63
Secular Perturba,ons - Eccentric and Mean anomalies - Kepler’s equa,on - f,g func,ons - Universal variables for hyperbolic and eccentric orbits - Disturbing func,on - Low eccentricity expansions for Disturbing func,on - Secular terms at low eccentricity - Precession of angle of perihelion - Apsidal resonance - Pericenter glow models for eccentric holes in circumstellar disks (Created by: Zsolt Sandor & Peter Klagyivik, Eötvös Lorand University)

s Secular( - University of Rochesterastro.pas.rochester.edu/~aquillen/ast570/lectures/B...Conway(in(their(book(“Orbital(Mechanics”,(referring(to(aformulaon(dueto Ban . f =1 x2

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: s Secular( - University of Rochesterastro.pas.rochester.edu/~aquillen/ast570/lectures/B...Conway(in(their(book(“Orbital(Mechanics”,(referring(to(aformulaon(dueto Ban . f =1 x2

Secular  Perturba,ons  

-  Eccentric  and  Mean  anomalies  -  Kepler’s  equa,on  -  f,g  func,ons    -  Universal  variables  for  hyperbolic  and  eccentric  orbits  -  Disturbing  func,on  -  Low  eccentricity  expansions  for  Disturbing  func,on  -  Secular  terms  at  low  eccentricity  -  Precession  of  angle  of  perihelion  -  Apsidal  resonance  -  Pericenter  glow  models  for  eccentric  holes  in  circumstellar  disks  

(Created  by:  Zsolt  Sandor  &  Peter  Klagyivik,  

Eötvös  Lorand  University)    

Page 2: s Secular( - University of Rochesterastro.pas.rochester.edu/~aquillen/ast570/lectures/B...Conway(in(their(book(“Orbital(Mechanics”,(referring(to(aformulaon(dueto Ban . f =1 x2

r  

a  

f  =  true  anomaly  

f  

x = r cos f

y = r sin f

Ellipse  

b  

center  of  ellipse  

Sun  is  focal  point  b=semi-­‐minor  axis  a=semi-­‐major  axis  

r =

a(1� e2)

1 + e cos f

Page 3: s Secular( - University of Rochesterastro.pas.rochester.edu/~aquillen/ast570/lectures/B...Conway(in(their(book(“Orbital(Mechanics”,(referring(to(aformulaon(dueto Ban . f =1 x2

E  

r  a  

E  =  Eccentric  anomaly  f  =  true  anomaly  

f  

x = r cos f

y = r sin f

x = a cos E

Orbit  from  center  of  ellipse  

b = a�

1� e2

x = a(cos E � e)

Ellipse  

y = b sinE

= a�

1� e2 sinE

y = a sinE

b  

ae  

⇣x

a

⌘2

+⇣y

b

⌘2

= 1

Page 4: s Secular( - University of Rochesterastro.pas.rochester.edu/~aquillen/ast570/lectures/B...Conway(in(their(book(“Orbital(Mechanics”,(referring(to(aformulaon(dueto Ban . f =1 x2

Rela,onship  between  Eccentric,  True  and  Mean  anomalies  

•  Using  expressions  for  x,y  in  terms  of  true  and  Eccentric  anomalies  we  find  that  

tanf

2=

�1 + e

1� etan

E

2

r = a(1� e cos E)

So  if  you  know  E  you  know  f  and  can  find  posi,on  in  orbit  

Energy = �GM

2a=

v2

2� GM

rv2 = r2 + r2f2

n =�

GM

a3

Write  dr/dt  in  terms  of  n,  r,  a,  e    Then  replace  dr/dt  with  func,on  depending  on  E,  dE/dt  

E =n

1� e cos E

r2f2 =h2

r2

r = ae sinEE

(r)2 = �GM

a

✓1� 2

(1� e cosE)

+

(1� e2)

(1 + e cosE)

2

h2 = GMa(e2 � 1)

Page 5: s Secular( - University of Rochesterastro.pas.rochester.edu/~aquillen/ast570/lectures/B...Conway(in(their(book(“Orbital(Mechanics”,(referring(to(aformulaon(dueto Ban . f =1 x2

Mean  Anomaly  and  Kepler’s  equa,on  

•  New  angle  M  defined  such  that                                            or    

•  Integrate  dE/dt  finding  

E =n

1� e cos E

M = n M = n(t� t0)

M = E � e sin E

Kepler’s  equa,on  Must  be  solved  to  integrate  orbit  in  ,me.  

The  mean  anomaly  is  not  an  angle  defined  on  the  orbital  plane  It  is  an  angle  that  advances  steadily  in  ,me    It  is  related  to  the  azimuthal  angle  in  the  orbital  plane,  for  a  circular  orbit,  the  two  are  the  same  and  f=M  

Page 6: s Secular( - University of Rochesterastro.pas.rochester.edu/~aquillen/ast570/lectures/B...Conway(in(their(book(“Orbital(Mechanics”,(referring(to(aformulaon(dueto Ban . f =1 x2

–  Change  t,  increase  M.    

–  Compute  E  numerically  using  Kepler’s  equa,on  –  Compute  f  using  rela,on  between  E  and  f  

–  Rotate  to  take  into  account  argument  of  perihelion  

–  Calculate  x,y  in  plane  of  orbit  –  Rotate  two  more  ,mes  for  inclina,on  and  longitude  of  ascending  node  

to  final  Cartesian    posi,on  

M = E � e sin E Kepler’s  equa,on  Must  be  solved  to  integrate  orbit  in  ,me.  

Procedure  for  integra,ng  orbit  or  for  conver,ng  orbital  elements  to  a  

Cartesian  posi,on:  

Page 7: s Secular( - University of Rochesterastro.pas.rochester.edu/~aquillen/ast570/lectures/B...Conway(in(their(book(“Orbital(Mechanics”,(referring(to(aformulaon(dueto Ban . f =1 x2

Inclina,on  and  longitude    of  ascending  node  

•  Sign  of  terms  depends  on  sign  of  hz.  

