s Parameters (1)Nn

Embed Size (px)

Citation preview

  • 8/18/2019 s Parameters (1)Nn

    1/107

    A

  • 8/18/2019 s Parameters (1)Nn

    2/107

    S-parameters are a useful method for representing a circuit as a “black box”

  • 8/18/2019 s Parameters (1)Nn

    3/107

    S-parameters are a useful method for representing a circuit as a “black box”

    .

  • 8/18/2019 s Parameters (1)Nn

    4/107

    .

    ,

    .

    S-parameters are a useful method for representing a circuit as a “black box”

  • 8/18/2019 s Parameters (1)Nn

    5/107

    A “black box” or network may have any number of ports.

    This diagram shows a simple

    network with just 2 ports.

  • 8/18/2019 s Parameters (1)Nn

    6/107

    A “black box” or network may have any number of ports.

    This diagram shows a simple

    network with just 2 ports.

    Note :

    A port is a terminal pair of lines.

  • 8/18/2019 s Parameters (1)Nn

    7/107

    S-parameters are measured by sending a single frequency signal into thenetwork or “black box” and detecting what waves exit from each port.

    Power, voltage and current

    can be considered to be inthe form of waves travellingin both directions.

  • 8/18/2019 s Parameters (1)Nn

    8/107

    Power, voltage and current

    can be considered to be inthe form of waves travellingin both directions.

    For a wave incident on Port 1,some part of this signal

    reflects back out of that portand some portion of the signalexits other ports.

    S-parameters are measured by sending a single frequency signal into thenetwork or “black box” and detecting what waves exit from each port.

  • 8/18/2019 s Parameters (1)Nn

    9/107

    I have seen S-parameters described as S11, S21, etc. Can you explain?

    First lets look at S11.

    S11 refers to the signal

    reflected at Port 1 for thesignal incident at Port 1.

  • 8/18/2019 s Parameters (1)Nn

    10/107

    First lets look at S11.

    S11 refers to the signal

    reflected at Port 1 for thesignal incident at Port 1.

    Scattering parameter S11

    1/1.

    I have seen S-parameters described as S11, S21, etc. Can you explain?

  • 8/18/2019 s Parameters (1)Nn

    11/107

    Now lets look at S21.

    S21 refers to the signal

    exiting at Port 2 for thesignal incident at Port 1.

    Scattering parameter S21

    2/1.

    I have seen S-parameters described as S11, S21, etc. Can you explain?

  • 8/18/2019 s Parameters (1)Nn

    12/107

    Now lets look at S21.

    S21 refers to the signal

    exiting at Port 2 for thesignal incident at Port 1.

    Scattering parameter S21

    2/1.

    I have seen S-parameters described as S11, S21, etc. Can you explain?

  • 8/18/2019 s Parameters (1)Nn

    13/107

    Now lets look at S21.

    S21 refers to the signal

    exiting at Port 2 for thesignal incident at Port 1.

    Scattering parameter S21

    2/1.

    I have seen S-parameters described as S11, S21, etc. Can you explain?

  • 8/18/2019 s Parameters (1)Nn

    14/107

  • 8/18/2019 s Parameters (1)Nn

    15/107

    A linear network can be characterised by a set of simultaneous equations

    describing the exiting waves from each port in terms of incident waves.

    S11 = b1 / a1

    S12 = b1 / a2

    S21 = b2 / a1

    S22 = b2 / a2

    Note again how the subscript follows the parameters in the ratio (S11=b1/a1, etc...)

    I have seen S-parameters described as S11, S21, etc. Can you explain?

  • 8/18/2019 s Parameters (1)Nn

    16/107

  • 8/18/2019 s Parameters (1)Nn

    17/107

    S-parameters are complex (i.e. they have magnitude and angle)

    because both the magnitude and phase of the input signal arechanged by the network.

    (This is why they are sometimes referred to as complex scattering parameters).

  • 8/18/2019 s Parameters (1)Nn

    18/107

    These four S-parameters actually contain eight separate numbers:

    the real and imaginary parts (or the modulus and the phase angle)of each of the four complex scattering parameters.

  • 8/18/2019 s Parameters (1)Nn

    19/107

    Quite often we refer to the magnitude only as it is of the most interest.

    How much gain (or loss) you get is usually more important than how muchthe signal has been phase shifted.

  • 8/18/2019 s Parameters (1)Nn

    20/107

    S-parameters depend upon the network

    and the characteristic impedances of thesource and load used to measure it, andthe frequency measured at.

    i.e.

    if the network is changed, the S-parameters change.

    if the frequency is changed, the S-parameters change.

    if the load impedance is changed, the S-parameters change.

    if the source impedance is changed, the S-parameters change.

