25
Future Challenges Related to Star and Planet Formation Edwin Bergin University of Michigan

S2T01 Bergin Star and Planet Formation

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Future Challenges Related to Star and Planet Formation

Edwin Bergin University of Michigan

Molecules and Star/Planet Formation

• We - as a field - need to connect to exoplanets as the largest growth area in astrophysics.

• Two ways to accomplish this

➡Composition of giant planet atmospheres

➡Bulk/surface composition of terrestrial planets

• All relate to formation…..

• New capabilities: Space based submm/far-IR, expand VLA, enhance ALMA

!"#$%&'$()*+%#",-*).

Caveat: assuming some O in silicates but does not include organics (C-rich + O) and additional unidentified oxygen component

water snow line

CO2 snow line

CO snow line

Oberg, Murray-Clay, & Bergin 2011

Beyond our solar system: C/O Ratio

!"#$%&'$()*+%#",-*).

Inside water snow-line: volatiles in gas. C/O = (C/O)⊙ ~ 0.5

CO, CO2 in gas, water in ice Gas: C/O ~ 2/3

Ice: C/O << (C/O)⊙

C/O Ratio CO in gas, water, CO2 in ice Gas: C/O ~ 1

Ice: C/O < (C/O)⊙

water, CO, CO2 in ice Ice: C/O = (C/O)⊙

Oberg, Murray-Clay, & Bergin 2011

Need to isolate snow-lines of major condensibles:

water, ammonia, carbon monoxide, carbon dioxide, molecular nitrogen

Carbon

10-4

10-3

10-2

10-1

100

101

(N/S

i) A

tom

ic R

atio

810-5

2

4

Venu

s (B

S)

(Low

er L

imit)

ISM

Gas

Ear

th S

urfa

ce R

eser

voir

ISM

Dus

t(lo

wer

lim

it)

Terrestrial Planet/Asteroid Forming Zone

Comet Forming Zone ISM

10-5

10-4

10-3

10-2

10-1

100

101

(C/S

i) A

tom

ic R

atio

ISM

Gas

ISM

Dus

t(lo

wer

lim

it)

Ear

th

(BSE

)

Sun

enst

atit

e ch

ond

rite

s

ordinary chondrites

carb

ona

ceo

us

cho

ndri

tes

comets

sun-grazing

Halley

dus

t

dus

t+g

as ISM

dus

t

gas

carb

ona

ceo

us

cho

ndri

tes

ord

inar

y ch

ond

rite

s

enst

atit

e ch

ond

rite

s

Ear

th

(BSE

)

Sun

comets

sun-grazing

Halley

dus

t

dus

t+g

as ISMd

ust

gas

10-4

10-3

10-2

10-1

100

101

(N/S

i) A

tom

ic R

atio

810-5

2

4

Venu

s (B

S)

(Low

er L

imit)

ISM

Gas

Ear

th S

urfa

ce R

eser

voir

ISM

Dus

t(lo

wer

lim

it)

Terrestrial Planet/Asteroid Forming Zone

Comet Forming Zone ISM

10-5

10-4

10-3

10-2

10-1

100

101

(C/S

i) A

tom

ic R

atio

ISM

Gas

ISM

Dus

t(lo

wer

lim

it)

Ear

th

(BSE

)

Sun

enst

atit

e ch

ond

rite

s

ordinary chondrites

carb

ona

ceo

us

cho

ndri

tes

comets

sun-grazing

Halley

dus

t

dus

t+g

as ISM

dus

t

gas

carb

ona

ceo

us

cho

ndri

tes

ord

inar

y ch

ond

rite

s

enst

atit

e ch

ond

rite

s

Ear

th

(BSE

)

Sun

comets

sun-grazing

Halley

dus

t

dus

t+g

as ISM

dus

t

gas

Ber

gin

et a

l. 20

15

Carbon

10-4

10-3

10-2

10-1

100

101

(N/S

i) A

tom

ic R

atio

810-5

2

4

Venu

s (B

S)

(Low

er L

imit)

ISM

Gas

Ear

th S

urfa

ce R

eser

voir

ISM

Dus

t(lo

wer

lim

it)

Terrestrial Planet/Asteroid Forming Zone

Comet Forming Zone ISM

10-5

10-4

10-3

10-2

10-1

100

101

(C/S

i) A

tom

ic R

atio

ISM

Gas

ISM

Dus

t(lo

wer

lim

it)

Ear

th

(BSE

)

Sun

enst

atit

e ch

ond

rite

s

ordinary chondrites

carb

ona

ceo

us

cho

ndri

tes

comets

sun-grazing

Halley

dus

t

dus

t+g

as ISM

dus

t

gas

carb

ona

ceo

us

cho

ndri

tes

ord

inar

y ch

ond

rite

s

enst

atit

e ch

ond

rite

s

Ear

th

(BSE

)

Sun

comets

sun-grazing

Halley

dus

t

dus

t+g

as ISMd

ust

gas

10-4

10-3

10-2

10-1

100

101

(N/S

i) A

tom

ic R

atio

810-5

2

4

Venu

s (B

S)

