9
International Geothermal Conference, Reykjavík, Sept. 2003  Session #1 Factors influencing the economics of the Kalina power cycle and situations of superior performance Prof. Pall Valdimarsson, Dr. Scient. Ing, Professor, University of Iceland Email: [email protected] Larus Eliasson, Dipl.–Ing. Mach, MBA; Marketing Manager of X-Orka ehf Email: [email protected] Abstract The Kalina technology has its advantages and disadvantages. Those in favor phrase it like new godsend while the opponents see in it only difficulties and additional complexity. The Kalina cycle is a power cycle and does as such compete with Rankine, Brayton, Diesel and Otto cycles. All theses cycles have their advantages and disadvantages and they are all a theoretical description of real-world machinery. Since the Kalina cycle is fully described in its physical values and material properties then we are able to compare it theoretically with other processes for different boundary conditions (in real life, energy situations). Accumulated cost-knowledge and operational experience, enables us to compare the real life performance of these cycles for a typical geothermal condition, that is source inlet and outlet temperatures and cooling fluid temperatures. The areas of superiority for the Kalina cycle are then presented.  Keywords: geothermal, Kalina, efficiency, cost. 1 Introduction The second law of thermodynamics binds the conversion efficiency of low temperature heat into work or electricity. In addition to that, the conversion of heat from a heat source with a finite heat capacity has a lower upper bound for the efficiency due to the reduction of the source temperature as heat is removed from the source. This results in high cost for such low temperature power plants, as they have to handle large heat flows in order to produce acceptable power. The Kalina cycle is a novel approach to increase this efficiency. The main benefit of the Kalina cycle is that the heat addition to the process happens at a variable temperature, and can thus be fitted to the falling temperature of a heat source with a finite heat capacity, reducing the generation of entropy in the heat exchange with the primary fluid. The temperature range for the boiling process of the ammonia-water mixture in the Kalina process may be as high as 100°C. An Organic Rankine Cycle (ORC) is an alternative to the Kalina cycle and has found widespread use. There the boiling of the secondary fluid happens at a constant temperature, meaning that the vapour for the turbine in the process has relatively low temperature compared to the Kalina process. The adoption of the Kalina cycle to a certain heat source and a certain cooling fluid sink has one degree of freedom more than the ORC cycle, as the ammonia-water composition can be adjusted as well as the system high and low pressure levels. This paper presents calculations of the installed cost of power plants, both for Kalina and ORC cycles. These calculations are based on cost models from X-Orka Ltd., calibrated with data from tenders to the Husavik power plant in northern Iceland. The Kalina cycle was selected for the Husavik plant. In their paper R. Maack and P. Valdimarsson (2002) give an overview of the operating experience of the power S01 Paper079 Page 32 Mohamad Ridwan Surono Digitally signed by Mohamad Ridwan Surono DN: cn=Mohamad Ridwan Surono, o=POLBAN, ou=JTK, c=ID Date: 2007.07.02 10:32:26 +07'00' Signature Not Verified

S01Paper079

Embed Size (px)

Citation preview

Page 1: S01Paper079

8/7/2019 S01Paper079

http://slidepdf.com/reader/full/s01paper079 1/9

International Geothermal Conference, Reykjavík, Sept. 2003  Session #1 

Factors influencing the economics of the Kalinapower cycle and situations of superior performance

Prof. Pall Valdimarsson,Dr. Scient. Ing, Professor, University of Iceland

Email: [email protected] Eliasson,Dipl.–Ing. Mach, MBA; Marketing Manager of X-Orka ehf 

Email: [email protected]

Abstract

The Kalina technology has its advantages and disadvantages. Those in favor phrase itlike new godsend while the opponents see in it only difficulties and additionalcomplexity. The Kalina cycle is a power cycle and does as such compete with Rankine,Brayton, Diesel and Otto cycles. All theses cycles have their advantages and

disadvantages and they are all a theoretical description of real-world machinery. Sincethe Kalina cycle is fully described in its physical values and material properties then weare able to compare it theoretically with other processes for different boundaryconditions (in real life, energy situations). Accumulated cost-knowledge and operationalexperience, enables us to compare the real life performance of these cycles for a typicalgeothermal condition, that is source inlet and outlet temperatures and cooling fluidtemperatures. The areas of superiority for the Kalina cycle are then presented.