•  I  inclina,on.  –  retrograde  orbits  have  π/2<I<π  –  prograde  have  0<I<π/2  

•  Ω longitude  of  ascending  node,  where  orbit  crosses  eclip,c  

•  Argument  of  pericenter  ω is  with  respect  to  the  

 line  of  nodes  (where      orbit  crosses  eclip,c)  

h        angular  momentum  vector  hz = h cos I

hx = ± sin I cos �hy = � sin I sin �

Page 8: s Secular( - University of Rochesterastro.pas.rochester.edu/~aquillen/ast570/lectures/B...Conway(in(their(book(“Orbital(Mechanics”,(referring(to(aformulaon(dueto Ban . f =1 x2

Orbit    in  space  •  line  of  nodes:  intersec,on  of  

orbital  plane  and  reference  plane  (eclip,c)  

•  Longitude  of  ascending  node  Ω:  angle  between  line  of  nodes  (ascending  side)  and  reference  line  (vernal  equinox)  

•  ω  “argument  of  pericenter”  is  not  exactly  the  same  thing  as  we  discussed  before  ϖ  –  longitude  of  pericenter.    ω  is  not  measured  in  the  eclip,c.  ϖ=Ω+ω    but  these  angles  not  in  a  plane  unless  I=0  

Anomaly  :  in  orbital  plane  and  w.r.t.  pericenter  Longitude:  in  eclip,c  w.r.t.  vernal  equinox  Argument:  some  other  angle  

Page 9: s Secular( - University of Rochesterastro.pas.rochester.edu/~aquillen/ast570/lectures/B...Conway(in(their(book(“Orbital(Mechanics”,(referring(to(aformulaon(dueto Ban . f =1 x2

Orbit  in  space  

Rota,ons  

•  In  plane  of  orbit  by    argument  of  pericenter  ω    in  (x,y)  plane  

•  In  (y,z)  plane  by  inclina,on  I •  In  (x,y)  plane  by  longitude  of  ascending  node  Ω  •  3  rota,ons  required  to  compute  Cartesian  coordinates  given  orbital  elements  

Page 10: s Secular( - University of Rochesterastro.pas.rochester.edu/~aquillen/ast570/lectures/B...Conway(in(their(book(“Orbital(Mechanics”,(referring(to(aformulaon(dueto Ban . f =1 x2

Cartesian  to  orbital  elements  

•  To  convert  from  Cartesian  coordinates  to  Orbital  elements:  –  Compute  a,e  using  energy  and  angular  momentum  –  Compute  inclina,on  and  longitude  of  ascending  node  from  components  of  angular  momentum  vector  

–  From  current  radius  and  velocity  compute  f  –  Calculate  E  from  f  –  Calculate  M  from  numerical  solu,on  of  Kepler’s  equa,on  

–  Calculate  longitude  of  perihelion  from  angle  of  line  of  nodes  in  plane  of  orbit  

Page 11: s Secular( - University of Rochesterastro.pas.rochester.edu/~aquillen/ast570/lectures/B...Conway(in(their(book(“Orbital(Mechanics”,(referring(to(aformulaon(dueto Ban . f =1 x2

The  angular  momentum  vector  

h = r⇥ v

h cos i = hz

h sin i sin⌦ = hx

h sin i cos⌦ = �hy

rela,on  between  inclina,on,  longitude  of  ascending  node  and  angular  momentum.  Conven,on  is  to  flip  signs  of  hx,hy  if  hz  is  nega,ve  

F = �r�

F = Fr r+ F✓✓ + Fz z

Force  

•  component  perpendicular  to  orbital  plane  

•  component  in  orbital  plane  perpendicular  to  r  

•  component  along  radius  orthogonal  coordinate  system  

h = na2p

1� e2z

Page 12: s Secular( - University of Rochesterastro.pas.rochester.edu/~aquillen/ast570/lectures/B...Conway(in(their(book(“Orbital(Mechanics”,(referring(to(aformulaon(dueto Ban . f =1 x2

Torque  

F = Fr r+ F✓✓ + Fz z h = na2p

1� e2z

⌧ = r⇥ F Fr  contributes  no  torque  To  vary  |h|  a  torque  in  z  direc,on  is  need,  only  depends  on  Fθ      -­‐      only  forces  in  the  plane  vary  eccentricity  To  vary  direc,on  of  h  a  force  in  direc,on  of  z  is  needed  

di

dt=

rFz cos(! + f)

hd⌦

dt=

rFz sin(! + f)

h sin i

instantaneous  varia,ons  Oien  integrated  over  orbit  to  es,mate  precession  rate  

Page 13: s Secular( - University of Rochesterastro.pas.rochester.edu/~aquillen/ast570/lectures/B...Conway(in(their(book(“Orbital(Mechanics”,(referring(to(aformulaon(dueto Ban . f =1 x2

f  and  g  func,ons  

•  Posi,on  and  velocity  at  a  later  ,me  can  be  wrijen  in  terms  of  posi,on  and  velocity  at  an  earlier  ,me.      Numerically  more  efficient  as  full  orbital  solu,on  not  required.  

r(t) = f(t, t0, r0,v0)r0 + g(t, t0, r0,v0)v0

v(t) = f(t, t0, r0,v0)r0 + g(t, t0, r0,v0)v0

f = 1� a

r0[1� cos(E � E0)]

g = (t� t0)�1n

[(E � E0)� sin(E � E0)]

f = �na2

rr0sin(E � E0)

g = 1� a

r[1� cos(E � E0)]

Page 14: s Secular( - University of Rochesterastro.pas.rochester.edu/~aquillen/ast570/lectures/B...Conway(in(their(book(“Orbital(Mechanics”,(referring(to(aformulaon(dueto Ban . f =1 x2

Differen,al  form  of  Kepler’s  equa,on  Procedure  for  compu,ng  f,g  func,ons  •  Compute  a,  e  from  energy  

and  angular  momentum.      •  Compute  E0  from  posi,on  •  Compute  ΔE  by  solving  

numerically  the  differen,al  form  of  Kepler’s  equa,on.  

