcareci Ut be assoeuilcci with, redue

abilit)' rallier [han laie- of sail aceunui

Olher reports also intlicaic ihal 'v

erovvih respon^cs lo salinitv can ocouiic!t\'. For e\ani(>le. Wu f/ ai i 1 y4(M ix

siiive Aratiidopsis niiitanu which s'nehanyes exeejil Ihat rool and Icai ii

niore sensitive (o mhibifinn in X j ( l -

B\ eotnparison with die wiUi wpc io

iealK itihihiled bv external ^oirau

However, this inhibinoti aispeaser. uinduced delleiciicy in potas^iuui a,\a

excess aeeumuiatinn of soijnnn :op\

C t ' a m e r ci ill- (l^'-U) repe>ii>'U Ldfl

)i k'iil'cic'iiViiiUDn njlcs oi nhu/c rk.r^

oC salini/alion. fnipoiianil} ihr - i>.v-

^enstlive l(> eariy _^no\\ih unnhUi-jnLitcd significanrh ie - -^ochiiin Ui, n V.

eiv. Thu-^. greater nifiihiiion oi ieal p

i.i ]">ropor[ionaiel} higher r.iie-- :n

O'Regan ('/ ill i i'^y^i reported on ea

2R)\v[h of iv\o mai /e vanenes siih^

1 fl d. Here too, early geiKMspic d u i e i ,

presnniablv indepcisdeni o. s Ji

a[>pearcd io be rekiied io diileieiie-, -- i-

x*. ilimul

icei- in leaf gfiivvihter onh 3 il) in Iwu

nccs HI unnvtii al'lefof the Iwi! varieliesoivovei. (ieveiopiiiy

^icu luit! been previ-icss w hh sitnilar dif-

jl uri-nMh respotiseshons in water avail-

iialuHi in ihe leaves.aHetal dilTereiiees in

wulioiu siidiuni to \ -oL'iled sa]l-h\persen-owed no phenoiypie

oudi were 20 times

-hao in ihe wUd type.

n? j^rowih was speeif-

n -^alts wish in 1 d.

^ be related \o a sail-

nulaiion, raiiierthan

^ aricta) ililTcrenees

--. \\ idnn > h and '-> d

p which was more

\\ \,i!inil\ aecumu-c ••ah-re'-istani \'ari-

rw'ih uas uo\ tviateti

Kalt aeeutntilation.

ly dilTerenees in llie

ied io droughl lor

aces in grovMh were

aceiniiulation and

lesponse to reduced

Miadenovii M99()t reponcn e,a'=\ ^ieni>[ypie dilTerenees

in roo! and leal L'row [h lespiaise-- ,o saliniiv ni two otJier

iuai/e variclies. "Hie inowini; icnipeiatui'c {lK-2.i ' C) was

lot high a.nd the difiereiice'^ \U;T..' csialihshed in 24 !i:moreover, siiuiiar diMcienees in le.ii i>rowlh eotild also be

iiidnecd hy ireauiicnt wuh :so v^-..v,'o\h. I'l-Xs solutions. ThePJ:G polymers u,scd are iion IOUK and do noi

peneiraie plant roots Yhc\ do. h{-\\

efieet (ef. Cha/cn ci uL h^>^: and--eenis !ii<el) Shas liiese rapivIK e^Li

enees in mai /c !e,af grovsifi were

respotises to \\w. ostnoiie efleets oldian dilTerences in salt aeeunnnalion |i) the leave--.

Kingshury a dl. (<984i reporsed '^n \arieia! tiilTerenees

:i"i cai'iv grovvUi responses lo salinity in wheat leaves.Despite ihe nsc orii igii grovvnig lenipcratiires. Uiese eariy

dilTerenees were iioi related n' dilTcrenees m levels of saltAccumalMtofs. or k> i.MU:icm:c\ in wMcr rekftiojis. Theauthors sugges^xi ihat grovMh nsndit have been alTceted hy

varietal dilTerenees in ttic ahiiii} .>!' Hie leaf cells !o detox-dv salt hy eomp;H'tinciUah/aiion Hin\'e\xT. an additional

nossihilifv i thai ihese licrKsivpes UdleRxi iii their

t. Itave at!> iherein). Tlius, iihed \arielal dilTer-

icti hv viifTereniiaf) and N a d . rather

to osniotieallv indneed lednetiotis in water availahilitv.