    What do S-parameters depend on?

  • 8/18/2019 s Parameters (1)Nn

    21/107

    What do S-parameters depend on?

    S-parameters depend upon the network

    and the characteristic impedances of thesource and load used to measure it, andthe frequency measured at.

    i.e.

    if the network is changed, the S-parameters change.

    if the frequency is changed, the S-parameters change.

    if the load impedance is changed, the S-parameters change.

    if the source impedance is changed, the S-parameters change.

    In the Si9000e S-parameters arequoted with source and loadimpedances of 50 Ohms

  • 8/18/2019 s Parameters (1)Nn

    22/107

    A little math…

    This is the matrix algebraic representation

    of 2 port S-parameters:

    Some matrices are symmetrical. A symmetrical matrix has symmetry aboutthe leading diagonal.

  • 8/18/2019 s Parameters (1)Nn

    23/107

    A little math…

    This is the matrix algebraic representation

    of 2 port S-parameters:

    Some matrices are symmetrical. A symmetrical matrix has symmetry aboutthe leading diagonal.

    In the case of a 2-port network, that means that S21 = S12 and interchangingthe input and output ports does not change the transmission properties.

  • 8/18/2019 s Parameters (1)Nn

    24/107

    A little math…

    This is the matrix algebraic representation

    of 2 port S-parameters:

    Some matrices are symmetrical. A symmetrical matrix has symmetry aboutthe leading diagonal.

    In the case of a symmetrical 2-port network, that means that S21 = S12 andinterchanging the input and output ports does not change the transmission

    properties.

    A transmission line is an example of a symmetrical 2-port network.

  • 8/18/2019 s Parameters (1)Nn

    25/107

    A little math…

    Parameters along the leading diagonal,

    S11 & S22, of the S-matrix are referred to asreflection coefficients because they refer tothe reflection occurring at one port only.

  • 8/18/2019 s Parameters (1)Nn

    26/107

    A little math…

    Parameters along the leading diagonal,

    S11 & S22, of the S-matrix are referred to asreflection coefficients because they refer tothe reflection occurring at one port only.

    Off-diagonal S-parameters, S12, S21, are referred to as transmission coefficients because they refer to what happens from one port to another.

  • 8/18/2019 s Parameters (1)Nn

    27/107

    Larger networks:

    A Network may have any number of ports.

  • 8/18/2019 s Parameters (1)Nn

    28/107

    Larger networks:

    A Network may have any number of ports.

    The S-matrix for an n-port network contains n2 coefficients (S-parameters),each one representing a possible input-output path.

  • 8/18/2019 s Parameters (1)Nn

    29/107

    Larger networks:

    A Network may have any number of ports.

    The S-matrix for an n-port network contains n2 coefficients (S-parameters),each one representing a possible input-output path.

    The number of rows and columns in an S-parameters matrix is equal to thenumber of ports.

  • 8/18/2019 s Parameters (1)Nn

    30/107

    Larger networks:

    A Network may have any number of ports.

    The S-matrix for an n-port network contains n2 coefficients (S-parameters),each one representing a possible input-output path.

    The number of rows and columns in an S-parameters matrix is equal to thenumber of ports.

    For the S-parameter subscripts “ij”, “j” is the port that is excited (the input port)

    and “i” is the output port.

  • 8/18/2019 s Parameters (1)Nn

    31/107

    Larger networks:

    A Network may have any number of ports.

    The S-matrix for an n-port network contains n2 coefficients (S-parameters),each one representing a possible input-output path.

    The number of rows and columns in an S-parameters matrix is equal to thenumber of ports.

    For the S-parameter subscripts “ij”, “j” is the port that is excited (the input port)

    and “i” is the output port.

  • 8/18/2019 s Parameters (1)Nn

    32/107

  • 8/18/2019 s Parameters (1)Nn

    33/107

    Sum up…

    • S-parameters are a powerful way to describe an electrical network

    • S-parameters change with frequency / load impedance / source impedance / network• S11 is the reflection coefficient • S21 describes the forward transmission coefficient (responding port 1

    st!)• S-parameters have both magnitude and phase information• Sometimes the gain (or loss) is more important than the phase shift and the phase

    information may be ignored• S-parameters may describe large and complex networks

    • If you would like to learn more please see next slide:

  • 8/18/2019 s Parameters (1)Nn

    34/107

    Further reading:

    //..//51. 

