23
1 www.kit.edu A new high performance micro wave plasma source S. Ulrich, J. Ye, M. Stüber, H. Leiste Institute for Applied Materials (IAM-AWP), Department of Composites and Thin Films robeko in-house exibition & workshop plasmatechnology, 30 th September 2015 Outline • Introduction & motivation • High rate deposition of a-C:H with a microwave plasma source • Deposition of coatings in the system Ti-C with HiPIMS • Hybrid technology: HiPIMS/DC magnetron sputtering, HiPIMS/ microwave plasma source deposition • Summary and outlook

S. Ulrich, J. Ye, M. Stüber, H. Leiste robeko in-house

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

1

www.kit.edu

A new high performance micro wave plasma source

S. Ulrich, J. Ye, M. Stüber, H. Leiste

Institute for Applied Materials (IAM-AWP), Department of Composites and Thin Films

robeko in-house exibition & workshop plasmatechnology, 30th September 2015

Outline

• Introduction & motivation

• High rate deposition of a-C:H with a microwave plasma source

• Deposition of coatings in the system Ti-C with HiPIMS

• Hybrid technology: HiPIMS/DC magnetron sputtering,

HiPIMS/ microwave plasma source deposition

• Summary and outlook

2

• Introduction & motivation

• High rate deposition of a-C:H with a microwave plasma source

• Deposition of coatings in the system Ti-C with HiPIMS

• Hybrid technology: HiPIMS/DC magnetron sputtering,

HiPIMS/ microwave plasma source deposition

• Summary and outlook

High performance plasma sources can be used for:

Introduction & motivation

- High-rate Ar ion etching

- The addition of nitrogen, carbon or oxygen ions and radicals

- Plasma nitriding or plasma oxidation

- High rate deposition of a-C:H and ta-C:H

- Developing PVD/PECVD hybrid processes

- High rate deposition of carbon-based low friction nanocomposites

3

Modified a-C:H coatings produced by a PECVD/PVD hybrid process

Introduction & motivation

0

5

10

15

20

25

30

35

-500-400-300-200-1000

HF-Substratvorspannung in V

Här

te in

GP

a

a-C:Ha-C:H(Si)a-C:H(Ti)a-C:H(B)

relaxation

r.f.-substrate bias in V

hard

ness

in G

Pa

- Independent particle fluxes forming a-C:H and adding Si, Ti or B

S. Ulrich, H. Holleck, H. Leiste, L. Niederberger,E. Nold, K. Sell, M. Stüber, J. Ye, C. Ziebert, P. Pesch, S. Sattel, Nano-scale, multi-functionalcoatings in the material system B-C-N-H, Surf. Coat. Technol. 200 1-4 (2005) 7-13

magnetronsputtersource

plasmasource

substrate

Introduction & motivation

HiPIMS

Pulsing allows us to use high peak power while keeping the average power relatively low, making it easy on power grid demands while reaching technologically interesting plasma states.

Advantages:

• film forming particles: ions• control of growth process• interface design is possible• high adhesion• compact morphology

Disadvantiges:

• redeposition process on target• low growth rate• arcing poisoning problems

4

• Introduction & motivation

• High rate deposition of a-C:H with a microwave plasma source

• Deposition of coatings in the system Ti-C with HiPIMS

• Hybrid technology: HiPIMS/DC magnetron sputtering,

HiPIMS/ microwave plasma source deposition

• Summary and outlook

Experimental details

5

Experimental details

Experimental details

6

Experimental details

Experimental details

7

Experimental details

Developments in PVD/PECVD coatings for automotive applicationsR. Tietema, R. Jacobs, D. Doerwald, I. Kolev, J. LandsbergenIHI Hauzer Techno Coating BV, AEPSE, 22-WS-6

Experimental details

8

Selected results: variation of C2H2 flow rate

grow

th r

ate

in µ

m/h

C2H2 flow rate in sccm

330 sccm Arsingle plasma source: 1200 W

250 sccm Ar, full load2 plasma sources: 2 x 1200 W

Selected results: thickness profile using 1 source

30 min deposition duration

9

Selected results: homogenity

Selected results: homogenity

grow

th r

ate

in µ

m/h

P2 P4P3

substrate position

homogenity single source operation: R(P4) = 50% R(P2)homogenity 2 sources operation: R(P4) = 66% R(P2)

10

Selected results: residual stress

negative d.c. substrate bias in V

com

pres

sive

str

ess

in G

Pa

300 sccm Ar + 300 sccm C2H2

2 plasma sources: 2 x 1200 W, 100°C

hardness:2250 HV

Selected results: high growth rate

‐Deposition with single plasma source

(new BN-part attached on antenna): 1 x 1.4kW

‐Gas: 500 sccm C2H2 + 15 sccm Ar

‐Pressure: (a) before deposition 1.2 x 10-2 mbar,

(b) during deposition (plasma on) 5.4 x 10-3 mbar

‐Without substrate bias, no substrate rotation during deposition

‐Distance between substrate and plasma-source: ca. 20 cm

‐Deposition time: 28 min

‐Film thickness: 16.7 µm

‐Chamber temperature: 47°C in the end of deposition

‐Muegge 3-stub tuner: no need for adjustment during deposition,

power refection kept at 0 - 2%.

