1
Results Methods MoCvaCon Hypothesis: CogniAve loads affect Somatosensory Motor States (SMS) at different levels of control from deliberate to automaAc to autonomic Goals of the study: To develop outcome measures that capture change in physiological states as a funcAon of different mindsets To develop a simple experimental paradigm that characterizes mindsets and SMS in neurological disorders Characterization of sensory-motor behavior under different mindsets Jihye Ryu 1,2 , Elizabeth Torres 1,2,3 1 Rutgers University, Psychology Department 2 Rutgers Center for CogniAve Science 3 Rutgers University , Computer Science Department Acknowledgements This research is funded in part by The New Jersey Governor’s Council for Medical Research and Treatment of AuAsm and the New Jersey Department of Health References Torres, E. B. (2011). Two classes of movements in motor control. Experimental brain research, 215(34), 269283. Conclusion & Future DirecCon Frequency distribuAon of the speed profile do not differ between forward and backward movement, implying that in this task cogniAve loads influence both deliberate and automaAc poinAng movement segments. Individuals show varying degrees of physiological changes under low and high cogniAve load mindsets. Hence, examining the frequency distribuAon of the acceleraAon, temperature, and heart beat across may allow characterizing cogniAve load. StaAsAcal parameter ranges were determined for this typical cohort. Data will be further collected for different populaAon with neurological disorders. TASK STRUCTURE Control condiAon (Control): Performed 60 trials right aCer becoming familiar with the procedure. Low cogniAve load condiAon (Low): Performed 60 trials while repeatedly counAng forward from 1 to 5. High cogniAve load condiAon (High): Performed 60 trials while counAng backwards from 400 by 3. 1. Speed profile analysis A. Extract deliberate (forward) and automaAc (retracAon) hand movement segments and obtain corresponding angular speed profiles B. Normalize peak speed (NpV = pV / (pV + Avrg(local V)) between local mins C. Empirically esAmate the probability distribuAon parameters fiung histogram in C) using the conAnuous Gamma family of probability distribuAons. Obtain summary staAsAcs (mu, sigma, skewness, kurtosis). 2. AcceleraCon data analysis A. Extract median acceleraAon data (128Hz) at each second B. Empirically esAmate the probability distribuAon parameters fiung histogram in B) as in (1) 3. Temperature data analysis A. Extract temperature data (128Hz) B. Empirically esAmate the probability distribuAon parameters fiung histogram in B) as in (1) 4. Heart rate data analysis A. Extract heart rate data (256Hz) and compute interbeat interval (IBI) B. Empirically esAmate the probability distribuAon parameters fiung histogram in B) as in (1) Red: Forward move for poinCng (P) Blue: RetracCon move for poinCng (P) Red: Forward move to indicate Cme (T) Blue: RetracCon move to indicate Cme(T) Forward trajectory Number of trials RetracAon trajectory Analyses Sample parsing Experiment Paradigm 1. A) Xpos Zpos Zpos 1. B) 1. C) 2. B) 4. B) 3. B) Time Interval PercepCon (ms) ReacCon Time Analysis (ms) Time from signal to touch Time from signal to move Time from move to touch LowCntl HighCntl LowCntl HighCntl LowCntl HighCntl skewness Angular AcceleraCon gammafit distribuCon pdf parameter plot Temperature gammafit distribuCon pdf parameter plot IBI gammafit distribuCon pdf parameter plot Median AcceleraCon gammafit distribuCon pdf parameter plot Xpos Time(ms) Angular AcceleraAon (m/s) Noramlized AcceleraAon (m/s) Number of trials Median AcceleraAon (m/s) Temperature(C) IBI(s) Number of trials Number of trials 0s 4s 8s

Rutgers’University’,’Computer’Science’Department’ versions ...ruccs.rutgers.edu/images/publications/g_posters/JRyu_SfN2015_final.pdf · Poster’PrintSize: ’ This’poster’template’is’36”’high’by’

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Rutgers’University’,’Computer’Science’Department’ versions ...ruccs.rutgers.edu/images/publications/g_posters/JRyu_SfN2015_final.pdf · Poster’PrintSize: ’ This’poster’template’is’36”’high’by’

Poster  Print  Size:  This  poster  template  is  36”  high  by  48”  wide.  It  can  be  used  to  print  any  poster  with  a  3:4  aspect  raAo.  