 Keywords: geothermal, Kalina, efficiency, cost.

1 Introduction

The  second law of thermodynamics binds the conversion efficiency of lowtemperature heat into work or electricity. In addition to that, the conversion of heatfrom a heat source with a finite heat capacity has a lower upper bound for theefficiency due to the reduction of the source temperature as heat is removed from thesource. This results in high cost for such low temperature power plants, as they haveto handle large heat flows in order to produce acceptable power.

The Kalina cycle is a novel approach to increase this efficiency. The main benefitof the Kalina cycle is that the heat addition to the process happens at a variabletemperature, and can thus be fitted to the falling temperature of a heat source with afinite heat capacity, reducing the generation of entropy in the heat exchange with theprimary fluid. The temperature range for the boiling process of the ammonia-water

mixture in the Kalina process may be as high as 100°C.An Organic Rankine Cycle (ORC) is an alternative to the Kalina cycle and has

found widespread use. There the boiling of the secondary fluid happens at a constanttemperature, meaning that the vapour for the turbine in the process has relatively lowtemperature compared to the Kalina process.

The adoption of the Kalina cycle to a certain heat source and a certain coolingfluid sink has one degree of freedom more than the ORC cycle, as the ammonia-watercomposition can be adjusted as well as the system high and low pressure levels.

This paper presents calculations of the installed cost of power plants, both forKalina and ORC cycles. These calculations are based on cost models from X-OrkaLtd., calibrated with data from tenders to the Husavik power plant in northern Iceland.

The Kalina cycle was selected for the Husavik plant. In their paper R. Maack andP. Valdimarsson (2002) give an overview of the operating experience of the power

S01 Paper079 Page 32

Mohamad Ridwan Surono

Digitally signed by Mohamad Ridwan SuronoDN: cn=Mohamad Ridwan Surono,

o=POLBAN, ou=JTK, c=IDDate: 2007.07.02 10:32:26 +07'00'

Signature Not Verified

Page 2: S01Paper079

8/7/2019 S01Paper079

http://slidepdf.com/reader/full/s01paper079 2/9

Page 3: S01Paper079

8/7/2019 S01Paper079

http://slidepdf.com/reader/full/s01paper079 3/9

International Geothermal Conference, Reykjavík, Sept. 2003  Session #1 

Boiler

Hot source Separator

Turbogenerator

Regenerator

Condenser

Cooling

tower

Pump

Strong mixture

Lean mixture

Brineheatexchanger

Boiler

Hot source Separator

Turbogenerator

Regenerator

Condenser

Cooling

tower

Pump

Strong mixture

Lean mixture

Brineheatexchanger

 Figure 2: Typical Kalina flow sheet for a saturated vapour cycle.

This cycle will be limited by the dew point of the mixture, that is when the boilingof the mixture is complete, and no liquid remains at the boiler outlet. The bubbletemperature of the mixture has an influence as well, as it has to be lower or equal tothe primary fluid outlet temperature to ensure safe operation. Then good utilization of the primary fluid is ensured. A contour diagram of the bubble and dew temperaturesfor ammonia-water mixture as a function of ammonia content and pressure are foundon Figures 3 and 4.

10 15 20 25 30 35 400.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Pressure [bar]

   A  m  m  o  n   i  a  r  a   t   i  o   [  -   ]

Bubble temperature contours

       3       0 

    4     0

     4     0 

     5     0

      5     0 

    6    0

    6     0

    7   0

    7    0

     7    0

    8    0

    8    0

   8   0

   9   0

 Figure 3: Bubble temperature contour for ammonia-water mixture.