•  Compute  f,g,  find  new  r.  •  Compute    •  One  of  these  could  be    

computed  from  the  other  3  using  conserva,on  of  angular  momentum  

�M = n�t

= �E � e cos E0 sin �E +e sinE0(1� cos �E

f = 1� a

r0[1� cos(E � E0)]

g = (t� t0)�1n

[(E � E0)� sin(E � E0)]

f = �na2

rr0sin(E � E0)

g = 1� a

r[1� cos(E � E0)]

Subtract  Kepler’s  equa,on  at  two  different  ,mes  to  find:    

f , g

)

Page 15: s Secular( - University of Rochesterastro.pas.rochester.edu/~aquillen/ast570/lectures/B...Conway(in(their(book(“Orbital(Mechanics”,(referring(to(aformulaon(dueto Ban . f =1 x2

Universal  variables  

•  Desirable  to  have    integra,on  rou,nes  that  don’t  require  tes,ng  to  see  if  orbit  is  bound.  

•  Conver,ng  from  ellip,c  to  hyperbolic  orbits  is  oien  of  majer  of  subs,tu,ng  sin,  cos  for  sinh,  cosh    

•  Described  by  Prussing  and  Conway  in  their  book  “Orbital  Mechanics”,  referring  to  a  formula,on  due  to  Baon.  

f = 1� x2

r0C(�r2)

g = (t� t0)�x3

⇥µ

S(�x2)

f =x⇥

µ

rr0

��x2S(�x2)� 1

g = 1� x2

rC(�x2)

x  is  determined  by  Solving  a  differen,al  form  of  Kepler’s  equa,on  in  universal  variables  

µ �⇥

GM � � 1a

x

Page 16: s Secular( - University of Rochesterastro.pas.rochester.edu/~aquillen/ast570/lectures/B...Conway(in(their(book(“Orbital(Mechanics”,(referring(to(aformulaon(dueto Ban . f =1 x2

Analogy  

f = 1� x2

r0C(�r2)

g = (t� t0)�x3

⇥µ

S(�x2)

f =x⇥

µ

rr0

��x2S(�x2)� 1

g = 1� x2

rC(�x2)

f = 1� a

r0[1� cos(E � E0)]

g = (t� t0)�1n

[(E � E0)� sin(E � E0)]

f = �na2

rr0sin(E � E0)

g = 1� a

r[1� cos(E � E0)]

x

Page 17: s Secular( - University of Rochesterastro.pas.rochester.edu/~aquillen/ast570/lectures/B...Conway(in(their(book(“Orbital(Mechanics”,(referring(to(aformulaon(dueto Ban . f =1 x2

Differen,al  Kepler’s  equa,on  in  universal  variables  

•  x  solves    (universal  variable    differen,al  Kepler  equa,on  

•  Special  func,ons  needed:  

C(y) =12!� y

4!+

y2

6!� . . .

=1� cos⇥y

y, y > 0

=cosh

⇥�y � 1�y

, y < 0

S(y) =13!� y

5!+

y2

7!� . . .

=⇥

y � sin⇥y�

y3, y > 0

=sinh

⇥�y �

⇥�y�

�y3, y < 0

⇥µ(t� t0) =

(r0 · v0)x2

⇥µ

C(�x2) + (1� r0�)x3S(�x2) + r0x

Page 18: s Secular( - University of Rochesterastro.pas.rochester.edu/~aquillen/ast570/lectures/B...Conway(in(their(book(“Orbital(Mechanics”,(referring(to(aformulaon(dueto Ban . f =1 x2

Solving  Kepler’s  equa,on    

•  Itera,ve  solu,ons  un,l  convergence  •  Rapid  convergence  (Laguerre  method  is  cubic)  

•  Only  7  or  so  itera,ons  needed  for  double  precision  (though  this  could  be  tested  more  rigorously  and  I  have  not  wrijen  my  rou,nes  with  necessarily  good  star,ng  values).  

Page 19: s Secular( - University of Rochesterastro.pas.rochester.edu/~aquillen/ast570/lectures/B...Conway(in(their(book(“Orbital(Mechanics”,(referring(to(aformulaon(dueto Ban . f =1 x2

Orbital  elements  

•  a,e,I          M,ω,Ω  (associated  angles)  

•  As  we  will  see  later  on  ac,on  variables  related  to  the  first  three  will  be  associated  with  ac,on  angles  associated  with  the  second  3.  

•  For  the  purely  Keplerian  system  all  orbital  elements  are  constants  of  mo,on  except  M  which  increases  with    

•  Problem:    If  M  is  an  ac,on  angle,  what  is  the  associated  momentum  and  Hamiltonian?  

M = n n =�

µ

a3

Page 20: s Secular( - University of Rochesterastro.pas.rochester.edu/~aquillen/ast570/lectures/B...Conway(in(their(book(“Orbital(Mechanics”,(referring(to(aformulaon(dueto Ban . f =1 x2

Keplerian  Hamiltonian  

•  Problem:    If  M  is  an  ac,on  angle,  what  is  the  associated  ac,on  momentum  and  Hamiltonian?  

•  Assume  that      •  From  Hamilton’s  equa,ons  

•  Energy    

�H

��= M = n

H � ��

H = � µ

2a

�H

��� ���1 � n � a�3/2

�� � a�3�

2(��1)

�� � a�1

� = �2

� � a1/2

H � ��2

µ ⇠ GM⇤

Page 21: s Secular( - University of Rochesterastro.pas.rochester.edu/~aquillen/ast570/lectures/B...Conway(in(their(book(“Orbital(Mechanics”,(referring(to(aformulaon(dueto Ban . f =1 x2

Keplerian  Hamiltonian  

•  Solving  for  constants  

•  Unperturbed  with  only  1  central  mass  •  We  have  not  done  canonical  transforma,ons  to  do  this  so  not  obvious  we  will  arrive  exactly  with  these  conjugate  variables  when  we  do  so.    