Work by Btiim et ni i IM8(I) [)iovides sitme sitp[}ori for thisaltcrtianve explanation. They sereeiied a range of wheat

CLiliivars for early differenees in leaf gnwvth inhibitioti. \'o\-

iov\ nig additioiis o'i VWG solutions to the rools. [:ari> vat i

etal diffetenees in gri.>wll! res]iot!se ap(>eateii after only 4 d :again, these liilTeienees in lealgrovvth res|)otises io exter-nal Pl^Ci were eleail\ related to osinoiie elTeels and unte-

iated losal i eflecls,

Astam (7 III. ( 19')3l fount! that exposure i'''i riee plants in

saiiniiy siress t t i ronly 10 cKkirfug earl} vcizclaine tlcief-optiicnl resulted ti! subscqueni rediieiions tn vegetative and

reprotluetivc yields. Moreover., thete were sigtnfieanl vari-etal dilferetiees in the degree i^\ re'-[K!nse. I'bis led Aslani('/ (li to eoneliitle that ear!) vegetative gnnvth responses

ean be usetl a> a tratt for i-apis.i seleetioi; o\ salt-resistantvarieties.

.V]!.n)iis ;'/ al. i 1993) argued iha! ihese eatj'ly el'ieeis may

havL- been a. eonscquetice of tiigh growing tetiiperatnres,

which inereasetl sothum uptake rales anti Lteeelerated dif-lereniial leaf seneseenee ni the different varieties.

However, Moons vi ai [ 199."^! reported on varietal (iiiVer-

enecs in the grovvih oC root-, and leaves, for a salt sensitive

and IW'O salt-resistant varieties of rice. v\'ithin 10 i.! of r(X)t

exposmv io 50 mol m " N a ( T hiiportaiuls, no other visible

>ym|itonis o!' stress (e.g. s^dt aeeelerated leaf seneseenee)

\ ere ohserx ed. i e. osmotic resptuises eoidd have been

insoKcd,

FinaH}'. recenf nr^ esligaiioiis in oui l:ibora(or\' i'urlhcr

sup|iori lite existence of genotv pie \ar tabhly in !he growili

responses of nee leaves to osmotic su r s s . Seedlings of two

riee varieiies were treated v\iili iso-ostnoiie solutions of

NaC1 or V\.i\. In both treaiinents, varietal differeiK'es in

leaf growih rates appeared alier only 24 \\ {well belbt-e the

onset oi atiy leal seneseeiiee symptonisi . Moreover, thelespDnsL's )i> i'fXi ueaujieni weie ecrtainlv unudated to

toxie eiTects o\' N a d aini appear to have heeti osrnotiealiy

indtteed (/,. l.u and P. Nenniann. nnpublisheti lesnlts).

CONCLUSIONS

Complex physuilogieal changes such as cell wall and

osnunie adjustments are invohed in the early inhibinon ofgrowth in expanding plant lissues exposed to sismotiestress, l l i is suggcsis tliat. al least in theory, some geiunypie

diversity in varietal growih responses lo osmolie stressni(gh( he e\[iciieil. Sc\'Ci-d\ reporl^ o\' mcAsurcd Jiversilv

in early ([iliase 1) grciwtli responses io osmotie effects olsahniiy. iti a vvide variety o^ piani .sfieeies. eonfirtii this

e\pcelation and therefore eontrachei a eenlra! tenet of iheuvo [ihase hypothesis (4' salinity resisianee (Munns 199.^:Muniis Cl (li 1995).

!hu^. m addilion to altcnipnng lo rcdnee salt aeeurnula

Eion, bleeders shotiid also loetts some aiteiuiou on effortsto itietease ca|-)aeil> for eell e\|iat!sion and henee growth,undei conditions of moi.ier:iie osnioiie suess. Despite the

contfLtr) predielioiis in Munns (1993). raj>Kl screeningtests., based on identifviii'..; eariv tiiflerences in

, H (uu.i Ehu

Page 5: Salinity resistance and plant growth revisited

Salinity resistance and plant growth 1197

i*csp{n)scs IO saliniu or VlXu shouki he tisclui for thispurpose (cf, BUim I*->88|, The iiittiKlucUon oC increasedcapacity lo tiiainUiin growth despilc ostnoiic stress couldhe especially hcneliciiil lV>r l\igh-\npyi evops grown underinterniitletil irrigation wilh inoderatei) siiimc water.

REFERENCES

Askrrn ,V1., (^ureslii R,H, & Ahntcd N rf-i'-jli \ rAivr.l savciiiitg

technique fur' >aH loleraiiL'e Irs ric^- iik'y-.i viM'vj J i, Fhun and

Soil LSO,W-I()7.