S01 Paper079 Page 34

Page 4: S01Paper079

8/7/2019 S01Paper079

http://slidepdf.com/reader/full/s01paper079 4/9

International Geothermal Conference, Reykjavík, Sept. 2003  Session #1 

10 15 20 25 30 35 40

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Pressure [bar]

   A  m  m  o  n   i  a  r  a   t   i  o   [  -   ]

Dew temperature contours

 8 0

 9 0 1 0 0

100

  1  1  0

 1 1 0

110

   1   2   0

 1 2 0

1 2 0120

   1   3   0

 1 3 0

 1 3 0

1 30

1 4 0

 1 4 0

  1 4  0

    1    4    0

 1 5 0

 1  5 0

   1   5   0

 1 6 0

  1  6  0

   1   6   0

 1  7 0

  1   7  0

  1  8  0

  1  9  0

 Figure 4: Dew temperature contour for ammonia-water mixture.

The region of feasible combinations of ammonia content and pressure will be inthe area between the 70 and 80°C bubble contours. The feasible area regarding thedew temperature for the Kalina cycle studied here is limited on the right and lowerside (south-east) by a contour line with a value some 2-4°C lower than the maximumtemperature of the primary fluid.

A discussion on the general properties of the ammonia-water mixture in the

Kalina cycle, as well as presentation of the cycle in a thermodynamic propertydiagram is given in the above cited paper by R. Maack and P. Valdimarsson (2002)Operating experience with Kalina power plants.

3 Further on the Kalina cycle

3.1 Flexibility

Both high-pressure level and ammonia content are design variables in the Kalinacycle. This gives the designer additional flexibility in the design of the cycle, andrequires as well a certain design strategy. Market situations may demand that the plant

is designed for absolute maximum power, and less regard paid to the cost per installedkilowatt, or if the load duration curve is not flat, strong demands on the investmentcost, but less emphasis put on the total power. This is shown on Figures 5 and 6,where the contour lines for installed cost and power are drawn as a function of ammonia content and pressure. The source temperature is 100°C. The cost values areput at 100 for the lowest cost, and the power values at 100 for the highest power. An xdenotes an infeasible solution, the cycle will not be able to run at these ammoniacontent - pressure combinations. In Geir Þórólfsson’s MSc thesis (2002) a thoroughstudy of the influence of these combinations on the final cost figures is made.

S01 Paper079 Page 35

Page 5: S01Paper079

8/7/2019 S01Paper079

http://slidepdf.com/reader/full/s01paper079 5/9

International Geothermal Conference, Reykjavík, Sept. 2003  Session #1 

15 20 25 30 35 400.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Pressure [bar]

   A  m  m  o  n   i  a  r  a   t   i  o   [  -   ]

Cost contours, 100°C source

  1  0  1

   1   0   1

1 0 1 

10 2  1 0

 2

1  0  2  

  1  0  2

  1  0  3

10 3 

      1      0 

      3

1 0  3   1 0 3

 1 0 4

1  0  4  

   1   0   4 1   0

  4

 1 0 4

 1 0 51 0  5  

   1   0    5

 1 0 5

  1  0  6

 1 0 6

1       0       6       

  1  0  6

 1 0 6

  1  0  7

  1  0   7

1       0       7       

     1     0     7

  1  0  8

 1 0 8

1         0         8        

     1     0      8

  1  0  9

 1 0 9

1   0   9  

      1      0       9

  1  1  0

  1  1  0

  1  1  0

        1        1        0 

 Figure 5: Cost contours for a Kalina cycle running at 100/80° source temperatures.

20 22 24 26 28 30 32 34 36 38 400.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Pressure [bar]

   A  m  m  o  n   i  a  r  a   t   i  o   [  -   ]

Power contours, 100°C source

  9  0

  9  0

  9  0

  9  0

  9  0  9  0

  9  0  9  0

  9  0

 9         0        

9     0     

9      0      

 90

 9 0

  9  1

9 1

 9        1        

  9  1  9  1

  9  19  1

  9  1

  9  1

  9  1

 9 1

 9191

 9 2

       9      2

 9 2

 9 292

  9  2

  9  29  2

  9  2

  9  2

  9  2  9  2

 9 3

       9        3 

 9 3

 9 3

  9  3  9  3

  9  3

  9  3

  9  3  9  3

  9  3

  9 4

 9       4       

 9 4

 9 4

94

  9 4  9 4

  9 4

  9  4  9  4

  9  4

  9  59    5    

 9  5

 9 5

9 5  

  9  59  5

  9  5

  9   59   5

  9  6

96

    9    6

 9 6

96

  9  6

  9  6

  9  6

  9   797

   9    7

 9 7

97

  9   7

  9   7

  9   7

  9  8

98

  9  8

 9 8   9  8

99

 9 9 9  9

 Figure 6: Power contours for a Kalina cycle running at 100/80° source temperatures

It can be seen from these contour diagrams, that the best power and best-costpoints are different. The lowest cost is at 32 bar, 92% ammonia, but highest power isat 34 bar and 88% ammonia.