H = � µ2

2�2

� =⇥

µa

Page 22: s Secular( - University of Rochesterastro.pas.rochester.edu/~aquillen/ast570/lectures/B...Conway(in(their(book(“Orbital(Mechanics”,(referring(to(aformulaon(dueto Ban . f =1 x2

Hamiltonian  formula,on  

•  Poincare  coordinates  

⇥ = M + ⇤ + �� = �⇤ � �z = ��

⇥ =⇥

µa

� =⇥

µa(1��

1� e2)

Z =�

µ(1� e2)(1� cos I)

Page 23: s Secular( - University of Rochesterastro.pas.rochester.edu/~aquillen/ast570/lectures/B...Conway(in(their(book(“Orbital(Mechanics”,(referring(to(aformulaon(dueto Ban . f =1 x2

Working  in  Heliocentric  coordinates  •  Consider  a  central  stellar  mass  M*,  a  planet  mp  and  a  third  low  

mass  body.  “Restricted  3  body  problem”  if  all  in  the  same  plane  

•  We  start  in  iner,al  frame  (R*,  Rp,  R)  and  then  transform  to  heliocentric  coordinates  (rp,  r)  

M�R� =GmpM�rp

r3p

mpRp = �GmpM�rp

r3p

R = �GM�rr3

� Gmp(r� rp)(r � rp)3

Rp = rp + R�

R = r + R�

Replace    accelera,ons  in  iner,al  frame  with  expressions  involving  accelera,on  of  star.  Then  replace  accelera,on    of  star  with  this  so  we  gain  a  term     r = �GM�r

r3� Gmp(r� rp)

(r � rp)3� Gmprp

r3p

= ⇥�

GM�r

⇥+⇥R

Page 24: s Secular( - University of Rochesterastro.pas.rochester.edu/~aquillen/ast570/lectures/B...Conway(in(their(book(“Orbital(Mechanics”,(referring(to(aformulaon(dueto Ban . f =1 x2

Disturbing  func,on  

r = �GM�rr3

� Gmp(r� rp)(r � rp)3

� Gmprp

r3p

= ⇥�

GM�r

⇥+⇥R

R

New  poten,al,  known  as  a  disturbing  func,on  –  due  to  planet  Gradient  w.r.t  to  r  not  rp  

Direct  term  Indirect  term  -­‐-­‐    because  planet  has  perturbed  posi,on  of  Sun  and  we  are  not  working  an  iner,al  frame  but  a  heliocentric  one—  

-­‐  Reduces  2:1  resonance  strength.      -­‐  Contributes  to  slow  m=1  eccentric  modes  of  self-­‐gravita,ng  disks  

R = Gmp

�1

|r� rp|� r · rp

r3p

⇥Force  from  Sun  

Page 25: s Secular( - University of Rochesterastro.pas.rochester.edu/~aquillen/ast570/lectures/B...Conway(in(their(book(“Orbital(Mechanics”,(referring(to(aformulaon(dueto Ban . f =1 x2

Direct  and  Indirect  terms  

•  For  a  body  exterior  to  a  planet  it  is  customary  to  write  

•  For  a  body  interior  to  a  planet:  

•  In  both  cases  the  direct  term  •  Conven5on    ra,o  of  semi-­‐major  axes      

R� =µ

a�RD +µ

a��2RI � = ap/a�

� = a/apR =µ�

apRD +

µ��

apRE

RD =a�

|r� � r|

� < 1

Page 26: s Secular( - University of Rochesterastro.pas.rochester.edu/~aquillen/ast570/lectures/B...Conway(in(their(book(“Orbital(Mechanics”,(referring(to(aformulaon(dueto Ban . f =1 x2

Lagrange’s  Planetary  equa,ons  

•  One  can  use  Hamilton’s  equa,ons  to  find  the  equa,ons  of  mo,on  

•  If  wrijen  in  terms  of  orbital  elements  these  are  called  Lagrange’s  equa,ons  

•  These  are  ,me  deriva,ves  of  the  orbital  elements  in  terms  of  deriva,ves  of  the  disturbing  func,on  

•  To  relate  Hamilton’s  equa,ons  to  Lagrange’s  equa,ons  you  can  use  the  Jacobian  of  deriva,ves  of  orbital  elements  in  terms  of  Poincare  coordinates  

H = Hkep �R

Page 27: s Secular( - University of Rochesterastro.pas.rochester.edu/~aquillen/ast570/lectures/B...Conway(in(their(book(“Orbital(Mechanics”,(referring(to(aformulaon(dueto Ban . f =1 x2

Lagrange’s  equa,ons  

da

dt=

2na

⇤R⇤�

de

dt= �

⇥1� e2

na2e(1�

p1� e2)

⇤R⇤��⇥

1� e2

na2e

⇤R⇤⇥

d�

dt= � 2

na

⇤R⇤a

+⇥

1� e2

na2e(1�

p1� e2)

⇤R⇤e

+tan(I/2)

na2⇥

1� e2

⇤R⇤I

where  ε  is  mean  longitude  at  t=0  or  at  epoch    

d�dt

=1

na2⇥

1� e2 sin I

⇤R⇤I

d⇥

dt=

⇥1� e2

na2e

⇤R⇤e

+tan(I/2)

na2⇥

1� e2

⇤R⇤I

dI

dt= � tan(I/2)

na2⇥

1� e2

✓⇤R⇤�

+⇤R⇤⇥

◆� 1

na2⇥

1� e2 sin I

⇤R⇤�

� + nt = ⇥ = M + ⌅ = n(t� ⇤) + ⌅

Page 28: s Secular( - University of Rochesterastro.pas.rochester.edu/~aquillen/ast570/lectures/B...Conway(in(their(book(“Orbital(Mechanics”,(referring(to(aformulaon(dueto Ban . f =1 x2

Secular  terms  

•  Expansion  to  second  order  in  eccentricity    •  Neglec,ng  all  terms  that  contain  mean  longitudes  •  Should  be  equivalent  to  averaging  over  mean  anomaly  

•  Indirect  terms  all  involve  a  mean  longitude  so  average  to  zero  

�12 = a1/a2 a1 < a2

RD,1 = n21a

21

m2

mc + m1

�18�2

12b(1)3/2e

21 �

�14�2

12b(2)3/2e1e2 cos(⇥1 �⇥2)

Laplace  coefficients  which  are  a  func,on  of  α  

I  have  dropped  terms  with  inclina,on  here  –  there  are  similar  ones  with  inclina,on  