Tuner temperature 32°C in the end of deposition

‐Deposition rate: 35.8 µm/h

11

Selected results: plasma diagnostics

400 600 800 1000 1200200

400

600

800

1000

1200

ion

sa

tura

tio

n c

urr

en

t d

en

sit

y (A

/cm

2)

power on each source (W)

source 1 + 21.0 Pa, 700 sccm Ar

Selected results: plasma diagnostics

400 600 800 1000 1200200

300

400

500

600

700

800

900

1000

ion

sa

tura

tio

n c

urr

en

t d

en

sit

y (A

/cm

2)

power on top source (W)

top source: onbottom source: off700 sccm Ar, 1.0 Pa

12

Selected results: plasma diagnostics

400 600 800 1000 1200

50

100

150

200

250

300

ion

sa

tura

tio

n c

urr

en

t d

en

sit

y (A

/cm

2)

power on bottom source (W)

top source: offbottom source: on700 sccm Ar, 1.0 Pa

Selected results: plasma diagnostics

400 600 800 1000 1200

450

500

550

600

650

700

750

800

ion

sat

ura

tio

n c

urr

ent

den

sity

(A

/cm

2 )

power on each source (W)

source 1+2200 sccm Ar 200 sccm N

2

0.57 Pa

13

Selected results: plasma diagnostics

100 200 300 400 500 6001

2

3

4

5

6

7

source 1+22 x 1000W200 sccm N

2pla

sma

po

ten

tial

(eV

)

argon flow rate (sccm)

Application: low ion energy incombination with high ion current densities

A. Anders, Thin Solid Film (2009)

14

• Introduction & motivation

• High rate deposition of a-C:H with a microwave plasma source

• Deposition of coatings in the system Ti-C with HiPIMS

• Hybrid technology: HiPIMS/DC magnetron sputtering,

HiPIMS/ microwave plasma source deposition

• Summary and outlook

Deposition of coatings in the system Ti-C with HiPIMS

PVD HauzerTi-targetplanar magnetron dimension: 125 mm x 406 mmarea: 507,5 cm²

CABINET MELEC DUAL – CHANNELDC PULSE POWER SUPPLY SETA: +/1000V / +/- 500A ; 5 kW DC powerB: +/-1000V /+/- 500A; 5 kW DC power4 channel measurement 2 x U(t); 2 x I(t)Diode module using DC – HiPIMS (UP)

5 kW DC AVERAGE CONST

HiPIMS : DC = 100% : 0%

15

0 5 10 15 20 25 30 35 400

500

1000

1500

2000

2500

3000

3500V

icke

rs h

ardn

ess

[HV

0.0

5]

methan gas flow [sccm]

Deposition of coatings in the system Ti-C with HiPIMS

Ti Ti/TiC1-x TiC1-x TiC TiC/a-C:H

• Introduction & motivation

• High rate deposition of a-C:H with a microwave plasma source

• Deposition of coatings in the system Ti-C with HiPIMS

• Hybrid technology: HiPIMS/DC magnetron sputtering,

HiPIMS/ microwave plasma source deposition

• Summary and outlook

16

Hybrid technology: HiPIMS/DC magnetron sputtering

PVD HauzerTi-targetplanar magnetron dimension: 125 mm x 406 mmarea: 507,5 cm²

CABINET MELEC DUAL – CHANNELDC PULSE POWER SUPPLY SETA: +/1000V / +/- 500A ; 5 kW DC powerB: +/-1000V /+/- 500A; 5 kW DC power4 channel measurement 2 x U(t); 2 x I(t)Diode module using DC – HiPIMS (UP)

5 kW DC AVERAGE CONST

HiPIMS : DC = 100% : 0%

HiPIMS : DC = 70% : 30% HiPIMS : DC = 30% : 70%

Hybrid technology: HiPIMS/DC magnetron sputtering

M. Mark, G. Mark: Pluse textbook

17

Hybrid technology: HiPIMS/DC magnetron sputtering: Ti-N

100:0 70:30 30:700

1

2

3

4

5

6

Gro

wth

Rat

e in

µm

/h

HiPIMS:DC 100:0 70:30 30:700

500

1000

1500

2000

2500

3000

Vic

kers

Har

dn

ess

in H

V0.

05

HiPIMS:DC

- HiPIMS+DC total power: 5 kW- HiPIMS duty cycle: 9.1%, frequency: 1818 Hz- Ti target- Working gas: Ar(300 sccm) – reactive gas: N2 (14 sccm)- without substrate rotation

Gro

wth

rat

e in

µm

/h

Vic

kers

har

dn

ess

in H

V0.

05

100:0 70:30 30:70 100:0 70:30 30:70HiPIMS:DC HiPIMS:DC

20 30 40 50 60 70 80 90

HiPIMS:DC = 70:30

XR

D In

ten

sity

in a

.u.