This leads to the definition of two different Kalina cycles, the best power and thebest-cost cycles, with different pressure and ammonia content.

The same diagrams for 120 and 150°C source temperature are on Figures 7 to 10.

S01 Paper079 Page 36

Page 6: S01Paper079

8/7/2019 S01Paper079

http://slidepdf.com/reader/full/s01paper079 6/9

International Geothermal Conference, Reykjavík, Sept. 2003  Session #1 

15 20 25 30 35 400.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Pressure [bar]

   A  m  m  o  n   i  a  r  a   t   i  o   [  -   ]

Cost contours, 120°C source

101

10 1

1      0      1      

  1  0  2

 1 0 2

1 0  2  

  1  0  2 10 2 

 1 0 2

 1 0 3

1  0  3   

     1     0      3

1 0 310 3

  1  0 4

1   0    4    

      1      0       4

104104

 1 0 5

1     0     5      

    1     0     5

105105

 1 0 6

1     0     6      

1   0   6  

106

 1 0  7

1      0      7      

1         0        

7        

1 0 7

  1  0  8

1 0 8 1 0 8

1         0         8        

1   0   8    1 0 9

1 0 9

1   0   9  

1      0      9      

110

        1        1        0 

1  1   0  

 

Figure 7: Cost contours for a Kalina cycle running at 120/80° source temperatures.

22 24 26 28 30 32 34 36 38 400.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Pressure [bar]

   A  m  m  o  n   i  a  r  a   t   i  o   [  -   ]

Power contours, 120°C source

       7       0 

       7       0 

7  2  

       7       2

7        4        

      7      4

 76

       7

       6 

7   6  

7         8        

       7       8 

 78

 8         0        

 8         0        

80

8       2       

       8 

       2

82

8       4       

        8         4

84

84

8       6       

86

86

       8        8 

8888

       9        0 

 90

90

9      1      

 91

91

9      2      

 9 2

92

9     3     

 9 3

93

 9 4

 94

9      5      

 95

 9   6  

96

 9 7 98

      9      9

 Figure 8: Power contours for a Kalina cycle running at 120/80° source temperatures.

S01 Paper079 Page 37

Page 7: S01Paper079

8/7/2019 S01Paper079

http://slidepdf.com/reader/full/s01paper079 7/9

International Geothermal Conference, Reykjavík, Sept. 2003  Session #1 

18 20 22 24 26 28 30 32 34 360.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Pressure [bar]

   A  m  m  o  n   i  a  r  a   t   i  o   [  -   ]

Cost contours, 150°C source

 1 0 1

  1  0  1

1 0  1 

 1 0 2

1     0     2     

102

 1 0 31  0  3  

 1 0 310 3 

 1 0 4

1    0    4    

 1 0 4 10 4 

1 0 5

1       0       5       

105

106

     1     0      6

1 0 6

1   0   7   

     1

     0       7

107

 1 0 8

1      0      8      

     1     0      8

108

 1 0 9

1     0     9     

     1     0      9

       1       1       0 

      1      1      0 

 Figure 9: Cost contours for a Kalina cycle running at 150/80° source temperatures.

22 24 26 28 30 32 34 36 38 400.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Pressure [bar]

   A  m  m  o  n   i  a  r  a   t   i  o   [  -   ]

Power contours, 150°C source

       7       0 

7         0        

       7       2

7  2  

7  4  

7       4       

7         6        

7        6       

7       8       

7        8       

8      0      

 8         0        

8      2      

8       2       

8      4      

8       4       

8     6     

8     8     

 9        0       

9     

1     

9     2      

9       3       

 9       4       

9      5      

 9        6       

9      7      

 Figure 10: Power contours for a Kalina cycle running at 150/80° source temperatures.