Placeholders:  The  various  elements  included  in  this  poster  are  ones  we  oCen  see  in  medical,  research,  and  scienAfic  posters.  Feel  free  to  edit,  move,    add,  and  delete  items,  or  change  the  layout  to  suit  your  needs.  Always  check  with  your  conference  organizer  for  specific  requirements.  

Image  Quality:  You  can  place  digital  photos  or  logo  art  in  your  poster  file  by  selecAng  the  Insert,  Picture  command,  or  by  using  standard  copy  &  paste.  For  best  results,  all  graphic  elements  should  be  at  least  150-­‐200  pixels  per  inch  in  their  final  printed  size.  For  instance,  a  1600  x  1200  pixel  photo  will  usually  look  fine  up  to  8“-­‐10”  wide  on  your  printed  poster.  To  preview  the  print  quality  of  images,  select  a  magnificaAon  of  100%  when  previewing  your  poster.  This  will  give  you  a  good  idea  of  what  it  will  look  like  in  print.  If  you  are  laying  out  a  large  poster  and  using  half-­‐scale  dimensions,  be  sure  to  preview  your  graphics  at  200%  to  see  them  at  their  final  printed  size.  Please  note  that  graphics  from  websites  (such  as  the  logo  on  your  hospital's  or  university's  home  page)  will  only  be  72dpi  and  not  suitable  for  prinAng.  

 [This  sidebar  area  does  not  print.]  

Change  Color  Theme:  This  template  is  designed  to  use  the  built-­‐in  color  themes  in  the  newer  versions  of  PowerPoint.  To  change  the  color  theme,  select  the  Design  tab,  then  select  the  Colors  drop-­‐down  list.                    The  default  color  theme  for  this  template  is  “Office”,  so  you  can  always  return  to  that  aCer  trying  some  of  the  alternaAves.  

PrinAng  Your  Poster:  Once  your  poster  file  is  ready,  visit  www.genigraphics.com  to  order  a  high-­‐quality,  affordable  poster  print.  Every  order  receives  a  free  design  review  and  we  can  deliver  as  fast  as  next  business  day  within  the  US  and  Canada.    Genigraphics®  has  been  producing  output  from  PowerPoint®  longer  than  anyone  in  the  industry;  daAng  back  to  when  we  helped  MicrosoC®  design  the  PowerPoint®  soCware.      US  and  Canada:    1-­‐800-­‐790-­‐4001  Email:  [email protected]  

 [This  sidebar  area  does  not  print.]  

Results  

Methods    

     

MoCvaCon  

 Hypothesis:      

 CogniAve  loads  affect      Somatosensory  Motor  States      (SMS)  at  different  levels  of  control      from  deliberate  to  automaAc  to    autonomic  

     

Goals  of  the  study:      •  To  develop  outcome  measures  that  capture  change  in  

physiological  states  as  a  funcAon  of  different  mindsets  

 •  To  develop  a  simple  experimental  paradigm  that  characterizes  mindsets  and  SMS  in  neurological  disorders  

     

Characterization of sensory-motor behavior under different mindsets Jihye  Ryu1,2,  Elizabeth  Torres1,2,3  

1Rutgers  University,  Psychology  Department      2Rutgers  Center  for  CogniAve  Science        3Rutgers  University  ,  Computer  Science  Department    

Acknowledgements  This  research  is  funded  in  part  by  The  New  Jersey  Governor’s  Council  for  Medical  Research  and  Treatment  of  AuAsm  and  the  New  Jersey  Department  of  Health

References  •  Torres,  E.  B.  (2011).  Two  classes  of  movements  in  motor  control.  Experimental  brain  research,  215(3-­‐4),  269-­‐283.      

Conclusion  &  Future  DirecCon  •  Frequency  distribuAon  of  the  speed  profile  do  not  differ  between  forward  and  backward  movement,  implying  that  in  this  task  cogniAve  loads  influence  both  deliberate  and  automaAc  poinAng  movement  segments.    