Bcrnslcirr S..', \S>b]) Osn-^niie nsljusiiijciii ,'i pianb I- ^[;ink' iin."i!i;i 1.

Stcadv sliiit'. Anwricai' .lotirnal a' Bi<!<iif- 48. 9O'> ' ) | •'

Hlum A, l!')KSi Pliuii Ihvciling ^<<r Si>>:s-^ ! ri:;.i'i.>ndi!K pp.

UO I7f . CRC Press, BOCK RiiioiL i'l C^A

Blum \ , , Sinniciiii B & / j \ ( ) > in?;i)) A:: c^iihiahnr s-: si.\><i ,UK1

sectllirrg ih-uuylii kilcraiiL'L- M'i'cen'oj' (rsls n-, wh--.-,:.'.. F-aphMifo

Bohnort H.,). & ,lciisen R.(;. i.incrcused salt u>ki':iiKv--ilw S

Ptaii! Phv-ioliogy 23, 66i Hil.C'ha/L-ri (). ( Neumann V.W. (i')').ii Mulr:uiii. -.HjiLsh ti-oni th

routs aiid rapid fcll wall liardeninf in gro'Aui!^ liii i. -x' leii\t'^. ai'

rx •espouses lu I'l-.Ci uuiiued v. aK's *.!t'h.-iN /'/ii!i

!-. y.;ij , , iiu,.iMire!iicn!iirs-k". 'C'V[-.'-A 46, Vrvr

r i i : r / e n ( ) . , H; i r lung W . & N c u n u s n ; ! F M I I M O - ^ I -['iK- d i r k - r c n i

eflectN ol Pf'X; 6(1IHI :riul NaCt (sn ijj l d;-\cln:v!K'iil arc :L-,suci-

aled u i l h difTeivniial iniiihiiioi-i ol mot x\y\t:[ -ua\viH-i'i / ' /um,

('('tl iuul Ijiviroumi'iii 18. 727 7,<S.

{ ' l i c e s e r r i a r i , I . M ( l ' ) K S l M c c h a n i M n - . c ! S L H I M M ; - i n k : ; ! ! . 0 0 u . p l a i t l s

FhiNi Phy.n'lo-x'Al.'^-M y-,i)

Cleland R. ( I971 i Ceii wall exU^n^ion Xsnuui' Kn-"-.'- ai I'l.'uu

l'ln.',i»l<>;..r, 22, 19": :22 .

t \)S!;ro\c D . ' . ( P W u Wall exrenvU-ti

and rolalion.sltip lo plani eul! L HiU

Plivifl(>;.ii.^! \24. I -'.-.

C'ranier (i ,R, (1992) Kiiicncs ot iiiai/i ic..i ,-ions'alKiii. !!

Ke^|-ionse ol 'a Na-(.'\i:ludiny i'trUnai .sn,^ ii N: 's-cisAhnu culii-

Vdv 11' \isi\rn,!' \Li/('[i sail 11! si CN .Imru:-! ,.r !-'x,>( nnimin!

/;'>f<f/M'43, SS7-,S64,

Craiiiei ('» \i.. Alhcrico (\ J L ,SC1!!!:KU ( , • \'>''' ' t : .\:' . '\ | ' .i!;sion

liniils (ir\ mallei' aeru!iiiii.Hioi( .il \a!s -.lu's^rd n\ii/A\ \;i.'h\il!.'iii

.ioin-iu!/ oJ I'Uiiii l'h\.^triii>i:\ 21 . (t()3-67 '•

Mouers T.J, & Yeo A.R, -: l'J95i BrcediaL: :o:' ^AW,;.-,-; u--.i-UiKc 111

crop plan!--; where ue\r. ' Aii\!i<j!t'ii' tmimni . • i':,.ir /'/i\-M.()!oi;v

22, , 7.S ,SM.I'or'iincier R. & Sehiiherl S. ii9M.^} S,ih i<!!en:x\ --^l ' iiai/e f / ea

nia>s l , j : Ihe tok' ul sodium e\i ' lu-io! I'l,.::'- ( cl! mui

tnviniiiiiHiii IS. IIMI U)-!"?,

fli'oenv\ay \\. i ; .Miiniis R. f l'-)H(n Vteoltani^'it-. ; = !' Mili ..jicKinee in

noil ha lophues . Annual Ri'vicv-' Piun'. I'hv'U'inir-. 3K '-i'J--l"(],

He "f. & CratJKT Ci.R, s 199.'I (jrowih and ion ..crusauLiMon o]' two

r.i|*iil-e\cling BrLissrca species drHerinj: Wi -MV, :'iic!ani.x*, PUmi

a n d S o i t i S X ]') ^ } .