4 Comparison

Two ORC companies made a tender in the Husavik bid. Manufacturer A offered ahigh power, high cost power plant, where manufacturer B took a more conservativeapproach.

Figures 11 and 12 contain the results of the calibrated model. The two ORC powerplants are indicated with dotted lines. Solid lines indicate Kalina power plants, the +

marker the high power variant, and the o marker the low cost variant.

S01 Paper079 Page 38

Page 8: S01Paper079

8/7/2019 S01Paper079

http://slidepdf.com/reader/full/s01paper079 8/9

International Geothermal Conference, Reykjavík, Sept. 2003  Session #1 

100 110 120 130 140 1501000

1200

1400

1600

1800

2000

2200

2400

Source inlet temperature [°C]

Netcost[$ / kW]

Kalina vs ORC cost comparison

 

Figure 11: Kalina vs ORC cost comparison.

100 105 110 115 120 125 130 135 140 145 150200

400

600

800

1000

1200

1400

1600

1800

2000

Source inlet temperature [°C]

   N  e   t  p  o  w  e  r   [   k   W   ]

Kalina vs ORC power comparison

 

Figure 12: Kalina vs ORC power comparison.

5 Conclusion

The model results presented in Section 4 show that the Kalina cycle has similarinstalled cost to a high power ORC cycle. The maximum power generated for a givensource is greater for the Kalina cycle.

This leads to the obvious conclusion that the Kalina cycle is well positionedagainst an ORC cycle for applications with high utilization time, a base load

application.

S01 Paper079 Page 39

Page 9: S01Paper079

8/7/2019 S01Paper079

http://slidepdf.com/reader/full/s01paper079 9/9

International Geothermal Conference, Reykjavík, Sept. 2003  Session #1 

It is to be stated here as well, that the assumption of a heat consumer is beneficialfor the ORC cycle as it results in less temperature change of the primary fluid duringthe boiling process. The Kalina cycle has the boiling or vaporization of the fluidhappening over a temperature range up to 100°C, which is beneficial when theprimary fluid return temperature has to be minimized.

There has been a heated debate when one is comparing ORC and Kalina. The

theoretical efficiency and cost/production ratio are much better for Kalina as shownabove. Other arguments like difficulties with machinery and lesser operationalsecurity or uptime are only temporary discussion items, as always for a newtechnology. These arguments were exactly the same between conventional flash cycleand ORC when the latter popped up 30 years ago with better efficiency but little trackrecord.

Ammonia has been used in a freezing plant for decades and ammonia-watermixture on heat pumps (and small refrigerators), so the fluid is not new. It has alsobeen the cornerstone of geothermal utilization to overcome technical difficulties suchas from aggressive geothermal fluid and view such issues rather as tasks thanobstacles in our quest for best possible use of our geothermal resources.

Acknowledgments

This work has been partially funded by the RANNÍS, the Icelandic Centre forResearch. Orkuveita  Húsavíkur (Husavik Energy), Husavik, Iceland, HreinnHjartarson and Sigurpall Arnason are thanked for information and cooperation. VGKConsulting Engineers, Reykjavik deserve thanks for interest, assistance and support.

6 References

Geir Þórólfsson (2002).   Bestun á nýtingu lághita jarðvarma til raforkuframleiðslu.

(Optimization of low temperature heat utilization for production of electricity), MScthesis, University of Iceland, Dept. of Mechanical Engineering.

Henry A. Mlcak (1996). An introduction to the Kalina Cycle, ASME PWR – Vol. 30PP765 – 776.

Pall Valdimarsson (2002). Cogeneration of district heating water and electricity froma low temperature geothermal source  , Proc. of the 8th International Symposium on

  District Heating and Cooling, NEFP and the International Energy Agency,Trondheim, August 14- 16, 2002, ISBN 82-594-2341-3.

R. Maack and P. Valdimarsson (2002). Operating experience with Kalina power 

 plants, VDI- Berichte 1703 Geothermische Stromerzeugung, Potsdam 17. und 18.

Oktober 2002, ISBN 3-18-091703-2

S01 Paper079 Page 40