(Low

er L

imit)

ISM

Gas

Ear

th S

urfa

ce R

eser

voir

ISM

Dus

t(lo

wer

lim

it)

Terrestrial Planet/Asteroid Forming Zone

Comet Forming Zone ISM

10-5

10-4

10-3

10-2

10-1

100

101

(C/S

i) A

tom

ic R

atio

ISM

Gas

ISM

Dus

t(lo

wer

lim

it)

Ear

th

(BSE

)

Sun

enst

atit

e ch

ond

rite

s

ordinary chondrites

carb

ona

ceo

us

cho

ndri

tes

comets

sun-grazing

Halley

dus

t

dus

t+g

as ISM

dus

t

gas

carb

ona

ceo

us

cho

ndri

tes

ord

inar

y ch

ond

rite

s

enst

atit

e ch

ond

rite

s

Ear

th

(BSE

)

Sun

comets

sun-grazing

Halley

dus

t

dus

t+g

as ISM

dus

t

gas

something happensto interstellar

carbonaceous grains

something happensduring planet formation

Ber

gin

et a

l. 20

15

Nitrogen

10-4

10-3

10-2

10-1

100

101

(N/S

i) A

tom

ic R

atio

810-5

2

4Ve

nus

(BS

)(L

ower

Lim

it)

ISM

Gas

Ear

th S

urfa

ce R

eser

voir

ISM

Dus

t(lo

wer

lim

it)

Terrestrial Planet/Asteroid Forming Zone

Comet Forming Zone ISM

10-5

10-4

10-3

10-2

10-1

100

101

(C/S

i) A

tom

ic R

atio

ISM

Gas

ISM

Dus

t(lo

wer

lim

it)

Ear

th

(BSE

)

Sun

enst

atit

e ch

ond

rite

s

ordinary chondrites

carb

ona

ceo

us

cho

ndri

tes

comets

sun-grazing

Halley

dus

t

dus

t+g

as ISM

dus

t

gas

carb

ona

ceo

us

cho

ndri

tes

ord

inar

y ch

ond

rite

s

enst

atit

e ch

ond

rite

s

Ear

th

(BSE

)

Sun

comets

sun-grazing

Halley

dus

t

dus

t+g

as ISM

dus

t

gas

On the way to making the Earth there is a tale of successive depletion

of major elements - need to track origins and abundances of major carriers

Ber

gin

et a

l. 20

15

Locating Snow-Lines• Methods:

➡ Infer temperature profile and assume ice/vapor transition at sublimation temperature

HL Tau

➡ Indirect inference from unresolved data spanning a range of molecular excitation states

Spitzer (hot water) + Herschel (cold water)

➡Direct imaging

SMA, NOEMA, ALMA

Water and CO Snow-line

• H2O snow-line (Tdust ~150 - 200 K)

➡ close to the star (~1-3 AU)

➡ strongest transitions need space-based observation (e.g. Spitzer/Herschel)

➡ see Zhang+ 2013; Du+ 2015; Blevins+ 2015, in. prep.)

Oxygen in TW HyaDebes et al. 2013

Zhang et al. 2013

hot water

warm water

Zhang et al. 2013Hogerheijde et al. 2011

cold water

Water and CO Snow-line• H2O snow-line (Tdust ~150 - 200 K)

➡ close to the star (~1-3 AU)

➡ JWST cannot do this alone!! need access to cold transitions from space

➡OR!!!! could add dishes to ALMA to increase sensitivity —- ALMA 2.0 — resolve the most important chemical transition!

Water and CO Snow-line

• CO snow-line (Tdust ~ 20 - 40 K)

➡greater distances from star (tens of AU)

➡ can be resolved with ground-based telescopes

➡ numerous stable C and O isotopes to reduce optical depth (12C16O, 13C16O, 12C18O, 12C17O, 13C18O, 13C17O)

TW Hya CO Snow-line

-2-1012

-2

-1

0

1

2

Δα (″)

Δδ

(″)

N2H+ J = 4-3

-2-1012-2

-1

0

1

2

Δα (″)

Δδ

(″)

C18O J =3-2

N2H+ + CO ⇒ N2 + HCO+

50 AU

Qi+ 2013Schwarz+ 2015, in prep.

TW Hya CO Snow-line

-2-1012-2

-1

0

1

2

Δα (″)

Δδ

(″)

C18O J =3-2

13CO 6-5, 3-2, C18O 6-5, 3-2 & abundance analysis CO surface snow-line = 25 - 30 AU; midplane ~20 -25 AU

Schwarz+ 2015, in prep.

Protoplanetary Disk Gas Mass

• Linchpin for determination of chemical abundances

• Cannot trace H2 directly - need to use proxies

➡ thermal emission from dust grains at mm/sub-mm

➡ thermo-chemical modeling of CO gas emission

important question: If we measure abundance in emissive layers (excluding freeze out zone) - is it low gas mass or low abundance?