    //..//154. 

     

    //..//.//24321152500542

    //..

    //.101./.

    //..///130.

    //..//

    140

    Online lecture OLL-141 S11 & Smith charts - Eric Bogatinwww.bethesignal.com

  • 8/18/2019 s Parameters (1)Nn

    35/107

    D

  • 8/18/2019 s Parameters (1)Nn

    36/107

    C

    36

    ( ) ( )φ+ω=   tcosVtV o

    ( )   ( )   t j jot j

    o   eeVReeVRetV  ωφφ+ω ==

    1 j   −=

    SinusoidalSource

    φ joeV is a complex phasor

  • 8/18/2019 s Parameters (1)Nn

    37/107

    •   ,

    •   C •  

    37

    oV

    ( )φcosVo

    ( )φsinVo

    φωRe

    Im

    ( ) ( )φ+φ=φ sin jVcosVeV oo j

    o

    t  je

      ω  

  • 8/18/2019 s Parameters (1)Nn

    38/107

    38

    Charge on the inner conductor:

    xVCq l∆=∆

    where Cl is the capacitance per unit lengthAzimuthal magnetic flux:

    xIL l∆=∆Φ

    where Ll is the inductance per unit length

  • 8/18/2019 s Parameters (1)Nn

    39/107

    39

    i ii   ∆+

    v   vv   ∆+

    xL l∆

    xC l∆

    Voltage drop along the inductor:

    ( )

    dt

    dixLvvv l∆=∆+−

    Current flowing through the capacitor:

    dt

    dvxCiii l∆−=∆+

  • 8/18/2019 s Parameters (1)Nn

    40/107

    40

    Limit as ∆x->0

    t

    i

    Lx

    v

    l ∂

    −=∂

    t

    B

    E ∂

    −=×∇

     

      

    t

    vC

    x

    il∂

    ∂−=

    t

    DH

    ∂=×∇

     

      

    Solutions are traveling waves

    ( )    

      

     ++

     

      

     −=   −+

    vel

    xtv

    vel

    xtvx,tv

    ( )    

      

     +−

     

      

     −=

    −+

    vel

    xt

    Z

    v

    vel

    xt

    Z

    vx,ti

    oo

    v+ indicates a wave traveling in the +x directionv- indicates a wave traveling in the -x direction

  • 8/18/2019 s Parameters (1)Nn

    41/107

    C

    41

    vel is the phase velocity of the wave

    llCL

    1

    vel  =

    For a transverse electromagnetic wave (TEM), the phase velocity isonly a property of the material the wave travels through

    µε=   1

    CL

    1

    ll

    The characteristic impedance Zo

    l

    lo

    C

    LZ   =

    has units of Ohms and is a function of the material AND thegeometry

  • 8/18/2019 s Parameters (1)Nn

    42/107

    42

    Pulse travels down the transmission line as a forward going wave only(v+). However, when the pulse reaches the load resistor:

    oo

    L

    Z

    v

    Z

    v

    vvRi

    v

    −+

    −+

    +==

    LR+v

    so a reverse wave v-

    and i-

    must be created to satisfy the boundarycondition imposed by the load resistor

  • 8/18/2019 s Parameters (1)Nn

    43/107

    C

    43

    The reverse wave can be thought of as the incident wave reflectedfrom the load

    Γ =+−=+

    oL

    oLZRZR

    vv Reflection coefficient

    Three special cases:

    RL = ∞ (open)   Γ = +1

    RL = 0 (short)   Γ = -1

    RL = Zo   Γ = 0

    A transmission line terminated with a resistor equal in value to the

    characteristic impedance of the transmission line looks the same tothe source as an infinitely long transmission line

  • 8/18/2019 s Parameters (1)Nn

    44/107

    44

    ( )   t jx j eeVRextcosVv   ωβ−+++ =β−ω=

    vel=β

    ω

    phase velocity λ

    π=

    π=β

      2

    vel

    f 2wave number

    By using a single frequency sine wave we can now define compleximpedances such as:

    LI jV   ω=dt

    diLv =

    dt

    dvCi =

    C j

    1

    Zcap ω=

    L jZind   ω=

    CV jI   ω=

    Experiment: Send a SINGLE frequency (ω) sine wave into atransmission line and measure how the line responds

  • 8/18/2019 s Parameters (1)Nn

    45/107

    45

    LZoZ

    0x  =

    x

    d

    At x=0

    oL

    oL

    ZZ

    ZZVV+−=Γ =   +−

    Along the transmission line:

    ( ) ( )xcosV2e1VV

    eVeVV

    x j

    x jx j

    βΓ +Γ −=

    Γ +=

    +β−+

    β++β−+

    traveling wave standing wave

  • 8/18/2019 s Parameters (1)Nn

    46/107

    ()

    46

    0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 11.5

    1

    0.5

    0

    0.5

    1

    1.5

    Position

    ( )

    ( )

    ( )

    ( )VSWR

    1

    1

    1V

    1V

    V

    V

    min

    max

    =Γ −

    Γ +=

    Γ −

    Γ +=

    +

    +

    The VSWR is always greater than 1

    2

    1=Γ 

    Large voltage

    Large current

  • 8/18/2019 s Parameters (1)Nn

    47/107

    ()

    47

    ( )

    ( )

    ( )( )

    VSWR

    1

    1

    1V

    1V

    V

    V

    min

    max

    =

    Γ −

    Γ +=

    Γ −

    Γ +=

    +

    +

    The VSWR is always greater than 1

    2

    1=Γ 

    Incident wave

    Reflected wave

    Standing wave

  • 8/18/2019 s Parameters (1)Nn

    48/107

    C A

    48

    LZoZ

    0x  =

    x

    d

    oL

    oLL

    ZZZZ

    +−=Γ GΓ 

    towards load

    towards generator

    x j

    L

    x j

    eVeVV

      β++β−+

    Γ +=

    d2 jL)d( j

    )d( j

    L

    genreverse

    forwardG   e

    eV

    eV

    V

    V   β−−β−+

    −β++

    Γ =Γ ==Γ 

    Wave has to traveldown and back

  • 8/18/2019 s Parameters (1)Nn

    49/107

    49

    GΓ 

    LΓ 

    { }Γ Re

    { }Γ Im

    d2β−=θ

    There is a one-to-onecorrespondence between Γ G and

    ZL

    oG

    oG

    G ZZ

    ZZ

    +

    −=Γ 

    G

    GoG

    1

    1ZZ

    Γ −

    Γ +=

    d2 jL

    d2 jL

    oGe1

    e1ZZ

    β−

    β−

    Γ −

    Γ +=

  • 8/18/2019 s Parameters (1)Nn

    50/107

    : C

    50

    For an open circuit ZL= ∞ so Γ L = +1

    Impedance at the generator:

    ( )dtan

     jZZ   oG

    β

    −=

    For βd

  • 8/18/2019 s Parameters (1)Nn

    51/107

    : C

    51

    For a short circuit ZL= 0 so Γ L = -1

    Impedance at the generator:

    ( )dtan jZZ oG   β=

    For βd

  • 8/18/2019 s Parameters (1)Nn

    52/107

    52

    LZoZ

    0x   =

    x

    d

    sP

    dx   −=

    d j

    oL

    d j

    oG

    d j

    L

    d j

    G

    eZ

    Ve

    Z

    V)d(II

    eVeV)d(VV

    β−+

    β++

    β−+β++

    Γ −=−=

    Γ +=−=

    Voltage and Current at the generator (x=-d)

    The rate of energy flowing through the plane at x=-d

    { }

    o

    22

    Lo

    2

    *GG

    Z

    V

    2

    1

    Z

    V

    2

    1P

    IVRe2

    1P

    ++

    Γ −=

    =

    forward power

    reflected power

  • 8/18/2019 s Parameters (1)Nn

    53/107

    •   ! .

     –  

    •   C

     –  

    •   :

    53

    0L  =Γ 

    which implies:

    oL   ZZ   =When ZL = Zo, the load is matched to the transmission line

  • 8/18/2019 s Parameters (1)Nn

    54/107

    54

    What if the load cannot be made equal to Zo for some other reasons?

    Then, we need to build a matching network so that the sourceeffectively sees a match load.

    0=Γ 

    LZsP 0Z   M

    Typically we only want to use lossless devices such as capacitors,inductors, transmission lines, in our matching network so that we donot dissipate any power in the network and deliver all the availablepower to the load.

  • 8/18/2019 s Parameters (1)Nn

    55/107

    55

     jxrZ

    Zz

    o

    +==

    It will be easier if we normalize the load impedance to thecharacteristic impedance of the transmission line attached to the

    load.