Khiiuiri S. & ["•|owc!'s '['..I, (!U'-J5) iilTecE-- ui sahi ia . .•n, ^eed ^ci in

r'lee, PUiiii. Celt luul tjiviiciiiui'iu 18,{->;-(v'

Kiii^sh\ir> R W.. LpsiciT-i 1,. t-i S\dvc\ R V., \ 1 % 4 ! Ph>sKiSogJcal

responses lo salinily in seiected lines o! w [K'.U Phm: l''h\sioii>i:\

1A.:\\1 42V

Krirlh T.,. ('ra!iier (i.R.- l.iiueliif .'X, <.Nc iipNioni }•, >• tOS{-i r.fiecis oi

N a d and Cat ' !2 on ceil e,ni;,y'g'.'metu ;ti>u ccU pvivJikTi^n m coi

ton rcKils i'lant PhvsioloiivHl. i ln2 -1106

Kulschcra I). & Seliopfer- P. (1986! idTfcr o( aLx^r li!!-.! abscisK-

acid on ecli wail exicnsibilil\ ni !i!ai/e cuJeopuK'-^. I'huiui 167.

I ancltii .A. (19901 Caleiuiir, saiinny Ltriil lhe plasma ntcnibrano. In

CalciEim in |)]arrl growlli and i ie \ekipmeni . In Ciinviil Ti>;inw in

I'/aiu Plivsiolof^y Series. Vol, 4 (eJs R, I. Leiinard A P. K,

Heplcr), pp. 2f>-.vS. .ASPP, Roekville, MO,

Mladcnova Y.I, ( 1990} Inlluence of salt stress on primary

n-ietflbolism of / e a niavs L. seedlings of model cenoivpes. /'/(//;;

/(( ,/.SV.(7 123, 217 222,

Moon'i .'\.. Rauw (i .. Prinscn h',.. Van Vlonlagtic M, & Van der-

Slraeicn D, l]99.S) Muleeular and physiok)gieal responses to

abseisie aeid and sails in roots of sail sensitive and sitlt-toler'ani

Indica riee var-ielies. Plain l'ln.\iolii}^Y 1(17, 177 186,

.Vhinns R. (1993) Physiologieal |ir'ocesses limiting plaiil gr"ow!h in

saline soils: s(!nie dogmas and liyporhescs. Ptitnl. Cell and

l-.iiviroiimcnt \(t. 15 -24,

Mnnns R.. Scluiclilnian D.P. & ("tiodon A.C. { 1995) fhe sigifi-

eancc of tiic two phase gro\Mli response lo saliriii}' in wheal

and barley, AuMraliiui Journal uf I'luiii I'ln sii>tin;y 22 .

561 .S69

Neumann P.M, ( l9'J,i) Rapid am I reversible iiiodifieations ol exien

sion capaeiiy ol eell w-alls iti eloiigaiing nrai/c leaf lissucs

res})oi!ding io root addition and r-emoval of NaCl, I'hiu/, Cell mid

f-jivirniiiiK'nl 16. I 107 ! I 14.

Neumann P . M (1995a) Iniiibition of root gi'owifi b \ salinily sU'ess:

Toxicitv or an adapl i \e biopliysical response? In Suiicliirc and

i-'iniainri of Htii'i\. hi/wlopnwuts in I'fani am! S'.':l Silencer

(etis 1'. Bainska. M. ( ' i an iporo\a . (). Clasparikova & P. VV.

Barlow), pp, 299 HI4 Kluwer .Academie publishers. Dordrecht,

Nctherlantis,

Ncniii-iann 1' M O W S h ? 'Vtie role of cell wall aLljListnieni in plant

resislanee lo water deficits. ('r^/i Scieitrc 35 . 1258-1266.

.Nerimann P.M .. ,A/ai/eli H i t I). Leon ( P'941 Hardening ol" rool

eell walls- a giowlli inhi(-iiiory I'espon^e lo salinily stress. Plant,

Cell inhU-Jivir^'Hiuciu 17. .^(i3-^tW.

Noble C L. & Roger-s M,!:, (19921 ,Arg[inienis lor the use ol"ph\sio

io<;ical criieria I'or nnfiroviiig ihc s:Hl hik-rance In crops. Plan!

and Sail 146.99- 107.