• Low CO/dust & CI/dust

(Chapillon+ 2008; Dutrey+ 2003; Tsukagoshi+2015; Kama+ 2015)

• Cold water emission survey - no detections beyond TW Hya and HD100546 (Hogerheijde+ 2011; Du et al., in prep.)

• C+ detected in 27% of 47 T Tauri stars (Dent et al. 2013)

• O I less emissive compared to continuum in 21 disks (Keane et al. 2014)

Missing C,O or H2?

Herschel Detection of HD towards TW Hya

➡HD is a million times more emissive than H2 at T ~ 20 K.

➡Atomic D/H ratio inside the local bubble is well characterized (~1.5 x 10-5)

➡More direct measurement of disk gas mass (~0.05 M⨀)

➡Caveat: strong T dependency

3.8

3.7

3.6

3.5

Flux

(Jy)

114113112Wavelength (µm)

HD J = 1-0

CO J = 23-22

4.2

4.0

3.8

3.6

3.4

Flux

(Jy)

57.056.556.0Wavelength (µm)

HD J = 2-1

OH 2Π1/2 9/2-7/2

Bergin et al. 2013

Surface CO Snow-line

freeze-out

snowline

warm mol. layer

TW Hya

13CO 6-5

13CO 3-2average

Schwarz et al. 2015, in prep.

Mass DistributionMenu small grainsMenu large grainsCleevesAndrews pCAndrews sC13CO 6-5 profile

0 10 20 30 40 50 60R (AU)

0

5

10

15

20

Σ w

arm

gas

(g c

m-2

)

Schwarz et al. 2015, in prep.

HD and C18O in TW Hya• Favre et al. 2013

➡Emission ratio FJ=2-1(C18O)/FJ=1-0(HD) is proportional to the CO abundance

➡ Excitation

-HD will not emit if Tgas < 20 K

-CO freezes onto grains if Tgr < 20 K

➡ CO Abundance < 10-5 (+ confirmed by ALMA observations - Schwarz et al. 2015, in prep.)

➡ Same result for water (Du et al. 2015).

Where is the O and C

0 100 200 300

50

100

150

Z(A

U)

a)

−24.0

−21.0

−18.0

−15.0

−12.0

ρ gas[g

cm−3]

0 100 200 300

50

100

150

b)

−24.0

−21.5

−19.0

−16.5

−14.0

ρ dust[g

cm−3]

0 100 200 300

50

100

150

c)

0.8

1.1

1.4

1.7

2.0

Tdust[K

]

0 100 200 300

R(AU)

50

100

150

Z(A

U)

d)

0.8

1.1

1.4

1.7

2.0

Tga

s[K

]

0 100 200 300

R(AU)

50

100

150

e)

101.0

102.5

104.0

105.5

107.0

FXR[phot/s/cm

2]

0 100 200 300

R(AU)

50

100

150

f)

103.0

105.0

107.0

109.0

1011.0

FUV(con

t)[phot/s/cm

2]

evaporation

(thermal/photo)

0 100 200 300

50

100

150

Z(A

U)

a)

−24.0

−21.0

−18.0

−15.0

−12.0

ρ gas[g

cm−3]

0 100 200 300

50

100

150

b)

−24.0

−21.5

−19.0

−16.5

−14.0ρ d

ust[g

cm−3]

0 100 200 300

50

100

150

c)

0.8

1.1

1.4

1.7

2.0

Tdust[K

]

0 100 200 300

R(AU)

50

100

150

Z(A

U)

d)

0.8

1.1

1.4

1.7

2.0

Tga

s[K

]

0 100 200 300

R(AU)

50

100

150

e)

101.0

102.5

104.0

105.5

107.0

FXR[phot/s/cm

2]

0 100 200 300

R(AU)

50

100

150

f)

103.0

105.0

107.0

109.0

1011.0

FUV(con

t)[phot/s/cm

2]

Possible Mechanism• radial + vertical

pressure gradients

• dust settling + growth + radial drift

• sequesters volatiles in midplane (more water than CO)

• particles must be large enough to frustrate feedback Du+ 2015; but see Chapillon+ 2008

Evidence for Radial DriftCO 3-2

Andrews 2015Consequences:

1.Dust mass and surface density concentrated vertically and radially

2. Ices must follow 3. What about larger grains - expanded VLA!

We are tracking the implantation of ices that seed terrestrial worlds!

What about Nitrogen?

• Trace N2 via N2H+ - cannot measure inside CO snow-line!

•Cannot get NH3 - we will NOT know what is going on with N

• emission is very weak — need expanded VLA

Salinas et al. 2015, in prep.

Summary• Far-IR/Space:

➡ Survey of HD emission in disks using a sensitive Far-IR telescope is central to science case for a future instrument

➡ Could survey hundreds of systems and obtain real statistics.

• Expanded VLA:

➡ ONLY way to set any constraints on nitrogen - the 5th most abundant element, a key biogenic element, major constituent of our atmosphere

➡ needed to probe dust evolution

• ALMA 2.0

➡ Could resolve water snowline - most important chemical/physical transition in the disk