Similar  term  for  other  body  

Page 29: s Secular( - University of Rochesterastro.pas.rochester.edu/~aquillen/ast570/lectures/B...Conway(in(their(book(“Orbital(Mechanics”,(referring(to(aformulaon(dueto Ban . f =1 x2

Evolu,on  in  e  

•  Lagrange’s  equa,ons  (ignoring  inclina,on)  

•  Convenient  to  make  a  variable  change  

•  Wri,ng  out  the  deriva,ves    

ej = � 1nja2

jej

⇥Rj

⇥�j�j =

1nja2

jej

⇥Rj

⇥ej

hj = ej sin �j kj = ej cos �j

dhj

dt=

⇥hj

⇥ejej +

⇥hj

⇥�j�j

Page 30: s Secular( - University of Rochesterastro.pas.rochester.edu/~aquillen/ast570/lectures/B...Conway(in(their(book(“Orbital(Mechanics”,(referring(to(aformulaon(dueto Ban . f =1 x2

Equa,ons  of  mo,on  •  For  two  bodies    

•  With  solu,ons  depending  on  eigenvectors  es,ef  and  eigenvalues  gs,gf  of  matrix  A  (s,f:  slow  and  fast)  

–  Slow:  both  components  of  eigenvector  with  same  sign,              –  Fast:  components  of  eigenvector  have  opposite  sign  

h = (h1, h2)

A =

�n1µ2�2

124 b(1)

1/2(�12) �n1µ2�212

4 b(2)3/2(�12)

�n2µ1�124 b(2)

3/2(�12) n2µ1�124 b(1)

1/2(�12)

h = Akk = �Ah k = (k1, k2)

h = es sin(gst + �s) + ef sin(gf t + �f )

h = �A2h

Page 31: s Secular( - University of Rochesterastro.pas.rochester.edu/~aquillen/ast570/lectures/B...Conway(in(their(book(“Orbital(Mechanics”,(referring(to(aformulaon(dueto Ban . f =1 x2

Solu,ons  

One  eigenvector    

es

e cos �

e sin �

es

e cos �

e sin �ef

Both  eigenvectors  

e21 = h2

1 + k21 =

[es,1 sin�s + ef,1 sin �f ]2

+ [es,1 cos �s + ef,1 cos �f ]2

e21 = e2

s,1 + e2f,1 + 2es,1ef,1 cos(�s � �f )

Page 32: s Secular( - University of Rochesterastro.pas.rochester.edu/~aquillen/ast570/lectures/B...Conway(in(their(book(“Orbital(Mechanics”,(referring(to(aformulaon(dueto Ban . f =1 x2

Both  objects  

ef,1

e sin �

ef,2

es,1

e cos �

e sin �

es,2

An,  aligned,  fast,  Δϖ=π   Aligned  and  slow,    Δϖ=0  

apsidal  alignment  

How  can  angular  momentum  be  conserved  with  this?  

Page 33: s Secular( - University of Rochesterastro.pas.rochester.edu/~aquillen/ast570/lectures/B...Conway(in(their(book(“Orbital(Mechanics”,(referring(to(aformulaon(dueto Ban . f =1 x2

Predic,ng  evolu,on  from    orbital  elements  

•  Unknowns    – magnitudes  of  the  2  eigenvectors  

– 2  phases  

•  From  current  orbital  elements  

h = es sin(gst + �s) + ef sin(gf t + �f )

e1, e2, �1, �2

Page 34: s Secular( - University of Rochesterastro.pas.rochester.edu/~aquillen/ast570/lectures/B...Conway(in(their(book(“Orbital(Mechanics”,(referring(to(aformulaon(dueto Ban . f =1 x2

Anima,on  of  the  eccentricity  evolu,on  of  HD  128311  

(Created  by:  Zsolt  Sandor  &  Peter  Klagyivik,  Eötvös  Lorand  University)  

Page 35: s Secular( - University of Rochesterastro.pas.rochester.edu/~aquillen/ast570/lectures/B...Conway(in(their(book(“Orbital(Mechanics”,(referring(to(aformulaon(dueto Ban . f =1 x2

Both  together  in  a  differen,al  coordinate  system  

x = e1e2 cos ��

y = e1e2 sin ��

radius  =  e1e2  

Slow  only  

Apsidal  aligned,  non  circula,ng,  can  have  one  object  with  nearly  zero  eccentricity.      “Libra,on”  

Circula,ng  

fast  only  

Note  orbits  on  this  plot  should  not  be  ellipses  

x = h1h2 + k1k2

y = h1k2 � k1h2

Page 36: s Secular( - University of Rochesterastro.pas.rochester.edu/~aquillen/ast570/lectures/B...Conway(in(their(book(“Orbital(Mechanics”,(referring(to(aformulaon(dueto Ban . f =1 x2

Examples  of  near  separatrix  mo,on  For  exatrasolar  planets  

Libra,on     Circula,on  

In  both  cases  one  planet  drops  to  near  zero  eccentricity  

e  e  

Δϖ  Δϖ  

Time     Time    

one  planet  

different  lines  consistent  with  data  

Page 37: s Secular( - University of Rochesterastro.pas.rochester.edu/~aquillen/ast570/lectures/B...Conway(in(their(book(“Orbital(Mechanics”,(referring(to(aformulaon(dueto Ban . f =1 x2

From  Barnes  and  Greenberg  08  

Δϖ  

e  

Page 38: s Secular( - University of Rochesterastro.pas.rochester.edu/~aquillen/ast570/lectures/B...Conway(in(their(book(“Orbital(Mechanics”,(referring(to(aformulaon(dueto Ban . f =1 x2

Simple  Hamiltonian  systems  Terminology  

Harmonic oscillator

Pendulum

Stable fixed point

Libration

Oscillation p

Separatrix

p q

I

Page 39: s Secular( - University of Rochesterastro.pas.rochester.edu/~aquillen/ast570/lectures/B...Conway(in(their(book(“Orbital(Mechanics”,(referring(to(aformulaon(dueto Ban . f =1 x2