0 Regai! B,P.. Cie'-s \V A, >*s Van Stadeii .1 1199."i\ R w l ii^vowlh.

watu'i rclalions, abseisie acid [iiul proline levels of Jrorrght

resssteni and droLigbi scnsil i \e iiiai/e enltivars in resp(tnse to

water stress. Sou lti Ajnran Journa/ oj Hrianv 5V. 'JS--I04.

Paslernak D, ^ Piolio S. ( \'-)H5) Hiosalinih m action: bioproducuon

with saline waief Flam and Suit H'-). l -4J . i

PrileharJ J. (1994 | l ans le \ review no, 68. 'fhe eonirol of cell

expansion in roots, AV'u I'lnlologi'^i 127, .' 26.

Piiichar-d ,1.. Hetheringlon R,, I i-y C. & ' fomos 1), j l 993 )

Xyk>elucan endoli 'ansgKcosvlase aclivilv. micr'ofibri! orienla-

iioii and the proliles of eell v\all pr'operlies along the growing

regions of mai /e riioh. Joiunat of l:Api'iii>iciuat Molanv 44,

i2HI 1289.

Ravle D.I,, & Cleland R.K. 1 1992) The acid growih llieorv ofanxin

indtieed cell elon.ealion is alive and well. Plain l'liv.siolo};y 99,

1271 1 2 7 4 ,

R c t i g e l / ( 1 9 9 2 ) T h e l o l e o l ' c a l c i L ! ! i i ,f) sa l t l o x i c i l y . Ptanl. ("t'il

iiiul l:in-iroiinii'iii 15,625 6,^2

Richards R. ( p)9 . i | Bi-eccling crops wilh inii'rcAcd >lress resistanee

in PIIUH RCS/KHI.SC •. lo Cctlutar t'h>h\dratioi) During

l-jiylr«iiimeinal Stress Cur rent 1 opic.s hi Plan! l'h\siolog\ Serie^.,

Vol, 10 {ciXs \. .1. Close it 1.. A, Bray), pp. 21 1 -22.\ PiihiisheJ

bv ASPP, Roekville, .MD.[:SA,

Snir .N. .^ Neuinann P.M, 11997) Viiner-al nutrient sitpplv, eel] wLiil

adjustment and Iho conlrol of leaf growth. rUuit. Celt and

i-jiviroiuucni 20, 239-246Tai / 1.. f 1984) Platil cell exf)arrsion: Regnlation of ecli wall

meehanica! jir-siperties. .Ainnuil Review o! Phini /'hxsiotogv 35,

585 657.T',\n_)5 K.K. tciJ.) 0990) Agrii nhurai Sufini/v A.s.ses'-incnl und

(D 19')7 ISIaekwell Science I,hi. >-V,j;?,'. Cell (i/iiUji\iu>iin^-i;!. 20, I 193 I 19H

Page 6: Salinity resistance and plant growth revisited

1198 P.Neumann

Martagement. Irrigation And Drainage Division, AmericanSociety of Civil Engineers, NY, USA.

'fhici G., Lynch J. & Lauchli A. (1988) Short term elfects of salin-ity stress on the turgor and elongation of growing barley leaves.Journal of Plattt Physiology 132, 38-44.

Van den Boogaard R., Vencklaas E.J. & Lambers H. (1996) Theassociation of biomass allocation with growth and water use effi-ciency of two Triticum acstivum cullivars. Australiati Journal ofPlatit Phy.siology 23, 751 -761.

Wu S., Ding L. & Zhu J. (1996) SOSl, a genetic locus essential forsalt tolerance and potassium aquisition. The Plattt Cetl 8, 617-627.

Wyn Jones R.G. & Gorham J. (1986) The potential for enhancingthe salt tolerance of wheal and other important crop plants.Otttlook on Agriculture 15, 33-39.

Zhang G.Y., Guo Y., Chen S.L. & Chen S.Y. (199.5) RELP taggingof a salt tolerance gene. Platit Science 110. 227-234.

Zidan L, Azaizch H. & Neumann P.M. (1990) Does salinity reducegrowth in maize root epidermal cells by inhibiting their capacityfor cell wall acidification? Plattt Physiology 93. 7-11.

Received 22 Jattitaty 1997: teceivcd itt revised forttt 2 April 1997:accepted for publtcatiott 2 April 1997

© 1997 Blackwell Science Ltd, Platit. Cell attd Ettvirotttttettt, 20. 119.3-1 198

Page 7: Salinity resistance and plant growth revisited