    Γ −

    Γ +

    = 1

    1

    z

    Since the impedance is a complex number, the reflection coefficientwill be a complex number

     jvu +=Γ 

    ( )

      22

    22

    vu1

    vu1r

    +−

    −−=

    ( )   22 vu1

    v2x

    +−=

  • 8/18/2019 s Parameters (1)Nn

    56/107

    B B

    56

    A dB is defined as a POWER ratio. For example:

    ( )Γ =

     

      

     Γ =

     

      

     =Γ 

    log20

    log10

    P

    Plog10

    2

    for

    revdB

    A dBm is defined as log unit of power referenced to 1mW:

     

      

     =

    mW1

    Plog10PdBm

  • 8/18/2019 s Parameters (1)Nn

    57/107

    D

  • 8/18/2019 s Parameters (1)Nn

    58/107

    58

    We have only discussed reflection so far. What about transmission?Consider a device that has two ports:

    1V 2V

    2I1I

    [ ] [ ][ ]IZV

    IZIZV

    IZIZV

    2221212

    2121111

    =

    +=

    +=

    The device can be characterized by a 2x2 matrix:

  • 8/18/2019 s Parameters (1)Nn

    59/107

    ()

    59

    −+

    −+

    −=

    +=

    iiio

    iii

    VVIZ

    VVV

    Since the voltage and current at each port (i) can be broken downinto forward and reverse waves:

    We can characterize the circuit with forward and reverse waves:

    [ ]   [ ][ ]+−++−

    ++−

    =

    +=

    +=

    VSV

    VSVSV

    VSVSV

    2221212

    2121111

  • 8/18/2019 s Parameters (1)Nn

    60/107

    60

    [ ] [ ] [ ]( )   [ ] [ ]( )

    [ ] [ ] [ ]( ) [ ] [ ]( )   1o

    o1

    o

    S1S1ZZ

    1ZZ1ZZS

    −+=

    −+=

    Similar to the reflection coefficient, there is a one-to-one

    correspondence between the impedance matrix and the scatteringmatrix:

  • 8/18/2019 s Parameters (1)Nn

    61/107

    ()

    61

    The S matrix defined previously is called the un-normalized

    scattering matrix. For convenience, define normalized waves:

    io

    ii

    io

    ii

    Z2

    Vb

    Z2

    Va

    +

    =

    =

    Where Zoi is the characteristic impedance of the transmission lineconnecting port (i)

    |ai|2 is the forward power into port (i)

    |bi|2

    is the reverse power from port (i)

  • 8/18/2019 s Parameters (1)Nn

    62/107

    ()

    62

    The normalized scattering matrix is:

    Where:

    [ ] [ ][ ]asbasasb

    asasb

    22212122121111

    =

    +=

    +=

     j,iio

     jo

     j,i  S

    Z

    Zs   =

    If the characteristic impedance on both ports is the same then thenormalized and un-normalized S parameters are the same.

    Normalized S parameters are the most commonly used.

  • 8/18/2019 s Parameters (1)Nn

    63/107

    63

    The s parameters can be drawn pictorially

    s11 and s22 can be thought of as reflection coefficientss21 and s12 can be thought of as transmission coefficients

    s parameters are complex numbers where the angle corresponds to aphase shift between the forward and reverse waves

    s11 s22

    s21

    s12

    a1

    a2b1

    b2

  • 8/18/2019 s Parameters (1)Nn

    64/107

    64

    τ

    Zo1 2

    [ ]

    =

    ωτ−

    ωτ−

    0e

    e0s

     j

     j

    21   [ ]  

    −−=

    1001s

    1 2

    [ ]  

    =

    0G

    00s

    G

    Transmission Line

    Short

    Amplifier

  • 8/18/2019 s Parameters (1)Nn

    65/107

    65

    [ ]

    =

    010

    001

    100

    s

    1

    2

    [ ]  

    =

    01

    00s

    Zo

    Isolator

    1 2

    3

    Circulator

  • 8/18/2019 s Parameters (1)Nn

    66/107

    66

    If the device is made out of linear isotropic materials (resistors,capacitors, inductors, metal, etc..) then:

    [ ] [ ]ss   T =

     j,ii, j   ss   =   ji ≠

    or

    for

    This is equivalent to saying that the transmitting pattern of anantenna is the same as the receiving pattern

    reciprocal devices: transmission line

    shortdirectional coupler

    non-reciprocal devices: amplifier

    isolator

    circulator

    D

  • 8/18/2019 s Parameters (1)Nn

    67/107

    D

    67

    The s matrix of a lossless device is unitary:

    [ ]   [ ] [ ]1ss T* =

    =

    =

     j

    2 j,i

    i

    2

     j,i

    s1

    s1for all j

    for all i

    Lossless devices: transmission line

    shortcirculator

    Non-lossless devices: amplifier

    isolator

    A

  • 8/18/2019 s Parameters (1)Nn

    68/107

    68

    Network analyzers measure Sparameters as a function of

    frequency

    At a single frequency, networkanalyzers send out forward waves a1and a2 and measure the phase and

    amplitude of the reflected waves b1and b2 with respect to the forward

    waves.

    a1 a2

    b1 b2

    02a1

    111

    a

    bs

    =

    =02a

    1

    221

    a

    bs

    =

    =

    01a2

    112

    a

    bs

    =

    =01a

    2

    222

    a

    bs

    =

    =

    A C

  • 8/18/2019 s Parameters (1)Nn

    69/107

    69

    To measure the pure S parameters of a device, we need to eliminatethe effects of cables, connectors, etc. attaching the device to the

    network analyzer

    s11 s22

    s21

    s12

    x11 x22

    x21

    x12

    y11 y22

    y21

    y12

    yx21

    yx12

    Connector Y Connector X

    We want to know the S parameters atthese reference planes

    We measure the S parameters at thesereference planes

    A C

  • 8/18/2019 s Parameters (1)Nn

    70/107

    A C

    •   10

    •   10  –  D

     –   D (D)

     –  B

    (), D .

    70

    A C

  • 8/18/2019 s Parameters (1)Nn

    71/107

    A C•  

    , .

    •   :

    71

    [ ]  

    −=

    10

    01s

    [ ]

    =

    ωτ−

    ωτ−

    0e

    e0s

     j

     j

    τ

    [ ]  

    =

    01

    10sThru

    Short

    Delay**ωτ~90degrees

    D

  • 8/18/2019 s Parameters (1)Nn

    72/107

    72

    A pure sine wave can be written as:( )zt j

    oeVV  β−ω=

    The phase shift due to a length of cable is:

    ph

    ph

    d

    v

    d

    ωτ=

    ω=

    β=θ

    The phase delay of a device is defined as:

    ( )ω

    −=τ   21phSarg

    D

  • 8/18/2019 s Parameters (1)Nn

    73/107

    D

    •   ,

    .•   ,

    .

    •  

     –  

     –  

    73

    D

  • 8/18/2019 s Parameters (1)Nn

    74/107

    D•   A

     –  

     –   •  

    74

    ( )( ) ( )tcostcosm1VV o   ωω∆+=

    ( ) ( )( ) ( )( )[ ]tcostcos2

    mVtcosVV oo   ω∆−ω+ω∆+ω+ω=

    The modulation can be de-composed into different frequencycomponents

    D

  • 8/18/2019 s Parameters (1)Nn

    75/107

    75

    ( )

    ( ) ( )( )

    ( ) ( )( )ztcos2

    mV

    ztcos2

    mV

    ztcosVV

    o

    o

    o

    β∆−β−ω∆−ω+

    β∆+β−ω∆+ω+

    β−ω=

    The waves emanating from the source will look like

    Which can be re-written as:

    ( )( ) ( )ztcosztcosm1VV o   β−ωβ∆−ω∆+=

    D

  • 8/18/2019 s Parameters (1)Nn

    76/107

    76

    The information travels at a velocity

    ω∂

    β∂⇒

    ω∆

    β∆=   11vgr

    The group delay is defined as:

    ( )( )

    ω∂

    −=

    ω∂

    β∂=

    21

    grgr

    Sarg

    d

    v

    d

    D D

  • 8/18/2019 s Parameters (1)Nn

    77/107

    D D

    77

    Phase Delay:

    ( )

    ω−=τ  21

    ph

    Sarg

    Group Delay:

    ( )( )ω∂∂−=τ  21gr Sarg

  • 8/18/2019 s Parameters (1)Nn

    78/107

    D

    C

  • 8/18/2019 s Parameters (1)Nn

    79/107

    •   , , , .

    •   , () , &

    •  

    , ,, , . ,

    79

    C

  • 8/18/2019 s Parameters (1)Nn

    80/107

    •   C

    •  

    •  

    80

    C

  • 8/18/2019 s Parameters (1)Nn

    81/107

    •   ,

    •   , .

    .