Mul,ple  planet  systems  RV  systems  

•  No  obvious  correla,on  mass  ordering  vs  semi-­‐major  axis  •  Mostly  2  planets  but  some  with  3,  5  •  Eccentric  orbits,  but  lower  eccentricity  than  single  planet  

systems  •  Rasio,  Ford,  Barnes,  Greenberg,  Juric  have  argued  that  

planet  scajering  explains  orbital  configura,ons  •  Subsequent  evolu,on  of  inner  most  object  by  ,dal  forces  •  Many  systems  near  instability  line  •  Lower  eccentricity  for  mul,ple  planet  systems  •  Lower  mass  systems  have  lower  eccentrici,es  

Page 40: s Secular( - University of Rochesterastro.pas.rochester.edu/~aquillen/ast570/lectures/B...Conway(in(their(book(“Orbital(Mechanics”,(referring(to(aformulaon(dueto Ban . f =1 x2

Mass  and  Eccentricity  distribu,on  of  mul,ple  planet  systems    

High  eccentricity  planets  tend  to  reside  in  single  planetary  systems  

Page 41: s Secular( - University of Rochesterastro.pas.rochester.edu/~aquillen/ast570/lectures/B...Conway(in(their(book(“Orbital(Mechanics”,(referring(to(aformulaon(dueto Ban . f =1 x2

Hamiltonian  view  

RD,1 = n21a

21

m2

mc + m1

�18�2

12b(1)3/2e

21 �

�14�2

12b(2)3/2e1e2 cos(⇥1 �⇥2)

R1 ⇥ µ�A�1 �B

⇤�1 cos ⇥�

� � ⇥R⇥�

� � ⇥R⇥�

massless  object  near  a  single  planet  

� = � =0Fixed  point  at    

�R��

= µ

�A� 1

2B��1/2

⇥�f =

�B

2A

⇥2��f = 0

Aligned  with  planet  Eccentricity  does  not  depend  on  planet  mass  but  does  on  planet  eccentricity  

� =pGMa(1�

p1� e2) ⇡

pGMa

e2

2Poincaré  momentum  

μ  =  mp/M*  

-­‐  

Page 42: s Secular( - University of Rochesterastro.pas.rochester.edu/~aquillen/ast570/lectures/B...Conway(in(their(book(“Orbital(Mechanics”,(referring(to(aformulaon(dueto Ban . f =1 x2

Expand  around  fixed  point  

•  First  transfer  to  canonical  coordinates  using    h,k  •  Then  transfer  to  coordinate  system  with  a  shii            h’=h-­‐hf,      k’=k-­‐kf  

•  Harmonic  mo,on  about  fixed  point:  that’s  the  free  eccentricity  mo,on  

H = A�(h�2 + k�2)

Page 43: s Secular( - University of Rochesterastro.pas.rochester.edu/~aquillen/ast570/lectures/B...Conway(in(their(book(“Orbital(Mechanics”,(referring(to(aformulaon(dueto Ban . f =1 x2

Free  and  Forced  eccentricity  

•  Massless  body  in  proximity  to  a  planet  

eforced

efree

e sin �

e cos �

�p

Force  eccentricity  depends  on  planet’s  eccentricity  and  distance  to  planet  but  not  on  planet’s  mass.  Mass  of  planet  does  affect  precession  rate.  Free  eccentricity  size  can  be  chosen.  

Page 44: s Secular( - University of Rochesterastro.pas.rochester.edu/~aquillen/ast570/lectures/B...Conway(in(their(book(“Orbital(Mechanics”,(referring(to(aformulaon(dueto Ban . f =1 x2

Secular  problem  with  free  and  forced  eccentrici,es  

H(�;�⇥) = � + �⇥

� cos ⇥

Page 45: s Secular( - University of Rochesterastro.pas.rochester.edu/~aquillen/ast570/lectures/B...Conway(in(their(book(“Orbital(Mechanics”,(referring(to(aformulaon(dueto Ban . f =1 x2

Pericenter  Glow  

•  Mark  Wyaj,  developed  for  HR4796A  system,  later  also  applied  to  Fomalhaut  system  

Page 46: s Secular( - University of Rochesterastro.pas.rochester.edu/~aquillen/ast570/lectures/B...Conway(in(their(book(“Orbital(Mechanics”,(referring(to(aformulaon(dueto Ban . f =1 x2

Mul,ple  Planet  system  Hamiltonian  view  

•  Single  interac,on  term  involving  two  planets  •  All  semi-­‐major  axes  and  eccentrici,es  are  converted  to  mometa  

•  Three  low  order  secular  terms,  involving  Γ1,Γ2,(Γ1Γ2)1/2  

•  Hamilton’s  equa,on  give  evolu,on  consistent  with  two  eigenvectors  previously  found.  

Page 47: s Secular( - University of Rochesterastro.pas.rochester.edu/~aquillen/ast570/lectures/B...Conway(in(their(book(“Orbital(Mechanics”,(referring(to(aformulaon(dueto Ban . f =1 x2

Epicyclic  approxima,on  

⇥L⇥�

= Ld

dt

⇥L⇥�

=⇥L⇥�

= 0

L(x,x) = x

2

2+

y

2

2� �(r)

H(pr, r;L, �) =p2r2

+L2

2r2+ �(r)

u =r � rcrc

H(pr, r;L, �) =p2r2

+L2

2r2c(1 + u)�2 + �(rc(1 + u))

These  cancel  to  be  consistent  with  a  circular  orbit  

L = r2c� ⇥2 = �0(rc)/rc

H =p2u2

+L2

2r2c

�1� 2u+ 3u2

�+ �(rc) + �0(rc)u+ �00(rc)

u2

2

Page 48: s Secular( - University of Rochesterastro.pas.rochester.edu/~aquillen/ast570/lectures/B...Conway(in(their(book(“Orbital(Mechanics”,(referring(to(aformulaon(dueto Ban . f =1 x2

Epicyclic  frequency  

�2 =3L2

r4c+ �00(rc)

H =p2u2

+L2

2r2c

�1� 2u+ 3u2

�+ �(rc) + �0(rc)u+ �00(rc)

u2

2

H =1

2(p2u + �2u2) + ...