•  Individuals  show  varying  degrees  of  physiological  changes  under  low  and  high  cogniAve  load  mindsets.  Hence,  examining  the  frequency  distribuAon  of  the  acceleraAon,  temperature,  and  heart  beat  across  may  allow  characterizing  cogniAve  load.      

•  StaAsAcal  parameter  ranges  were  determined  for  this  typical  cohort.    

 •  Data  will  be  further  collected  for  different  populaAon  with  neurological  disorders.    

 

TASK  STRUCTURE    

Ø Control  condiAon  (Control):  Performed  60  trials  right  aCer  becoming  familiar  with  the  procedure.    

Ø Low  cogniAve  load  condiAon  (Low):  Performed  60  trials  while  repeatedly  counAng  forward  from  1  to  5.  

Ø High  cogniAve  load  condiAon  (High):  Performed  60  trials  while  counAng  backwards  from  400  by  3.    

1.   Speed  profile  analysis    A.  Extract  deliberate  (forward)  and  automaAc  (retracAon)  hand  movement  

segments  and  obtain  corresponding  angular  speed  profiles  B. Normalize  peak  speed  (NpV  =  pV  /  (pV  +  Avrg(local  V))    between  local  mins  C.  Empirically  esAmate  the  probability  distribuAon  parameters  fiung  

histogram  in  C)  using  the  conAnuous  Gamma  family  of  probability  distribuAons.  Obtain  summary  staAsAcs  (mu,  sigma,  skewness,  kurtosis).    

2.   AcceleraCon  data  analysis  A.  Extract  median  acceleraAon  data  (128Hz)  at  each  second    B.  Empirically  esAmate  the  probability  distribuAon  parameters  fiung  

histogram  in  B)    as  in  (1)  

3.   Temperature  data  analysis    A.  Extract  temperature  data  (128Hz)  B.  Empirically  esAmate  the  probability  distribuAon  parameters  fiung  

histogram  in  B)    as  in  (1)  

4.   Heart  rate  data  analysis    A.  Extract  heart  rate  data  (256Hz)  and  compute  inter-­‐beat  interval  (IBI)    B.  Empirically  esAmate  the  probability  distribuAon  parameters  fiung  

histogram  in  B)    as  in  (1)  

Red:  Forward  move  for  poinCng  (P)  Blue:  RetracCon  move  for  poinCng  (P)  

Red:  Forward  move  to  indicate  Cme  (T)  Blue:  RetracCon  move  to  indicate  Cme(T)  

Forward  trajectory  

Num

ber  o

f  tria

ls    

RetracAon  trajectory  

Analyses  

     

Sample  parsing  

Expe

rimen

t  Paradigm  

1.  A)  

X-­‐pos  

Z-­‐po

s  

Z-­‐po

s  

1.  B)  

1.  C)   2.  B)  

4.  B)  3.  B)  

Time  Interval  PercepCon  (ms)  

ReacCon  Time  Analysis  (ms)  

Time  from  signal  to  touch    

Time  from  signal  to  move  

Time  from  move  to  touch  

Low-­‐Cntl   High-­‐Cntl   Low-­‐Cntl   High-­‐Cntl   Low-­‐Cntl   High-­‐Cntl  

skew

ness  

Angular  AcceleraCon  gamma-­‐fit  distribuCon  pdf  parameter  plot    

Temperature  gamma-­‐fit  distribuCon  pdf  parameter  plot     IBI  gamma-­‐fit  distribuCon  pdf  parameter  plot    

Median  AcceleraCon  gamma-­‐fit  distribuCon  pdf  parameter  plot    

X-­‐pos   Time(ms)  

Angular  A

cceleraA

on  (m

/s)  

Noramlized  AcceleraAon  (m/s)  

Num

ber  o

f  tria

ls    

Median  AcceleraAon  (m/s)  

Temperature(C)   IBI(s)  

Num

ber  o

f  tria

ls    

Num

ber  o

f  tria

ls    

0s   4s            8s