    •   A . (

    )

    •  

    81

    C

  • 8/18/2019 s Parameters (1)Nn

    82/107

    82

    The impedance as a function of reflection coefficient can be re-written in the form:

    ( )   22

    22

    vu1

    vu1

    r +−

    −−

    =

    ( )   22 vu1

    v2x

    +−=

    ( )22

    2

    r1

    1

    vr1

    r

    u +=+ 

     

     

     

    +−

    ( ) 2

    22

    x

    1

    x

    1

    v1u   = 

     

     

     −+−

    These are equations for

    circles on the (u,v) plane

    C C

  • 8/18/2019 s Parameters (1)Nn

    83/107

    83

    1 0.5 0 0.5 1

    1

    0.5

    0.5

    1

    { }Γ Re

    { }Γ Im

    r=0r=1/3

    r=1r=2.5

    C C

  • 8/18/2019 s Parameters (1)Nn

    84/107

    84

    1 0.5 0 0.5 1

    1

    0.5

    0.5

    1

    { }Γ Re

    { }Γ Im

    x=1/3 x=1 x=2.5

    x=-1/3 x=-1 x=-2.5

    C

  • 8/18/2019 s Parameters (1)Nn

    85/107

    85

    C 1

  • 8/18/2019 s Parameters (1)Nn

    86/107

    86

    Given:

    Ω= 50Zo

    °∠=Γ    455.0L

    What is ZL?

    ( )Ω+Ω=

    +Ω=5.67 j5.67

    35.1 j35.150ZL

    C 2

  • 8/18/2019 s Parameters (1)Nn

    87/107

    87

    Given:

    Ω= 50Zo

    Ω−Ω=   25 j15ZL

    What is Γ L?

    5.0 j3.050

    25 j15z L

    −=Ω

    Ω−Ω=

    °−∠=Γ    124618.0L

    C 3

    GiΩ+Ω=   50 j50Z

    L

  • 8/18/2019 s Parameters (1)Nn

    88/107

    88

    Given:Ω= 50Zo

    L

    What is Zin at 50 MHz?

    0.1 j0.1

    50

    50 j50z L

    +=

    Ω+Ω=

    °∠=Γ    64445.0L

    nS78.6=τ

    ?Zin

      =

    ωτ−β− Γ =Γ =Γ    2 jLd2 j

    Lin   ee

    °=ωτ   2442°∠=Γ    180445.0in

    ( )   Ω=+Ω=   190.0 j38.050ZL

    °=ωτ   2442

    A

    A t hi t k i i t b bi ti f l t

  • 8/18/2019 s Parameters (1)Nn

    89/107

    89

    A matching network is going to be a combination of elementsconnected in series AND parallel.

    Impedance is NOT well suited when working

    with parallel configurations.

    21L   ZZZ   +=

    2

    Z1

    Z

    2Z

    1Z

    21

    21L

    ZZ

    ZZZ

    +=

    ZIV  =

    For parallel loads it is better to work withadmittance.

    YVI =

    2Y1Y

    21L   YYY   +=1

    1Z

    1Y   =

    Impedance is well suited when working withseries configurations. For example:

    A

    jbYZY

  • 8/18/2019 s Parameters (1)Nn

    90/107

    90

     jbgYZYYy o

    o+===

    Γ +

    Γ −=

    1

    1y

    ( )   22

    22

    vu1

    vu1g

    ++

    −−=

    ( )   22 vu1

    v2b

    ++

    −=

    ( )22

    2

    g1

    1v

    g1

    gu

    +=+

     

      

     

    ++

    ( )2

    22

    b

    1

    b

    1v1u   =

     

      

     +++

    These are equations forcircles on the (u,v) plane

    A C

  • 8/18/2019 s Parameters (1)Nn

    91/107

    91

    1 0.5 0 0.5 1

    1

    0.5

    0.5

    1

    1   0.5 0 0.5 1

    1

    0.5

    0.5

    1

    { }Γ Re

    { }Γ Im

    g=1/3

    b=-1 b=-1/3

    g=1g=2.5 g=0

    b=2.5 b=1/3

    b=1

    b=-2.5

    { }Γ Im

    { }Γ Re

    A

    C

  • 8/18/2019 s Parameters (1)Nn

    92/107

    C•  

    ,

     –  

     –   C

    •   180 .

     –   180

    . 92

    A C 1

  • 8/18/2019 s Parameters (1)Nn

    93/107

    93

    • Procedure:

    • Plot 1+j1 on chart

    • vector =• Flip vector 180 degrees

    Given:

    °∠64445.0

    What is Γ 

    ?

    1 j1y   +=

    °−∠=Γ    116445.0

    Plot y

    Flip 180

    degreesRead Γ 

    A C 2

    Given:

  • 8/18/2019 s Parameters (1)Nn

    94/107

    94

    • Procedure:

    • Plot Γ 

    • Flip vector by 180 degrees

    • Read coordinate

    Given:

    What is Y?