H = �L+ �J + aL2 + bJ2 + cLJ

to  higher  order  in  epicyclic  amplitude  (Contopoulos)  

Page 49: s Secular( - University of Rochesterastro.pas.rochester.edu/~aquillen/ast570/lectures/B...Conway(in(their(book(“Orbital(Mechanics”,(referring(to(aformulaon(dueto Ban . f =1 x2

More  generally  on  epicyclic  mo,on    

H = f(L) + �(L)J + g(L)J2 + ...

f 0(L) = �

Low  epicyclic  amplitude  expansion  

For  a  good  high  epicyclic  amplitude  approxima,on  see  a  nice  paper  by  Walter  Dehnen  using  a  second  order  expansion  but  of  the  Hamiltonian  ,mes    a  carefully  chosen  radial  func,on  

As  long  as  there  are  no  commensurabili,es  between  radial  oscilla,on  periods  and  orbital  period  this  expansion  can  be  carried  out  

Page 50: s Secular( - University of Rochesterastro.pas.rochester.edu/~aquillen/ast570/lectures/B...Conway(in(their(book(“Orbital(Mechanics”,(referring(to(aformulaon(dueto Ban . f =1 x2

Low  eccentricity  Expansions  

•  Func,ons  of  radius  and  angle  can  be  wrijen  in  terms  of  the  Eccentric  anomaly  

M = E � e sinE

e sin E = E �M

e sin E =��

s=1

bs(e) sin sM

is  an  odd  func,on  

bs(e) =2sJs(se) Bessel  func,on  of  the  first  kind  

E = M + e sin M + e2 12

sin 2M + e3

�38

sin 3M � 18

sin M

⇥.....

E = M +��

s=1

2sJs(se) sin sM

This  can  be  shown  by  integra,ng  and  using  Kepler’s  equa,on  (see  page  38  M+D)  

Page 51: s Secular( - University of Rochesterastro.pas.rochester.edu/~aquillen/ast570/lectures/B...Conway(in(their(book(“Orbital(Mechanics”,(referring(to(aformulaon(dueto Ban . f =1 x2

Low  eccentricity  expansions  con,nued  

cos nE = �e

2�n,1 +

⇥�

k=1

n

k[Jk�n(ke)� Jk+n(ke)] cos kM

sin nE =⇥�

k=1

n

k[Jk�n(ke) + Jk+n(ke)] sin kM

r = a(1� e cos E)r

a= 1� e cos E

r

a= 1 + e2 �

⇥�

k=1

e

k[Jk�1(ke)� Jk+1(ke)] cos kE

found  by  integra,ng  Fourier  coefficients  by  parts  and  using  integral  forms  for  the  Bessel  func,on  

Page 52: s Secular( - University of Rochesterastro.pas.rochester.edu/~aquillen/ast570/lectures/B...Conway(in(their(book(“Orbital(Mechanics”,(referring(to(aformulaon(dueto Ban . f =1 x2

Con,nued  

a

r=

11� e cos E

=dE

dM

E = M +��

s=1

2sJs(se) sin sM

using  Kepler’s  equa,on  

a

r= 1 +

��

s=1

2Js(se) cos sM

� r

a

⇥2= (1 + e cos E)

= 1� 2e cos E + e2 cos2 E

= 1� 2e cos E +e2

2(1 + cos 2E)

now  can  expand  cos  func,ons  

Page 53: s Secular( - University of Rochesterastro.pas.rochester.edu/~aquillen/ast570/lectures/B...Conway(in(their(book(“Orbital(Mechanics”,(referring(to(aformulaon(dueto Ban . f =1 x2

Expansion  of  the  Disturbing  func,on  

•  in  plane  

RD =a�

|r� r�| |r� r�| =�

r2 + r�2 � rr� cos �

xx�

rr� = cos(� + f) cos(�� + f �)

yy�

rr� = sin(� + f) sin(�� + f �)

cos � = cos(⇥ + f � ⇥� � f �)

I = � = 0

� = ⇤ + f = ⇥ + f I = � = 0if    

cos ⇥ = cos(� � ��)

wri,ng  the  dot  product  in  terms  of  orbital  angles  

ψ  angle  between  defined  here  

Page 54: s Secular( - University of Rochesterastro.pas.rochester.edu/~aquillen/ast570/lectures/B...Conway(in(their(book(“Orbital(Mechanics”,(referring(to(aformulaon(dueto Ban . f =1 x2

Angular  factors  

•  When  inclina,on  is  not  zero  we  define    

•  Ψ  is  small  if  inclina,ons  are  small  and  can  be  expanded  in  powers  of  the  sin  of  the  inclina,ons      

� ⌘ cos � cos(✓ � ✓0)

Page 55: s Secular( - University of Rochesterastro.pas.rochester.edu/~aquillen/ast570/lectures/B...Conway(in(their(book(“Orbital(Mechanics”,(referring(to(aformulaon(dueto Ban . f =1 x2

Expansion  of  the  disturbing  func,on  -­‐Con,nued  

•  Expand  the  disturbing  func,on  as  a  series  of  

 ,mes  inclina,ons,  angular  factors  and  some  radii  •  Use  low  eccentricity  and  inclina,on  expansions  for  these  factors  

•  Expand  powers  of    Δ0    in  terms  of  powers  of  ρ0  assuming  that    

��10 =

⇥r2 + r02 + 2rr0 cos(� � �0)

⇤�1/2

⇥0 =

⇥a2 + a02 + 2aa0 cos(� � �0)

⇤1/2����r0

a0� 1

���� ⌧ 1

���r

a� 1

��� ⌧ 1

these  are  sa,sfied  at  low  eccentricity  

Page 56: s Secular( - University of Rochesterastro.pas.rochester.edu/~aquillen/ast570/lectures/B...Conway(in(their(book(“Orbital(Mechanics”,(referring(to(aformulaon(dueto Ban . f =1 x2

Laplace  coefficients  

•  This  is  a  Fourier  expansion  

•  These  are  called  Laplace  coefficients,  closely  related  to  ellip,c  func,ons  