2 Theta in °

HiPIMS:DC = 100:0

- HiPIMS+DC total power: 5 kW- HiPIMS duty cycle: 9.1%, frequency: 1818 Hz- Ti target- Gases: Ar(300 sccm) - N2 (14 sccm)- without substrate rotation

18

Hybrid technology: HiPIMS/DC magnetron sputtering: Ti-C-N

100:0 70:30 30:700

1

2

3

4

5

Gro

wth

Rat

e in

µm

/h

HiPIMS:DC 100:0 70:30 30:700

500

1000

1500

2000

2500

3000

Vic

kers

Ha

rdn

ess

in H

V0

.05

HiPIMS:DC

- HiPIMS+DC total power: 5 kW- HiPIMS duty cycle: 9.1%, frequency: 1818 Hz- Ti target- working gas: Ar (300 sccm) – reactive gases: N2 (8 sccm) - CH4 (methan: 4 sccm)- without substrate rotation

Gro

wth

rat

e in

µm

/h

100:0 70:30 30:70 100:0 70:30 30:70HiPIMS:DC HiPIMS:DC

Vic

kers

har

dn

ess

in H

V0.

05

Hybrid technolgy: HiPIMS/DC magnetron sputtering: TI-C-N

20 30 40 50 60 70 80 90

HiPIMS:DC = 30:70

HiPIMS:DC = 70:30

HiPIMS:DC = 100:0

XR

D In

ten

sity

in a

.u.

2 Theta in °

- HiPIMS+DC total power: 5 kW- HiPIMS duty cycle: 9.1%, frequency: 1818 Hz- Ti target- working gas: Ar(300 sccm)-N2 (8 sccm)-CH4 (4 sccm)- without substrate rotation

19

Hybrid technolgy: HiPIMS/ micro wave plasma source Ti-C

• Introduction & motivation

• High rate deposition of a-C:H with a microwave plasma source

• Deposition of coatings in the system Ti-C with HiPIMS

• Hybrid technology: HiPIMS/DC magnetron sputtering,

HiPIMS/ microwave plasma source deposition

• Summary and outlook

20

Summary – a-C:H (MW plasma)

• successful integration of 2 plasma sources in Hauzer coating facility

• commerial available Hauzer facility: 1200 W, 100% C2H2, 700 sccm C2H2, 36 µm/h, 6 µm/h with 2-fold rotation

• - stable operation (in time, variation of load, ...)

• hardness (300 sccm Ar, 40 sccm C2H2, -80 V substrate bias) = 2600 HV

• operation with 100% C2H2 possible

• low plasma potential between 2 eV and 10 eV

• ion current densities of 1 mA/cm2 at large distances

Summary – Ti-N, Ti-C-N (Hybrid technology: HiPIMS/DC)

• Inreasing of growth rate HiPIMS/DC using mixed mode by a factorof 5 for Ti-N and 4 for Ti-C-N compared to HiPIMS only

• Hardness and microstructure is nearly not effected

• New way of process optimization HiPIMS/DC grandied coatingse. g. interface design, design of nucleation and growth phase

• HiPIMS/DC is an evolving technology with high potential concerningdepositions rate, film properties and structural design

• HiPIMS can be performed in bipolar mode, improved process stability,arc prevention (pulse package mode), control of residual stress ,mechanical properties

Summary – Ti-C (Hybrid technology: HiPIMS/MW plasma)

• successful deposition of coatings in the system Ti-C by HiPIMS and HiPIMS/microwave plasma source

• Stable process conditions

21

Outlook

Hybrid technology:

HiPIMS/DC magnetron sputtering + MW plasma source deposition

for carbon based coating systems

New coating concepts when HiPIMS is involved

Film growth: hybrid technology

Nucleation layer: HIPIMS

Adhesion layer: HiPIMS

3 layer systems

or

multilayer of this 3 layer system

Thank you very much for your attention!

Many thanks …

… to my co-workers J. Ye, M. Stüber and H. Leiste

… to our distribution partner robeko

… and Rolf Schäfer for the invitation

… to my technical stuff: S. Schweiger, B. Rabsch, K. Erbes

22

Experimental details: modelling tools

COMSOL

RF ModuleSoftware for Microwave and RF Design

Modeling a Dipole Antenna Parabolic Reflector Antenna

https://www.comsol.pt/

Experimental details: modelling tools

COMSOL

Plasma ModuleSoftware for Modeling Low-Temperature, Non-Equilibrium Discharges

In-Plane Microwave Plasmahttps://www.comsol.pt/

23

Experimental details: modelling tools

COMSOL

Particle Tracing ModuleSoftware for Studying the Interaction between Particles and Fields

Particles are injected from a system of injection nozzles into a CVD chamber with a cone angle of 15 degrees. Initially they have enough inertia to follow their original trajectory but ultimately the drag force takes over and the particles begin to follow the background gas out of the exhaust port.

https://www.comsol.pt/

Experimental details: modelling tools

CST STUDIO SUITE

https://www.cst.com/Products/CSTS2

Cross section of a microwave plasma source