    °+∠=Γ    455.0   Ω= 50Zo

    Plot Γ 

    Flip 180degrees

    Read y

    36.0 j38.0y   −=

    ( )

    ( )   mhos10x2.7 j6.7Y

    36.0 j38.050

    1Y

    3−−=

    −Ω=

    C

    Constant ImaginaryImpedance Lines

  • 8/18/2019 s Parameters (1)Nn

    95/107

    95

    Constant RealImpedance Circles

    Impedance

    Z=R+jX

    =100+j50

    Normalized

    z=2+j for

    Zo=50

    C• (50)

    – 1 = 100 + 50

  • 8/18/2019 s Parameters (1)Nn

    96/107

         1 = 100 + 50 –   2 = 75 100 –   3 = 200 –   4 = 150 –   5 = ( )

     –   6 = 0 ( ) –   7 = 50 –   8 = 184 900

    •, . :

     –   1 = 2 +  –   2 = 1.5 2

     –   3 = 4

     –   4 = 3 –   5 =  –   6 = 0 –   7 = 1 –   8 = 3.68 18

    96

    Toward

    Generator ConstantReflection

  • 8/18/2019 s Parameters (1)Nn

    97/107

    97

    Generator

    Away FromGenerator

    ReflectionCoefficient Circle

    Scale inWavelengths

    Full Circle is One HalfWavelength Since

    Everything Repeats

    C

  • 8/18/2019 s Parameters (1)Nn

    98/107

    •   , = 50 + 100

    •  

    •   ( )

    •   A . ,

    .

    98

  • 8/18/2019 s Parameters (1)Nn

    99/107

    99

    0=Γ 

    Ω100sP   Ω= 50Z0   M

    Match 100Ω load to a 50Ω system at 100MHz

    A 100Ω resistor in parallel would do the trick but ½ of thepower would be dissipated in the matching network. We wantto use only lossless elements such as inductors and capacitors

    so we don’t dissipate any power in the matching network

    We need to go from

  • 8/18/2019 s Parameters (1)Nn

    100/107

    100

    We need to go fromz=2+j0 to z=1+j0 on

    the Smith chart

    We won’t get anycloser by adding seriesimpedance so we willneed to add somethingin parallel.

    We need to flip overto the admittance

    chart

    ImpedanceChart

     y=0.5+j0

  • 8/18/2019 s Parameters (1)Nn

    101/107

    101

    y 0.5 j0

    Before we add theadmittance, add a

    mirror of the r=1circle as a guide.

    AdmittanceChart

  • 8/18/2019 s Parameters (1)Nn

    102/107

    102

     y=0.5+j0

    Before we add the

    admittance, add amirror of the r=1circle as a guide

    Now add positive

    imaginary admittance.

    AdmittanceChart

     y=0.5+j0

  • 8/18/2019 s Parameters (1)Nn

    103/107

    103

    y j Before we add the

    admittance, add amirror of the r=1

    circle as a guide Now add positive

    imaginary admittance jb = j0.5

    AdmittanceChart

    ( )

    pF16C

    CMHz1002 j50

    5.0 j

    5.0 j jb

    =

    π=Ω

    =

    pF16   Ω100

  • 8/18/2019 s Parameters (1)Nn

    104/107

    104

    We will now add seriesimpedance

    Flip to the impedanceSmith Chart

    We land at on the r=1circle at x=-1

    ImpedanceChart

    Add positive imaginaryd itt t t t

  • 8/18/2019 s Parameters (1)Nn

    105/107

    105

    admittance to get toz=1+j0

    ImpedanceChart

    pF16

    Ω100

    ( ) ( )

    nH80L

    LMHz1002 j500.1 j0.1 j jx

    =

    π=Ω=

    nH 80

    This solution wouldh ve ls rked

  • 8/18/2019 s Parameters (1)Nn

    106/107

    106

    have also worked

    ImpedanceChart

    pF32

    Ω100nH160

    B

    5

    0

    nH80

  • 8/18/2019 s Parameters (1)Nn

    107/107

    107

    50 60 70 80 90 100 110 120 130 140 15040

    35

    30

    25

    20

    15

    10

    Frequency (MHz)

       R  e   f   l  e  c   t   i  o  n   C  o  e   f   f   i  c   i  e  n   t   (   d   B   )

    50 MHz

    100 MHz

    Because the inductor and capacitorimpedances change with frequency, thematch works over a narrow frequency range

    pF16Ω100

    ImpedanceChart