•  Can  be  evaluated  by  series  expansion  in  α  or  in  1-­‐α  •  They  diverge  as  α    1  

⇥0 ⇥�a2 + a�2 � 2aa� cos(� � ��)

⇥1/2

⇤�(2i+1)0 = a⇥�(2i+1) 1

2

⇤�

�⇤b(j)i+ 1

2(�) cos j(⇥ � ⇥⇥)

12b(j)s (�) ⇥ 1

2⇥

� 2�

0

cos j⇤ d⇤

(1� 2� cos ⇤ + �2)s

separa,ng  the  radial  informa,on  from  the  angle  informa,on  

Page 57: s Secular( - University of Rochesterastro.pas.rochester.edu/~aquillen/ast570/lectures/B...Conway(in(their(book(“Orbital(Mechanics”,(referring(to(aformulaon(dueto Ban . f =1 x2

Expansion  of  Disturbing  func,on  

•  Disturbing  func,on  is  wrijen  in  terms  of  an  expansion  of  deriva,ves  of  Laplace  coefficients  and  cosines  of  arguments  

(r2 + r⇥2 � 2rr⇥ cos(� � �⇥)�1/2 = ⇥�1/20 + (r � a)

⇤a⇥�(2i+1)0 +

(r⇥ � a⇥)⇤

⇤a⇥⇥�(2i+1)0 + ...

Dm,n = ama�n �m+n

�am�a�n

)

Page 58: s Secular( - University of Rochesterastro.pas.rochester.edu/~aquillen/ast570/lectures/B...Conway(in(their(book(“Orbital(Mechanics”,(referring(to(aformulaon(dueto Ban . f =1 x2

First  term!  

•  Useful  rela,ons  can  be  found  by  manipula,ng  the  integral  defini,on  of  the  Laplace  coefficients,  e.g.  

RD =12b(j)

12

+18(e2 + e�2)[�4j2 + 2�D + �2D2]b(j)

12

cos(j⇥� j�⇥)

RD =12b(0)

12

+18(e2 + e�2)[2�D + �2D2]b(0)

12

for  j=0  

D � ⇥

⇥�

b(�j)s = b(j)

s

Page 59: s Secular( - University of Rochesterastro.pas.rochester.edu/~aquillen/ast570/lectures/B...Conway(in(their(book(“Orbital(Mechanics”,(referring(to(aformulaon(dueto Ban . f =1 x2

Second  term  

•  j=1,  j=-­‐1  

18ee�[2j + 4j2 � 2�D � �2D2]b(j)

12

cos((1 + j)⇥� (1 + j)⇥� �⇤ + ⇤�)

18ee�[�2j + 4j2 � 2�D � �2D2]b(j)

12

cos((1� j)⇥� (1� j)⇥� �⇤ + ⇤�)

14

�2� 2�D � �2D2

⇥b(1)1/2 cos(⇥ �⇥�)

Page 60: s Secular( - University of Rochesterastro.pas.rochester.edu/~aquillen/ast570/lectures/B...Conway(in(their(book(“Orbital(Mechanics”,(referring(to(aformulaon(dueto Ban . f =1 x2

Simplifica,on  Using  rela,ons  between  coefficients  derived  by  Brouwer  &  Clemens    

2�db(0)

1/2

d�+ �2

d2b(0)1/2

d�2= �b(1)

32

2b(1)1/2 � 2�

db(1)1/2

d�� �2

d2b(1)1/2

d�2= ��b(2)

32

RD,1 = n21a

21

m2

mc + m1

�18�2

12b(1)3/2e

21 �

�14�2

12b(2)3/2e1e2 cos(⇥1 �⇥2)

As  we  used  in  our  discussion  of  secular  perturba,ons  

Using  them  we  find  that  secular  low  order  secular  terms  are      

Page 61: s Secular( - University of Rochesterastro.pas.rochester.edu/~aquillen/ast570/lectures/B...Conway(in(their(book(“Orbital(Mechanics”,(referring(to(aformulaon(dueto Ban . f =1 x2

More  generally  

•  Expanding  the  disturbing  func,on  in  terms  of  Poincare  coordinates  

•  D’Alembert  rules  –  flipping  signs  of  all  angles  preserves  series  so  only  cosines  needed  

–  rota,ng  coordinate  system  preserves  series  

⇥ = M + ⇤ + �� = �⇤ � � = �⌅

z = ��

R =�

j,k,l

cijl cos(j⇥ + k� + lz)

j � k � l = 0

Page 62: s Secular( - University of Rochesterastro.pas.rochester.edu/~aquillen/ast570/lectures/B...Conway(in(their(book(“Orbital(Mechanics”,(referring(to(aformulaon(dueto Ban . f =1 x2

Expansion  of  the  Disturbing  func,on  In  Summary  

Expansion  of  the  disturbing  func,on  assuming  •  low  eccentrici,es,  low  inclina,ons  Radial  factors  wrijen  in  terms  of  Laplace  coefficients  and  their  deriva,ves  

Each  argument  and  order  of  e,i  gives  a  func,on  

Both  direct  and  indirect  terms  can  be  expanded  

Expansion  func,ons  listed  in  appendix  by  M+D  

Page 63: s Secular( - University of Rochesterastro.pas.rochester.edu/~aquillen/ast570/lectures/B...Conway(in(their(book(“Orbital(Mechanics”,(referring(to(aformulaon(dueto Ban . f =1 x2

Reading:  

•  Murray  and  Dermoj  Chap  2  •  Murray  and  Dermoj  Chap  6,7  •  Prussing  and  Conway  Chap  2  on  universal  variables  •  Wright  et  al.  2008,  “Ten  New  and  Updated  Mul,-­‐planet  Systems,  and  a  Survey  of  Exoplanetary  Systems”  astroph-­‐arXiv:0812.1582v2    

•  Malhotra,  R.  2002,  ApJ,  575,  L33,  A  Dynamical  Mechanism  for  Establishing  Apsidal  Resonance  

•  Barnes  and  Greenberg,  “Extrasolar  Planet  Interac,ons”,  astro-­‐ph/0801.3226